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Abstract: The existence of humans and the preservation of the natural ecological equilibrium depend
greatly on trees. The semantic segmentation of trees is very important. It is crucial to learn how
to properly and automatically extract a tree’s elements from photographic images. Problems with
traditional tree image segmentation include low accuracy, a sluggish learning rate, and a large amount
of manual intervention. This research suggests the use of a well-known network segmentation
technique based on deep learning called Yolo v7 to successfully accomplish the accurate segmentation
of tree images. Due to class imbalance in the dataset, we use the weighted loss function and apply
various types of weights to each class to enhance the segmentation of the trees. Additionally, we use
an attention method to efficiently gather feature data while reducing the production of irrelevant
feature data. According to the experimental findings, the revised model algorithm’s evaluation index
outperforms other widely used semantic segmentation techniques. In addition, the detection speed
of the Yolo v7 model is much faster than other algorithms and performs well in tree segmentation
in a variety of environments, demonstrating the effectiveness of this method in improving the
segmentation performance of the model for trees in complex environments and providing a more
effective solution to the tree segmentation issue.

Keywords: tree segmentation; semantic segmentation; fast segmentation; Yolo v7; deep learning

1. Introduction

The existence of humans and the preservation of the natural ecological balance depend
greatly on trees. They conserve the ecological variety of animals and plants, produce wood
and other goods for people, offer habitat and food for wild animals, absorb carbon dioxide,
release oxygen, filter the air, maintain water and soil, and stop soil erosion [1].

In order to extract the crown, diameter at breast height (DBH), and other informa-
tion from standing tree images, semantic segmentation is necessary [2]. This study is
crucial to the subject of Digital Forestry. A Region-based Convolutional Neural Network
(R-CNN) segmentation approach based on an RGB-Depth Map (RGB-D) Image and Im-
proved Mask R-CNN semantic segmentation of citrus crowns in orchards was suggested
by Cong et al. [3]. In order to semantically segment changes in forests in aerial images,
Pyo et al. employed the U-Network (U-Net) model of convolution deep learning architec-
ture [4]. For the semantic segmentation of remote sensing images, Marsocci et al. employed
a Self-Supervised Multi-Attention Residual U-Network (ResU-Net) [5].

Deep learning has been widely applied in a variety of industries, including facial recog-
nition, automated driving, and intelligent robotics [6]. Yolo series algorithms have many
applications in deep learning. Li et al.’s Yolo-Based Traffic Sign Recognition Algorithm
application reduced the potential safety hazards caused by human cognitive errors [7].
The Real-Time Human Ear Detection developed by Quoc et al., based on the joining of
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Yolo and RetinaFace, could recognize humans with masks and could diagnose ear-related
diseases [8]. The Yolo series of algorithms is based on convolutional neural networks,
which were developed from early backpropagation (BP) neural networks; they have very
good generalization ability and can handle object recognition problems in images well.
Early Yolo series algorithms mainly used convolution and pooling as feature extraction and
processing methods. A fully activated module was added to Yolo 2.0 to make the network
more stable and accurate. The algorithm has undergone some optimizations and added an
attention mechanism, and its detection accuracy is higher.

The semantic segmentation of standing tree images based on the Yolo v7 deep learn-
ing algorithm in this work is novel [9]. A number of segmentation models have been
put forth in the field of image segmentation that successfully address a number of the
issues with traditional segmentation, including the semi-manual operation [10], imprecise
segmentation [11], and inaccurate targeting of an object [12]. The semantic segmentation
model based on Yolo v7 was selected. The Yolo series of algorithms are relatively popular,
but research and application for tree segmentation is basically absent; Yolo v7 is a new
algorithm recently released by the Yolo series, which represents a Yolo series algorithm
with better effect. Yolo v7’s detection speed and accuracy are higher than all previous
Yolo versions, and it is suitable for the semantic segmentation of trees. In addition to the
advantages of the algorithm itself, Yolo v7 was also partially improved, and the attention
mechanism was added to the algorithm to improve accuracy.

