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Abstract: This article presents a novel nonparametric approach to generate synthetic data using
copulas, which are functions that explain the dependency structure of the real data. The proposed
method addresses several challenges faced by existing synthetic data generation techniques, such
as the preservation of complex multivariate structures presented in real data. By using all the
information from real data and verifying that the generated synthetic data follows the same behavior
as the real data under homogeneity tests, our method is a significant improvement over existing
techniques. Our method is easy to implement and interpret, making it a valuable tool for solving
class imbalance problems in machine learning models, improving the generalization capabilities of
deep learning models, and anonymizing information in finance and healthcare domains, among
other applications.
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1. Introduction

Synthetic data (SD) is data generated through mathematical models that preserve the
statistical properties of real data (RD), such as the marginal and joint distributions of the
data variables [1,2]. In recent years, research on synthetic data generation processes has
become more relevant since important applications have been demonstrated, such as the
possibility of anonymizing information, with a special interest in health [3–5], balancing
classes in the training of machine learning (ML) models [6–9], increasing the amount of
data to improve the generalizability of deep learning models [10–12], among others.

The generation of SD makes it possible to solve the problem of class imbalance in the
ML algorithms used in classification, thanks to the fact that the RD are oversampled, which
allows for obtaining new individuals from minority classes. One of the most widely used
techniques for this has been the Synthetic Minority Oversampling Technique (SMOTE).
Originally introduced by Chawla et al. [13], SMOTE finds the nearest neighbors for a
random sample of the class of interest and then randomly selects one of those neighbors
and generates a sample that belongs to the line segment joining the random sample with
its neighbor. The main disadvantage of this method is that it uses local information for
data synthesis instead of considering the complete distribution of minority classes [6].
Applications of this method on the performance of ML models can be found in [8,9].

A novel method for generating SD is Generative Adversarial Networks (GAN),
initially introduced by Goodfellow et al. [14]. GAN consists of coupling two neural
network architectures; one of them receives the name of Generator and the other the
name of Discriminator. The first one has the function of generating SD from the RD and
the second one of classifying if the data generated are real or synthetic. The ultimate goal
is that the synthetic samples have such good quality that they are indistinguishable for
the Discriminator [10]. Although it has been a short time since they were introduced in
2014, GAN has been remarkably improved, to the point that even for a human being,
it can be difficult to distinguish between real and synthetic images generated by the
method. Their main drawback is that they are challenging to train [15]. Numerous studies
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present applications of GAN; for instance, in Porcu et al. [11], they are used to improve the
generalization capacity of facial recognition ML models. However, in Andreini et al. [12],
they are used to generate retinal images. In Poudevigne-Durance et al. [16], a modification
is presented that allows the GAN to better manage records with missing data, among
others.

Another relevant method for the generation of SD is the use of copulas; these are
multivariate distribution functions that can explain the dependency relationships among
the variables of a data set [17]. Recent work on generating SD from copulas is found
in Patki et al. [18], where Gaussian copulas are used to generate SD in the context of a
relational database. On the other hand, Sun et al. [18], employ vine copulas to produce SD
that can be used to fit ML models. In turn, Nejad et al. [19] use Archimedean copulas to
generate a synthetic population and thus carry out an emergency planning study. Despite
previous references offer effective methods for generating SD, they share a common
limitation in that they are based on parametric versions of copula theory. Explicitly,
these methods assume a specific functional shape for the copula of the data under study.
Although this assumption is prevalent in the literature [20–22], it can be problematic since it
imposes certain restrictions on the copula that may not hold true in practice. Furthermore,
it can be challenging to verify the validity of such an assumption, and therefore a wrong
selection of the parametric copula could lead to distorted results.

Other examples of SD generation can be found in Reiter [23], who uses classification
and regression trees for synthesis, Ping et al. [24], who use Bayesian neural networks,
Rankin et al. [3], who apply both previous methods to preserve the privacy of data on the
health status of patients, and Yale et al. [4], who fit a multivariate Gaussian distribution by
maximum likelihood to generate new data, among others.

SD generation methods have proven their practical utility in a wide range of scenarios.
For instance, Wang et al. [25] used synthetic data to address the challenge of insufficient data
for training machine learning models in crowd analysis. In the work of Boikov et al. [26],
synthetic data were used in the automated recognition of defective parts in steel production,
which allowed the training of two deep learning models: one for classification and one for
segmentation. Shamsolmoali et al. [27] used synthetic data to improve the generalizability of
a road segmentation model. Farajzadeh-Zanjani et al. [28] used synthetic data to address the
class imbalance problem and improve the training of attack detection models in electrical
networks. These examples demonstrate the utility of synthetic data to address various
challenges in machine learning and artificial intelligence.

In scientific literature, whenever techniques for data augmentation are introduced,
authors usually present statistical tests to evaluate whether the SD follows the same
distribution as the RD. Examples of the above can be found in Yale et al. [4], who verify if
the confidence intervals of each simulated and real variable overlap and check if the PCA
projections of RD and SD are similar. Hernandez et al. [29] use the Student’s t-test to verify
the equality of the means of the variables and the Kolmogorov–Smirnov test, which checks
whether the marginal distributions of each variable are equal. Gonzalez-Abril et al. [30]
use Pearson’s chi-square test to verify categorical variables and the Kolmogorov–Smirnov
test for continuous variables, among others.

There are review articles, such as those by Dankar et al. [31] and Hernandez et al. [32],
about the standard methods to compare if the SD follows the exact behavior of the RD.
However, to our knowledge, there are no articles where it is verified, using a multivariate
homogeneity test, if the SD has the same distribution as the RD. For the authors of this
work, it represents a great opportunity since a multivariate homogeneity test is the most
appropriate way to verify that the marginal distributions, the joint distributions, and the
dependency relationships (linear and nonlinear) of the SD are the same as those of the RD.
This is because comparing each variable marginally is not enough to verify that the SD
distribution is equal to the RD distribution since, although the marginal distributions may
be equal, this does not imply that the joint distributions are. An example of the latter can
be found in the work of Matejka and Fitzmaurice [33], who generate different bivariate
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datasets, all with the same arithmetic means, standard deviations, and Pearson correlation
coefficients but with different dependency structures [34]. Figure 1 presents some of the
samples generated by these authors.
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Figure 1. Same Mean, Standard Deviation and Pearson’s Correlation Coefficient but Different
Dependency Structure, adapted from [33,34].

This article presents a novel nonparametric method to generate SD through copulas,
which are functions that explain the dependency structure of the RD [35] . The proposed
method uses the global information of the data distribution, and not only local information
such as SMOTE , which allows for fitting the dependency relationships that exist in a data
set better. One of the advantages of the proposed method is that, since it is nonparametric,
empirical copulas are used, which avoids having to make assumptions about the parametric
distribution that the RD follows. In addition, this method is easier to use, interpret and
implement than GAN, since the algorithm introduced here carries out simple calculations
while achieving excellent results.

Furthermore, the multivariate homogeneity test introduced by Liu et al. [36] and
known as the Data-Depth plot (DD-plot) is used to evaluate that the SD comes from
the same generating process as the RD. This is an outstanding contribution since, in the
scientific literature, many articles focus on comparing marginal distributions of SD with
RD and on examining linear correlation coefficients, among other techniques. However,
these measurements are not enough since they do not take into account the equality of the
multivariate joint distributions. Our study fills this gap by conducting a comprehensive
evaluation of the quality of the SD.

In summary, this article presents a new and easy-to-implement method to generate
SD and demonstrates that the data generated by the method respects the dependency
structures of RD, without the need to know the functional shapes of such structures. The
article is organized as follows: Section 2 presents the formal development of the method,
describes the simulations carried out to exemplify the method, explains the DD-plot and
describes a sensitivity analysis performed on the algorithm. Section 3 presents the results
of the simulations and analyzes the goodness of the method. Finally, Section 4 presents
the conclusions.
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2. Methodology

This section describes the methodology followed. Section 2.1 presents the
mathematical formalization of the method, Section 2.2 describes the experiments carried
out to demonstrate the goodness of the method, Section 2.3 describes the multivariate
homogeneity test used, and Section 2.4 explains how a sensitivity analysis of the method
was carried out.

2.1. Mathematical Framework

Consider a p-dimensional random vector X = [X1, . . . , Xp] that comes from a
multivariate distribution F:

F(x1, . . . , xp) = P(X1 ≤ x1, . . . , Xk ≤ xp).