Semantic segmentation of standing tree images based on the Yolo v7 algorithm is the
main research contribution of this paper. Among the many algorithms for deep learning, the
latest and appropriate Yolo v7 algorithm was selected to ensure the applicational feasibility
of tree segmentation. In order to further improve the accuracy of the algorithm, the Yolo
v7 algorithm was partially modified, and the attention mechanism was added. In order
to deal with tree semantic segmentation with a complex background, the weighted loss
function was introduced. The optimized Yolo v7 algorithm mainly improves the accuracy
of its detection. Due to the advantages of the selected algorithm, its detection speed is also
far faster than other algorithms. It realizes the fast and accurate semantic segmentation of
a tree, which can be applied to fields such as digital intelligent agriculture. Tree samples
from different environments in two cities were collected; the specific design is explained in
the experimental section. The optimized semantic segmentation effect of Yolo v7 on a tree
is detailed in the results section. The algorithm of the Yolo series is mainly composed of
four parts, namely the feature extraction layer, the feature enhancement layer, the detection
layer, and the postprocessing layer. The first three parts are processed with a traditional
convolution layer, and the last two parts are processed with a convolution and pooling layer.
In feature extraction, the basis of Yolo series algorithms is to extract effective information
or features from images. The Yolo v7 algorithm also uses a convolution neural network,
which is composed of three convolution modules: the LSTM module, the Dropout module,
and the Softmax output module. The LSTM module is mainly detected through connection
and full activation, the Dropout module is mainly added after the first two networks to
prevent overfitting, and the output part of the Softmax is processed by using convolution.

The remainder of this article is structured as follows. The core concepts and fundamen-
tal tenets of the Yolo v7 model suggested in this article are explained in depth in Section 2.
The experiment’s setup and procedure are described in Section 3. The outcomes of the
experimental comparison are examined in Section 4. Finally, the conclusion of the entire
experimental effort is summarized in Section 5.

2. Yolo V7 Model
2.1. Introduction of the Yolo V7 Model

The Yolo series has developed along with deep learning, starting with Yolo v1 in 2015
and progressing to Yolo v2 in 2016, Yolo v3 in 2018, Yolo v4 and Yolo v5 in 2020, and most
recently Yolo v6 and Yolo v7 [13–19]. Yolo v7 not only performs target identification, but
also has applications in case segmentation and human posture assessment. In the mask
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branch, Yolo v7’s instance segmentation is a SingleStage approach, which contributes to
its efficiency in this area [20]. The OrienMaskHead is utilized at the moment, and more
approaches may be implemented down the road [21].

Figure 1 below displays the Yolo v7 framework network procedure in its entirety. The
input image is first resized to 640 × 640 pixels before being fed into the backbone network.
Following that, three feature map layers of varying sizes are generated via the head layer
network, and Rep and conv are used to output the prediction outcomes. If the dataset
belongs to Coco, each output (x, y, w, h, o) is the coordinate location and the backdrop
before and after, and there are three anchors. The outputs are divided into 80 categories.
The ultimate output of each layer is therefore (80 + 5) × 3 = 255 multiplied by the size of
the feature map.
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Figure 1. Yolo v7’s overall framework network process.

2.2. The Main Pros and Cons of Yolo V7

Yolo v7 is 120% faster (FPS) than Yolo v5, 180% faster (FPS) than Yolo X, 1200% faster
(FPS) than Dual-Swin-T, 550% faster (FPS) than ConvNext, and 500% faster (FPS) than
SWIN-L [19]. It is also more accurate than Yolo v5 with the same volume. The accuracy
and speed of Yolo v7 have both increased compared to previous Yolo algorithms.

Yolo v7, which was evaluated on a GPU V100, outperformed the currently available
detectors in the speed and accuracy range of 5 to 160 frames per second. A detection
rate of more than 30 FPS may be attained by the model with an accuracy of 56.8% AP
(batch = 1). It is also the only detector capable of exceeding 30 FPS while maintaining such
high accuracy [19].

In deep learning, some algorithms pursue algorithm accuracy, while others pursue
algorithm speed. Yolo pursues algorithm speed while considering algorithm accuracy,
though algorithm accuracy is not the main focus. Yolo also has peculiar format requirements
for data annotation, which also increases the complexity of application.

2.3. Convolutional Block Attention Module (CBAM)

The channel attention module (CAM) and spatial attention module (SAM) make up
the convolutional block attention module (CBAM). While the SAM enables the network to
concentrate on the locations that are rich in context information in the whole image, the
CAM lets the network focus on the foreground of the image and the significant region.
These two modules can be used together. The CBAM begins with the channel and spatial
range. To realize the sequential attention structure from channel to space, two analytical
dimensions (spatial attention and channel attention) are added [22]. Instead of disregarding
the irrelevant region, the neural network may be trained to pay greater attention to the
pixel region in the image that defines focus segmentation using a spatial attention module
(SAM). The channel attention module (CAM) is used to handle the allocation relationship
of the feature mapping channels. At the same time, allocating attention to two dimensions
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enhances the improvement in the attention mechanism and its effect on model performance.
The structure of the CBAM is shown in Figure 2.
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The specific CAM procedure is as follows: We input the feature map F through the
global maximum pool and the global average pool in accordance with the width and height
to generate two 1 × 1 × C characteristic diagrams and then send them separately. We enter
a shared two-layer neural network (MLP). The last channel attention feature, Mc, is created
by adding MLP output characteristics in element order and activating them with Sigmoid.
The input features needed by the spatial attention module are produced by multiplying Mc
and the input feature map F according to the element direction. This can be expressed by
the following calculation, Formula (1).

Mc(F) = σ
(

W1

(
W0

(
Fc

avg

))
+ W1

(
W0

(
Fc

avg

)))
. (1)

The specific SAM procedure is as follows: We use the channel attention module’s
output feature map F as this module’s input feature map. We create a global maximum pool
and global average pool based on the channels, obtain two H × W × 1 characteristic graphs,
and then conduct channel-based concatenation using these two characteristic graphs. To
reduce the number of channels, we then utilize the 7 × 7 convolution procedure. After
sigmoid activation, the spatial attention characteristic Ms is formed. Lastly is Ms. To obtain
the final feature, we multiply the feature of S by the module. This can be expressed as the
following calculation, Formula (2).

Ms(F) = σ
(

f 7×7
([

Fc
avg; Fs

max

]))
. (2)

In the decoding step, the low-level features produced in the shallow network are
utilized directly as input data and several background features are added, which has an
impact on the segmentation outcomes. The channel focus mechanism module has more
weight and becomes more responsive to target objects through addition of the convolutional
block attention module (CBAM). The spatial attention mechanism is more attentive to the
foreground region and the characteristics of the target region, which contributes to the
generation of more efficient feature maps.

2.4. Importing the Attention Mechanism SENet

The Squeeze-and-Excitation Network (SENet) module’s construction is depicted in
Figure 3 [23]. Its purpose is to allow the network to undertake dynamic channel feature
recalibration in order to enhance network characterization capabilities. In other words, it
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employs learning to automatically determine the relevance of each characteristic, enhancing
the qualities that are applicable to the task while suppressing the ones that are not. It mostly
consists of the following three sections.
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In the compression operation, after obtaining U (multiple feature maps), each feature
map is compressed by the global average pool; thus, the C feature map becomes a 1 × 1 × C
real number sequence [23].

In the excitation operation, nonlinear transformation of the extruded results is per-
formed by using a fully connected neural network [23].

In the weighting operation, we use the result of the excitation as the weight and multi-
ply it by the input characteristic [23]. The mapping relationship is shown in Formula (3)–(5).

zc = Fsq(uc) =
1

H×W

H
∑

i=1

W
∑

j=1
uc(i, j), (3)

s = Fex(z, W) = σ(W2δ(W1z)), (4)

x̃c = Fscale(uc, sc) = scuc, (5)

where uc represents each characteristic channel; W and H represent the width and height
of uc, respectively; zc represents the compressed value of the c-dimension channel; W1
and W2 represent the dimension and increment, respectively, which are the weights of
the full join operation; δ is a ReLU function, and σ is an s-type function. The function δ

represents the first full connection layer, and σ is the second full connection layer. Finally,
by multiplying the scalar sc and the feature uc, representing the c dimension obtains the
final characteristics, x̃c.

2.5. Importing the Weighted Loss Function

Loss is a function that describes the difference between the output value of the model
and the true value of the sample, which is derived from the input dataset [24]. The
neural network weights in the deep learning model are taught via loss backpropagation.
The training impact of the depth learning model is thus crucially determined by the
loss function. Simple and complicated backgrounds are the two categories used in this
study to categorize tree labeling. As a result, the loss function is multi-category cross
entropy [24]. The network tended to learn features with complex backgrounds during
training and was unable to successfully extract features with simple backgrounds, leading to
low segmentation accuracy with simple backgrounds. This was due to the large proportion
of categories in the dataset that had complex backgrounds. A weighted loss function was
provided to address the issue of the imbalanced segmentation’s low accuracy.