Let Fi be the marginal distribution of random variable Xi, Fi(x) = P(Xi ≤ x). Now,
recall that, if U ∼ uniform[0, 1], then FU(u) = P(U ≤ u) = u. From here, one can
conclude that Fi(Xi) ∼ uniform[0, 1], since

P(Fi(Xi) ≤ u) = P(Xi ≤ F−1
i (u)) = Fi(F−1

i (u)) = u. (1)

It is worth pointing out that the previous result is quite known and valuable for
generating synthetic data from the random variable Xi with distribution function Fi. It is
a simple step by generating a random variable U ∼ uniform[0, 1] and then to consider
Xi = F−1

i (U) = inf{X | Fi(X) ≥ U}; here, Fi must be known. However, to generate a
sample of synthetic data of size N from observed random sample X1i, · · · , Xni coming
from the same distribution function Fi where Fi is unknown, one must implement some
nonparametric simulation process. In this paper, we introduce a methodology to generate
synthetic data that must come from the same population where the observed sample
X1i, · · · , Xni is coming.

Let X[r]i be the r-th order statistic of a random sample X1i, · · · , Xni, i.e.,

X[1]i ≤ X[2]i ≤ · · · ≤ X[n]i.

Consider a partition of the interval [X[1]i, X[n]i] as X[1]i = a0 < a1 < · · · < at = X[n]i.
Define Bs as:

Bs =


[as−1, as] if s = 1

(as−1, as] otherwise

R(Bs) =
1
n

s

∑
j=1

n

∑
k=1

I{Xki∈Bj}, ∀ s ∈ {1, · · · , t}, (2)

where I{·} is the indicator function. Note that R(Bs) can be seen as a natural estimator for
Fi(as), thus some desirable properties will be considered below. In the context of density
estimation, an important parameter to consider is the bandwidth denoted by h, which
represents the radius of each element in the partition, i.e., h = (aj − aj−1)/2. It is worth
noting that the number of partitions t in Equation (2) depends on the bandwidth parameter
as follows: t = (X[n]i − X[1]i)/(2h). Some methods for computing the bandwidth h are
discussed in greater detail in Wasserman ([37], pp. 134–135).

Proposition 1. R(Bs) is an unbiased estimator for Fi(as)
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Proof.

E[R(Bs)] = E

[
1
n

s

∑
j=1

n

∑
k=1

I{Xki∈Bj}

]
=

1
n

s

∑
j=1

n

∑
k=1

E
[

I{Xki∈Bj}
]
=

1
n

s

∑
j=1

n

∑
k=1

P
(
Xki ∈ Bj

)
=

1
n

s

∑
j=1

n
(

Fi(aj)− Fi(aj−1)
)
=

s

∑
j=1

(
Fi(aj)− Fi(aj−1)

)
= −Fi(a0) + Fi(as).

However, Fi(a0) = P
(

Xi < X[1]i

)
= 0; then, the proof is completed.

Previous results of Proposition 1 will be needed in the proof of the next proposition
that states an asymptotic result.

Proposition 2. R(Bs) converges in quadratic mean to Fi(as)

Proof.

V[R(Bs)] = V

[
1
n

s

∑
j=1

n

∑
k=1

I{Xki∈Bj}

]
=

1
n2

s

∑
j=1

n

∑
k=1

V
[

I{Xki∈Bj}
]

=
1
n2

s

∑
j=1

n

∑
k=1

P
(
Xki ∈ Bj

)[
1− P

(
Xki ∈ Bj

)]
=

1
n2

s

∑
j=1

n
(

Fi(aj)− Fi(aj−1)
)(

1− Fi(aj) + Fi(aj−1)
)

=
1
n

s

∑
j=1

(
Fi(aj)− Fi(aj−1)

)(
1− Fi(aj) + Fi(aj−1)

)
≤ s

n
.

Therefore, V[R(Bs)] converges to zero, and from Proposition 1, we have the desired
conclusion.

It is recalled that, if one wants to generate univariate synthetic data from a known
distribution Fi(x), a simple form is using the inverse transform, i.e., one must generate a
random variable Uniform in [0, 1] and then Xi = F−1

i (U) = inf{X | Fi(X) ≥ U}. However,
if Fi(x) is unknown but we have a sample X1i, · · · , Xni that comes from the distribution
Fi(x), the generation of synthetic data is more complicated. In this paper, considering the
result obtained in Proposition 2, a methodology is proposed to generate univariate synthetic
data but when one has a sample X1i, · · · , Xni that comes from the unknown distribution
Fi(x). Following the same idea considered in the inverse transform, one must generate a
random variable U Uniform in [0, 1] and then calculate min{s | R(Bs) ≥ U} and so the
synthetic data X̂ are generated by considering X̂ = as−1 + (as − as−1)U.

Example 1. Let us simulate 300 data points from a standard Normal distribution. These 300 data
points will be considered as an observed sample, i.e., raw data. Now, from those raw data, we will
generate 1000 synthetic data points through the procedure introduced in this paper. The results on
some relevant parameters can be seen in Table 1.

We will generate 2000 collections of synthetic data, each comprising 1000 records and based
on the same raw data that were previously considered. For each data set, the same values considered
in Table 1 are calculated. Table 2 displays the mean value and the 95% confidence interval of each of
those values.

Figure 2 shows the curve of theoretical distribution, the empirical distribution of raw data
and the empirical distribution of synthetic data. Note that the raw data curve fits well to the
theoretical distribution curve. This is not surprising because the raw data have been simulated from
the theoretical distribution. However, the synthetic data generated from the raw data retain the same
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good-fit behavior. Note that the quality of the synthetic data depends on the quality of the observed
raw data.

Table 1. Population parameters of a standard normal distribution and their point estimates
considering the raw data and synthetic data generated from those raw data.

Standard Normal P25 Mean Std Median P75

Theoretical Value −0.6745 0 1 0 0.6745
Raw Data −0.6504 −0.0023 0.9998 −0.0186 0.6368

Synthetic Data −0.6425 −0.0028 1.0054 −0.0119 0.6502

Table 2. Mean value and confidence intervals for the 2000 synthetic data collections.

Standard Normal P25 Mean Std Median P75

Mean Value −0.6522 −0.0027 1.0026 −0.0135 0.6389
Confidence Interval [−0.6814 − 0.6207] [−0.0121 0.0062] [0.9935 1.0126] [−0.0485 0.0220] [0.6038 0.6706]

−2 −1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

Theoretical
Raw Data
Synthetic Data

Figure 2. Theoretical distribution and empirical distribution of raw data and synthetic data.

Example 2. Let us now simulate 300 data points from an exponential distribution with mean 5.
These 300 data points will be considered as an observed sample, i.e., raw data. From these raw data,
we will generate 1000 synthetic data points. We followed the same steps as in the previous example.
Table 3 presents relevant parameters for these data

From the same raw data, we generate 2000 collections of synthetic data of same size 1000.
Table 4 displays the mean value and the 95% confidence interval of values considered in Table 3.

Figure 3 shows the curve of the theoretical distribution, the empirical distribution of raw data
and the empirical distribution of synthetic data where a good fit can be observed.

Table 3. Population parameters of Exponential distribution and their point estimates considering the
raw data and synthetic data generated from those raw data.

Exponential P25 Mean Std Median P75

Theoretical Value 1.4384 5 5 3.4657 6.9315
Raw Data 1.9618 5.1615 4.6496 3.8424 7.1929

Synthetic Data 1.7346 5.2074 4.5679 4.0704 7.5514
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Table 4. Mean value and confidence intervals for the 2000 synthetic data collections.

Exponential P25 Mean Std Median P75

Mean Value 1.8482 5.2006 4.5643 3.9670 7.4234
Confidence Interval [1.7104 1.9759] [5.1474 5.2500] [4.5147 4.6143] [3.8131 4.1276] [7.1650 7.6706]

0 5 10 15 20 25 30
x

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

Theoretical
Raw Data
Synthetic Data

Figure 3. Theoretical distribution and empirical distribution of raw data and synthetic data.

Once the methodology to generate synthetic data from a univariate raw data sample
has been designed, then we propose a technique to generate multivariate synthetic data
from a multivariate data sample that comes from a random vector X = [X1, . . . , Xp] with
multivariate distribution F, with Fi being the marginal distribution of the random variable Xi.