2.6. Detectron2

Yolo v7’s mask branch depends on Facebook’s detectron2, and detectron2 needs a
version of Torch that is higher than 1.8. In order to recreate detectron, the most popular
deep learning framework in 2020, Facebook AI Research (FAIR) developed detectron2 [25].
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Additionally, simpledet and mmdetection were also used [25]. With a large number of
pretrained models and the integration of sophisticated target recognition and semantic
segmentation algorithms, detectron2 N2 was rebuilt from a Caffe-based to a PyTorch-based
architecture. Plugging it in and starting it up is fairly easy.

2.7. Overall Process

The training portion and the application portion of the segmentation stages for the
standing trees are shown in Figure 4. In order to create a collection of training data for
standing tree images, the camera’s upright tree image was first utilized, increased by data
augmentation, and then labeled. The semantic division network was then fed the learned
dataset. The segmentation model was created after training, and the training ended when
the loss value approached convergence. In a practical application, the training model was
fed an image of the target standing tree to produce the segmentation effect.
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3. Experiments

The outcomes of the suggested Yolo v7 model were tested and validated, as described
in this section. The standing tree image collection used for this experiment, the network hy-
perparameter settings, hardware and software setups, and the experimental methodology
are presented.

3.1. Experimental Software and Hardware Configuration

The deep learning framework PyTorch was used to implement the Yolo v7 model and
the experiments. The hardware and software configurations are shown in Table 1.

Table 1. Experimental software and hardware configuration.

Project Detail

CPU E5 2678v3 × 2
GPU GTX 3060Ti 8G
RAM 16 GB × 2
Disk HITACHI A640 3T
OS Windows 11 Pro

Anaconda Anaconda3-2022.10-Windows 64
PyTorch PyTorch 1.8.0
Python Python 3.8
Cuda Cuda 11.1

PyCharm PyCharm Community 2 February 2021
Labelme Labelme 1.5.1
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3.2. Production of Dataset
3.2.1. Image Data Acquisition

The experiment’s tree images were derived from two different sources of environ-
mental data. Lin’an City was the first location. The sampling region is situated on the
southern boundary of the mid-subtropical monsoon climatic zone in the northwest of
Zhejiang Province. There are four distinct seasons and a monsoon climate, which is warm
and humid with adequate light and plentiful rainfall. Hills and mountains dominate the
landscape, which slopes from the northwest to the southeast and has a pronounced three-
dimensional climate [26]. The second location was Lishui City. This sampling region, which
is in the heart of the subtropical monsoon climatic zone and has clear subtropical maritime
monsoon climate features, is situated at the intersection of the provinces of Zhejiang and
Fujian in Zhejiang Province’s southwest. With four different seasons, a mild winter and
early spring, copious precipitation, synchronous rain and heat, and a variety of vertical
climates, the landscape is primarily hilly and mountainous [27]. The backdrop settings of
the trees fell into two categories: simple and complicated background environments.

The backdrop surroundings, natural lighting, photography tools, etc., were also
thought to have an impact on the images of maple trees. The Redmi K30 Pro’s 64 million
onboard cameras were used in this experiment, and the image collection period spanned
from June to October 2022. These images were randomly captured and gathered during
the day. Data collection also included images taken in various weather situations, which
could more accurately depict actual observations. In the end, 500 screened images were
created, including 100 simple background images of Lin’an, 100 simple background images
of Lishui, 150 complex background images of Lin’an, and 150 complex background images
of Lishui.

3.2.2. Image Data Preprocessing

Numerous data samples were gathered, most of which were images that were nearly
4K in resolution. Each image was uniformly enlarged to 1280 × 1280 pixels in order
to evaluate the performance of Yolo v7 with other comparable segmentation algorithms
under the same circumstances and increase the effectiveness of the segmentation trials.
Additionally, the pixels in Yolo v7 must be multiples of 32.