Let X be a Rn×p a matrix of the real data that comes from the random vector X

X =


X11 · · · X1p
· · · · ·
· · · · ·
· · · · ·

Xn1 · · · Xnp

 (3)

X is a raw data multivariate sample; one could think that, for generating synthetic data
from X, it is enough to generate, for each variable Xi, i = 1, · · · , p, univariate synthetic
data through the method introduced above, but the procedure is more complex because one
must consider the dependence structure among marginal variables Xi. This dependence
structure must be studied using a special dependence functions called copulas. We consider
Nelsen [35] as the foremost general reference for an in-depth examination of copula theory.

A copula is a multivariate distribution function defined on [0, 1]p, where each of
the p marginal distributions is a uniform distribution in [0, 1]. According to Sklar’s
theorem [17], any multivariate distribution function can be written in terms of the marginal
distributions and a copula C, i.e., given a p-dimensional random vector X = [X1, . . . , Xp]
with a multivariate distribution F, then

F(x1, . . . , xp) = P(X1 ≤ x1, . . . , Xp ≤ xp) = C(F1(x1), . . . , Fp(xp)).

Sklar’s theorem also states that the copula C is unique if the marginals Fi(xi) are
continuous. The copula C contains the information on the dependence structure among
the marginal random variables of X = [X1, . . . , Xp], and this dependence structure is an
important aspect that must be considered when synthetic data are generated from the
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multivariate sample stated in the matrix of the real data X that comes from the random
vector X . From Equation (1), Fi(Xi) ∼ uniform[0, 1], thus the random vector

[U1, . . . , Up] = [F1(X1), . . . , Fp(Xp)] (4)

has uniform marginals in [0, 1]. Since each of Fi is a non decreasing function, then the
random vectors [U1, . . . , Up] and [X1, . . . , Xp] = [F−1

1 (U1), . . . , F−1
p (Up)] have the same

copula because the copula is invariant under non-decreasing transformations of the
marginal random variables. Therefore, if there is a procedure to generate, from a known
copula C, observations of the random vector [U1, . . . , Up], then a sample from [X1, . . . , Xp]

can be obtained as [F−1
1 (U1), . . . , F−1

p (Up)]; here, the marginal distributions also must
be known. However, when neither the copula C nor the marginal distributions Fi are
known, only a real data multivariate sample as X is known, the previous procedure can
not be implemented. Therefore, we introduce a new method for the generation of a new
multivariate sample just knowing the multivariate sample stated in the matrix of the real
data X:

Define

Ûji =
1
n

n

∑
k=1

I{Xki≤Xji}, ∀ i ∈ {1, · · · , p}, (5)

where I{·} is the indicator function. Note that Ûji is the empirical distribution of observed
value Xji with respect to the observed sample just of the i-th variable. Therefore, following
Equation (4), the following matrix,

Û =


Û11 · · · Û1p
· · · · ·
· · · · ·
· · · · ·

Ûn1 · · · Ûnp,

 (6)

is the p-dimensional support of the empirical copula estimated from multivariate sample X,
where the columns of Û are samples that come from random vector [U1, . . . , Up] considered
in Equation (4) and thus those samples come from the same copula C, which is the same
copula that has the random vector X = [X1, . . . , Xp], from which comes the raw data
multivariate sample stated in matrix X. Since the copula C is unknown, the new procedure
introduced just considers the p-dimensional support of the empirical copula estimated
from multivariate sample X as follows.

For the i-th column in X, consider a partition of the interval [X[1]i, X[n]i] as X[1]i =
a0i < a1i < · · · < ati i = X[n]i. Define Bsi as:

Bsi =


[a(s−1)i, asi] if s = 1

(a(s−1)i, asi] otherwise

R(Bsi) =
1
n

s

∑
j=1

n

∑
k=1

I{Xki∈Bji}, ∀ s ∈ {1, · · · , ti}. (7)

Note that R(Bsi) can be seen as a natural estimator for Fi(asi), and from Proposition 1,
the vector

[
R(Bs1), . . . , R(Bsp)

]
is an unbiased estimator of the vector

[
Fi(as1), . . . , Fi(asp)

]
.