3.2.3. Data Enhancement Processing

Because it is easy to overfit the model by directly using the original data for train-
ing, the experimental dataset was enhanced and processed. The CVPR Fine Visualization
Classification Challenge used a data enhancement operation to enlarge the original data.
Using this method, the generalization ability of the model can be enhanced, and the image
translation and flipping invariance can be given [28]. The Albumations data enhancement
library was used to randomly enhance the brightness, cropping, flipping, and shifting of
the marked images, respectively, enlarging them by 2, 4, 2, and 2 times, totaling 24 times.
We then processed the images to a resolution of 1280 × 1280 pixels, for a total of 12,000 ex-
perimental data images [29].

3.2.4. Data Annotation Processing

An open-source program called LabelMe 1.5.1 was used to annotate the images in
the datasets. The Massachusetts Institute of Technology’s (MIT) Computer Science and
Artificial Intelligence Laboratory (CSAIL) created the image labeling program labelme.
This program can be used to perform image tagging or to construct custom labels. The
project’s source code is available for download [30]. Labelme is a program for graphically
marking images that can mark points, line segments, rectangles, polygons, and other
shapes. Annotation data are saved in the json format. However, Yolo does not support
json files; thus, json code must be used to convert the data of the text. In the figures, the
backdrop is black and the segmentation of the standing tree is in red.
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3.3. Experimental Design
3.3.1. Classification Settings of Datasets

Standing tree images with simple and complicated backgrounds were randomly
allocated according to functions based on the generation of the aforementioned datasets,
with 70% serving as the training set, 20% serving as the validation dataset, and 10% serving
as the testing dataset. The experimental data needed to be categorized in accordance with
the 7:2:1 general division rule. There were four categories: the simple background of
Lin’an, the simple background of Lishui, the complicated background of Lin’an, and the
complicated background of Lishui.

3.3.2. Experimental Effect Evaluation Index

Image segmentation includes semantic segmentation, instance segmentation, and
panoramic segmentation. Their evaluation indexes are basically the same, and these
indexes are inseparable from the basic confusion matrix [31]. The commonly used image
segmentation indicators are pixel accuracy (PA), class pixel accuracy (CPA), class average
pixel accuracy (MPA), intersection over union (IoU), and mean intersection over union
(MIoU) [32]. In this study, MPA and MIoU were used as the evaluation indexes. MPA
calculates the proportion of the correctly classified pixels of each class separately and
calculates the average by accumulation. MIoU divides the intersection of the predicted
area and the actual area by the union of the predicted area and the actual area, so that the
IoU under a single category can be calculated. We then repeat this algorithm to calculate
the IoUs of other classes and calculate their average. Their formulas are shown below.

MPA = 1
k+1

k
∑

i=0

pii
∑k

j=0 pij
(6)

MIoU = 1
k+1

k
∑

i=0

pii
∑k

j=0 pij+∑k
j=0 pji−pii

(7)

3.3.3. Experimental Scheme Design

For the experimental environment, refer to 3.1. In order to improve the accuracy of the
model, the weighted loss function was used as the loss function for the segmentation model,
and a new attention module was also introduced to improve the segmentation accuracy of
the model with opposite trees. We input the training dataset with labeling information into
the improved Yolo v7 mask network for training. For the dataset, 70% of the images were
randomly selected for the training set, 20% of the images for the verification set, and 10%
of the images for the testing set. Because too low or too high a learning rate will lead to
slow or even no convergence of the model, it was necessary to determine the appropriate
initial learning rate [33]. In this paper, the accuracy of the five models designed and tested
under the initial learning rate in the training was evaluated, and eight classified data were
combined. The results are shown in Figures 5 and 6. It can be seen that the model had the
highest accuracy when the learning rate was 0.0002, and the epoch was 200. See Table 2 for
the training hyperparameters of the Yolo v7 model.

Table 2. Yolo v7 hyperparameters.