Let d be a value generated from a discrete uniform distribution in {1, . . . , n}. Since the
copula C is unknown, we use the the p-dimensional support of the empirical copula by
selecting the d-th row of Û. Following the same idea considered in the inverse transform,
one must generate a random variable U Uniform in [0, 1]; then, for each i ∈ {1, . . . , p},
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calculate min{s | R(Bsi) ≥ Ûdi} and so a multivariate synthetic piece of data [X̂1, . . . , X̂p],
with the same statistics structure as marginals and dependence of those data stated in the
matrix of the real data X, can be generated by considering X̂i = a(s−1)i + (asi − a(s−1)i)U
for all i ∈ {1, . . . , p}.

Algorithm 1 synthesizes the set of steps formalized above. The described
procedure is implemented in the GitHub repository https://github.com/jurest82/
SyntheticDataCopulas (accessed on 31 January 2023) using Python3.

Algorithm 1: Synthetic Data Generation Algorithm
Input:
X← Rn×p matrix of the real data
N ← number of synthetic observations to generate
T ← Rp selected number of bins of every variable in X
Output:
Y← RN×p matrix of the synthetic data

1 Initialize U as an array of zeros of size n× p
2 Initialize Y as an array of zeros of size N × p
3 Initialize D as a list of size N filled with randomly and equiprobably selected

integers between 1 and n
4 for i← 1 to p do
5 Generate and store the empirical distribution function for the i-th variable in X
6 Generate and store the frequency tables with T[i] bins for the i-th variable in X

7 Initialize a counter variable count as zero
8 for i← 1 to p do
9 for j← 1 to n do

10 U[j, i]← the empirical distribution function value for X[j, i]

11 for d in D do
12 Initialize K as an array of zeros of size 1× p.
13 for i← 1 to p do
14 Find the corresponding class interval for U[d, i] in the respective frequency

table for the i-th column
15 Generate a uniformly distributed number in the corresponding class

interval of U[d, i]
16 Store the generated number in K[1, i]

17 Replace row number count in Y for K
18 count← count + 1

To understand how the performance of the algorithm scales related to the size
of the parameters N, n, p and T, we analyze the complexity of Algorithm 1. First,
computing the empirical distribution function along the frequency tables for all variables
is O(p n log(n)) time. In addition, the worst time of evaluating an empirical distribution
function isO(log(n)), and repeated to every element in matrix X is thenO(p n log(n)). Let
t = maxi∈{1,...,p}T[i], and the creation of a datum is bounded byO(p log(t)) time. Therefore,
the generation of a sample of size N isO(N p log(t)) time. Thus, the worst time complexity
of the Synthetic Data Generation Algorithm isO(p n log(n) + N p log(t)) and since t is
bounded by n, the expression can be simplified to O(max(N, n) p log(n)).

2.2. Experiments

To illustrate the goodness of the method, several experiments were carried out. The
first group of experiments corresponds to generating SD from realizations of RD following
a distribution F . The generated data and the real data are compared using scatter plots
since they are presented only as an illustration. To generate the data x(1), . . . , x(n) ∈
Rp, p = 2, 3, are sampled from F . The patterns with which these real data are obtained

https://github.com/jurest82/SyntheticDataCopulas
https://github.com/jurest82/SyntheticDataCopulas
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are identified as (a) cubic function, (b) two-dimensions spiral, (c) Batman logo, (d) petals
and (e) three-dimensions spiral. These cases were chosen since, in general, they present
patterns with complex geometries, which allows us to demonstrate that, even in complex
cases, the data generation method works correctly.

The second group of experiments corresponds to the generation of data from the real
data set known as Wine Quality Data Set, which corresponds to data on the physicochemical
properties of red wine and is taken from [38]. For this experiment, the RD are compared
with the synthetic ones using scatter plots, probability density plots and with the
multivariate homogeneity test explained in Section 2.3. This case is presented to show that
the method maintains good results even in high-dimensional data sets.

2.3. Homogeneity Test

Liu et al. [36] present a method to determine if two multivariate distributions come
from the same population. The method is based on data depth plots of their samples.
In this article, we use the above method to show that the samples generated by the data
augmentation algorithm follow the same multivariate distribution as the RD.

Liu et al. [36] propose the DD-plot, which corresponds to a plot of the combined
sample depth under the two corresponding empirical distributions. If the distributions are
identical, i.e., come from the same population, then the depth plot is a segment of a straight
line joining the points (0, 0) and (1, 1) in R2. If there is any deviation of said graph from
the straight line, then it is a sign that the distributions are not identical.