Project Detail

Epoch 300
Batch size 8

Input shape 1280 × 1280

We chose images of standing trees and trained the model using the aforementioned
settings. The validation data, which were each 1280 × 1280 pixels in size, were predicted
using the model and the loss rate of the stored results from the training phase, which were
then superimposed over the original image. The outcomes are displayed in Figure 7.
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4. Analysis and Discussion
4.1. Visual Analysis
4.1.1. The Effect of Tree Segmentation with a Simple Background

When compared to other network models for segmenting standing trees on a plain
background, FCN segmentation was comparatively subpar [34] and could only approxi-
mately segment the canopy’s form. The relay network was not correctly divided by the
SegNet network [35]. U-segmentation Net’s findings were more accurate than SegNet
and FCN; however, faulty trunk segmentation results still existed [35]. In every way,
DEEBV3+ was a better segmentation algorithm than the prior model, although trunk gap
segmentation was incorrect [36]. This issue was well solved by the Yolo v7 model. Figure 8
displays the outcomes of utilizing several techniques to separate standing trees with a
simple background.
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4.1.2. The Effect of Tree Segmentation with a Complex Background

The standing tree image segmentation experiment had a complicated background
with a variety of buildings, greenery, and other noise or human activity traces that made
segmentation more challenging.

Yolo v7 enhanced the detail processing of the trunk edges, minimized the acquisition
of erroneous features, and boosted the accuracy of semantic segmentation when compared
to the other five segmentation techniques. It also incorporated the weighted loss function.
The entire standing tree’s segmentation impact was definitely improved, which helped
subsequent factor computation, minimized manual intervention, and resolved the issues of
inefficient operation and erroneous segmentation.

4.2. Comparison of the Segmentation Indexes of Different Models
4.2.1. Comparison of the Different Models with a Simple Background

On the standing tree dataset, the Yolo v7 model was compared to the other five
methods (FCN, SegNet, U-Net, PSPNet, and the DeepLabV3+) according to the assessment
indicators provided in Section 3.3.2. The findings are displayed in Table 3.

Table 3. Performance comparison with a simple background.

Model Category MPA (%) MIoU (%)

FCN Lin’an sample
Lishui sample

85.36
86.72

75.32
76.27

SegNet Lin’an sample
Lishui sample

86.29
85.96

76.39
74.18

U-Net Lin’an sample
Lishui sample

87.82
86.33

77.60
77.13

PSPNet Lin’an sample
Lishui sample

83.56
84.73

72.69
73.98

DeepLabV3+ Lin’an sample
Lishui sample

91.57
91.85

84.15
83.62

Yolo v7 Lin’an sample
Lishui sample

95.87
94.69

92.12
91.17

Yolo v7’s MPA was higher than that of other techniques when compared to the typical
mainstream semantic segmentation algorithm [37] and the other five algorithms in the
presence of a simple background. With a simple background, accuracy of 95.87% and
94.69% was achieved with the samples of Lin’an and Lishui, respectively, while the other
evaluation index (MioU) demonstrated 92.12% and 91.17% accuracy, respectively.
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4.2.2. Comparison of the Different Models with a Complex Background

Compared to a simple background, the performance of tree segmentation with a
complex background was slightly lower, but the Yolo v7 model still achieved better segmen-
tation results with a complex background, as shown in Table 4. Using the improved Yolo v7
model, the samples of Lin’an City and Lishui City demonstrated MPA of 94.27% and 93.46%,
respectively, and the other evaluation index (MioU) was 91.28% and 90.23%, respectively.

Table 4. Performance comparison with a complex background.

Model Category MPA (%) MIoU (%)

FCN Lin’an complex
Lishui complex

83.21
84.16

72.67
74.38

SegNet Lin’an complex
Lishui complex

84.65
85.63

75.23
75.18

U-Net Lin’an complex
Lishui complex

84.25
83.18

73.64
71.59

PSPNet Lin’an complex
Lishui complex

82.62
83.67

72.66
72.97

DeepLabV3+ Lin’an complex
Lishui complex

90.54
91.22

83.62
84.58

Yolo v7 Lin’an complex
Lishui complex

94.27
93.46

91.28
90.23

We chose five random samples with a simple background. See Table 5 for the PSNR
(Peak Signal-to-Noise Ratio) values of the samples of standing trees under various models.
Yolo v7 had better performance in terms of segmentation results, almost 2 dB higher than
the other models on average, which was about 1 dB higher than the best one. This proves
that the model has high feasibility in the segmentation of standing trees.

Table 5. PSNR (dB) comparison of different models.

Model 1 2 3 4 5

FCN 15.86 15.21 15.67 16.75 15.84
SegNet 15.92 15.34 16.21 16.32 16.38
U-Net 17.26 18.02 18.33 18.66 17.94

PSPNet 15.93 16.35 16.37 17.53 17.14
DeepLabV3+ 19.34 18.63 19.57 20.04 19.32

Yolo v7 20.21 19.83 21.04 21.36 21.16

4.3. Ablation Experiments

An ablation experiment is an important method that can evaluate the quality of a
model. In this study, an ablation experiment was carried out using the dataset of standing
trees in Lishui City [38]. In order to verify the effectiveness of introducing the attention and
weighted loss function, four groups of different cases were established for the experiments,
and the experimental results are shown in Table 6. Yolo v7+O. refers to the original Yolo v7
mask branch model without the convolutional block attention module, Yolo v7+L. refers
to the branch model of the Yolo v7 mask with the weighted loss function, and Yolo v7+S.
refers to the branch model of the Yolo v7 mask with the convolutional block attention
module. It can be seen from the table that the improved Yolo v7 model not only improved
segmentation accuracy, but also shortened the running time of prediction and optimized
the size of the model’s results and the spatial complexity of the model.
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Table 6. Comparison results of the different model architectures.

Model MPA (%) Time (s) Size (Mb)

Yolo v7 + O. 87.34 0.13 74.9
Yolo v7 + L. 90.17 0.12 73.6
Yolo v7 + S. 91.51 0.13 73.8

Yolo v7 93.75 0.12 73.3

4.4. Computational Complexity

Time complexity and spatial complexity are both components of computational com-
plexity. People often focus more on time complexity and less on space complexity. In this
part, we compare the training and reasoning times of the proposed Yolo v7 model and
the other five models [39]. Based on the measured values of the hardware infrastructure
mentioned in Section 3.1, Table 7 displays the training and reasoning times.

Table 7. Average processing time for each method.

Model Training Time (h) Inference Time (s)

FCN 24 0.52
SegNet 22 0.59
U-Net 19 0.34

PSPNet 26 0.51
DeepLabV3+ 23 0.47

Yolo v7 18 0.12

Both results heavily depended on the network’s depth and the size of the chosen
number, as these approaches were trained using the same optimizer and learning rate. For
instance, SegNet was quite fast at training and reasoning; however, it performed poorly
when measured against the assessment metrics. U-Net also had a faster training time due
to its basic network topology and limited number of parameters; however, the outcome
was somewhat poorer than Yolo v7. Because DeepLabv3+ was more complex than the
previous networks, training and reasoning took longer. Yolo v7’s prediction phase was
substantially faster than the previous models’ due to the use of model scaling and other
functions, and the improvement phase added very little to time complexity.

4.5. Robustness Test

Experiments with multiple input image sizes were used to evaluate the performance
of the Yolo v7 model with varying input sizes; the same settings for the other parameters
were retained in order to assess the robustness of the model. Table 8 presents the outcomes.
The table indicates that the Yolo v7 model performed similarly over a range of input sizes,
demonstrating its high resilience.

Table 8. Comparison results of the different input shapes.

Input Shape MIoU (%) Speed (s)

1280 × 1280 91.17 0.11
640 × 640 91.08 0.10
320 × 320 89.87 0.08

5. Conclusions

To address the semantic segmentation of standing tree images with simple and compli-
cated backdrops, a better semantic segmentation approach based on deep learning and the
most recent version of the well-known Yolo algorithm was suggested. To increase segmen-
tation accuracy and robustness, decrease the acquisition of erroneous feature information,
and widen the acceptance domain, the Yolo v7 model was coupled with the attention
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mechanism module SENet. A weighted loss function was developed to address the issue of
category imbalance with complicated backgrounds and enhance the segmentation accuracy
of the model. The enhanced Yolo v7 mask standing tree segmentation model was evaluated
and contrasted with other approaches using the standing tree image dataset. According
to the experimental findings, detection speed was substantially faster than that of other
methods. This technique also successfully segmented the tree at the same time. The MPA
of the Yolo v7 Model was improved to 94.69% and 93.46% with simple and complicated
backgrounds, respectively, while the MIoU of the Yolo v7 Model was improved to 91.17%
and 90.23%, respectively.

Yolo v7, which was proposed in this paper, performed poorly in environments with
high background complexity, and the semantic segmentation effect was even worse when
there was insufficient light or more occlusion. This is true even though it did achieve a
better segmentation effect on standing trees in complex backgrounds.
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