Formally, let D(·) be an affine invariant depth and let F and G be two distributions on
Rp, and DD(F, G) is defined as follows:

DD(F, G) = {(DF(z), DG(z)) for all z ∈ Rp}

If the distributions are unknown, then an empirical version of the DD-plot must
be used; for example, if F and G are a set of observations {X1, X2, ..., Xn}(≡ X),
{Y1, Y2, ..., Ym}(≡ Y), respectively, the DD-plot is defined as follows:

DD(Fn, Gm) =
{
(DFn(zj), DGm(zj)) , zj ∈ {X ∪ Y}

}
(8)

Since, in practice, we do not know the multivariate distribution, then the expression
given by Equation (8) was used in our experiments. In the particular case of this
investigation, the depth measurement is given by a normalization of the metric induced by
the p norm:

DFn(zj) = 1−
∑n

i=1
∥∥Xi − zj

∥∥
p

∑n+m
j=1 ∑n

i=1
∥∥Xi − zj

∥∥
p

, ∀zj ∈ {X ∪ Y}

DGm(zj) = 1−
∑m

i=1
∥∥Yi − zj

∥∥
p

∑n+m
j=1 ∑m

i=1
∥∥Yi − zj

∥∥
p

, ∀zj ∈ {X ∪ Y}.

(9)

In particular, we use p = 2 in Equation (9), that is, the Euclidean norm.
To prove by statistical inference that the points (DFn(zj), DGm(zj)) lie on the straight

line joining the points (0, 0) and (1, 1), it is enough to show that the tuples follow a linear
relationship and that, if a simple linear regression is fitted, then the confidence interval of
the intercept β0 contains zero, the confidence interval of the slope β1 contains one, and the
coefficient of determination R2 is very close to one. We follow the approach described to
show that the generated data come from the same distribution as the original data; for this,
we estimate bootstrap confidence intervals of 95% by the percentile method, as explained
in ([37], pp. 27–39).



Electronics 2023, 12, 1601 11 of 17

2.4. Sensitivity Analysis

Section 2.1 discusses an essential parameter of the method known as the number of
partitions represented by t. This parameter determines the number of bins or partitions in
a frequency table used to generate SD. In this section, we explain the simulation analysis
carried out to study the effect of t on the quality of the synthetic data.

We run a simulation using the raw data from the first scatterplot in Figure 1. We
generate new data with fixed t and the same value for both dimensions of the plot. We
repeated this process for six different values of t = 5, 10, 20, 30, 50, and 100. SD was visually
compared using scatterplots.

3. Results and Analysis

In this section, the obtained results from the experiments explained in Section 2.2 are
analyzed. Figure 4 presents five pairs of scatter plots of the following patterns: (a) cubic
function, (b) two-dimensions spiral, (c) Batman logo, (d) petals, and (e) three-dimensions
spiral. Blue dots represent real data, while red dots correspond to synthetically generated
data. As can be seen, the plots of the SD are very similar to the plots of the real observations.
No matter what geometry needs to be replicated, the data augmentation method can learn
the underlying dependency relationships and probability distributions. This first group
of experiments allows us to demonstrate graphically and simply the goodness of the
synthesis method.

Regarding the wine quality data obtained from [38], we must observe the respective
scatter and probability density plots depicted in Figure 5.

Figure 5 shows that the geometric shape of the probability distributions are identical,
that is, the SD generation method respects the marginal distributions of each variable.
Moreover, when analyzing the scatter plots, it is observed that the bivariate dependency
relationships are also respected by the proposed method since the geometric shape and
the scale are identical to those of the RD. In practice, these facts indicate that synthetic
data are similar to real data in univariate and bivariate parameters. Univariate parameters,
such as mean, median, standard deviation, interquartile range, kurtosis, and skewness, are
identical in SD and RD. Bivariate parameters, such as covariance, Pearson’s correlation,
and Spearman’s correlation, are identical for both data sets. This indicates that the SD
accurately captures the relationships and patterns present in the RD.

However, as explained before, to conclude that the joint distribution of the real and
synthetic data are equivalent, it is not enough to look at the marginal distributions and
the bivariate dependency relationships. A homogeneity test needs to be used to conclude
whether two multivariate data sets have the same joint distribution.

Figure 6 corresponds to the DD-plot explained in Section 2.3, where Fn corresponds
to the original data and Gm to the generated samples. It should be noted that the depth
values form a straight line that, fitting a simple linear regression model, yields a confidence
interval for R2 of [0.9922, 0.9999], a confidence interval for intercept β0 of [−0.0957, 0.0618]
and a confidence interval for the slope β1 of [0.9069, 1.1087]. Therefore, the homogeneity
test confirms that the generated samples come from the same multivariate distribution as
the original data, since the line they form is a segment of the straight line that joins the
points (0, 0) and (1, 1) in R2 because R2 is very close to one, and it cannot be rejected that
β0 is zero and that β1 is one with a confidence level of 95%.

In Section 2, we mentioned that the number of bins used in the frequency tables can
significantly affect the result of Algorithm 1. To illustrate this, Figure 7 shows six data sets
generated from the raw data contained in the first scatterplot of Figure 1. Each of these
data sets was created using a different number of partitions.
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Figure 4. Scatter plots of the first group of experiments.
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Figure 5. Scatter plots and density plots of the second group of experiments.
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Figure 6. DD-plot of synthetic data vs. real data.

As shown in Figure 7, the number of bins used has a noticeable effect on the similarity
between synthetic and real data sets. Specifically, we find that increasing the number of
bins results in SD, which more closely reflects the dependency structure of the raw data.
Conversely, using a low number of bins fails to capture this structure accurately. However,
a very high number of partitions can produce synthetic data with less variability.
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The question of how to select the optimal number of partitions for a frequency
table, histogram, or density estimate is outside the scope of this research. For
more in-depth analysis on this topic, interested readers may refer to works such as
Hollander et al. ([39], pp. 609–628), Silverman [40], and Wasserman ([37], pp. 125–142),
among others.
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Figure 7. Evolution of the synthetic data for different numbers of partitions or bins.

A notable result of the sensitivity analysis is that the six data sets shown in Figure 7 are
marginally equal to each other. To illustrate this point, we present Table 5, which contains
summary statistics for the cases where t = 5 and t = 100. While these statistics are fairly
similar between partitions, we note that the method does not capture the multivariate
dependency structure effectively when t = 5, but it does when t = 100. Therefore, we
conclude that increasing the value of t can improve the performance of the method.

Table 5. Summary statistics for selected plots of Figure 7.

Variable Mean Std P25 P50 P75

bins = 5 X 54.9 17.9 40.9 53.9 66.8
Y 46.3 26.9 24.3 44.7 65.8

bins = 100 X 54.9 16.6 45.5 52.9 64.5
Y 46.6 28.0 23.5 41.5 71.3

4. Conclusions

This article presents a novel nonparametric method for generating synthetic data
using copulas. Said method is easy to use, implement and interpret, but more importantly,
synthetic data generated by the method maintain identical marginal and joint distributions
and the same dependency relationships as real data. Preserving the statistical properties of
raw data are a fundamental property of the algorithm that enhances confidence in using
synthetic data for practical applications. This is useful in realistic scenarios such as class
balancing in machine learning algorithms, protecting sensitive information in financial and
healthcare domains, and more. The aforementioned fact was illustrated with an example in
which a multivariate homogeneity test was used, something that is not usually found in the
scientific literature on data augmentation. The proposed method is promising, and it will
be of interest for future research to use it to increase the performance of machine learning
models and adapt it to perform multivariate imputation, among others. Furthermore,
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determining the optimal way to select the unique hyperparameter of the model, i.e., the
number of bins, is relevant for forthcoming studies.

The proposed algorithm has two crucial limitations. First, it only works with tabular
data, as it has not been extended to unstructured data such as text, images or audio,
which limits its applicability to data augmentation problems in deep learning applications.
Expanding the algorithm’s compatibility with unstructured data will be a crucial advance
in future research. Secondly, the formulation does not account for categorical variables.
As a result, the method cannot generate data from a tabular dataset that includes this
variable type.

Author Contributions: Conceptualization, H.L.; methodology, H.L., J.C.R., J.P.R., P.O. and O.A.B.;
software, H.L., J.P.R. and P.O.; validation, H.L., J.C.R., J.P.R., P.O. and O.A.B.; formal analysis, H.L.,
J.C.R., J.P.R., P.O. and O.A.B.; investigation, H.L., J.C.R., J.P.R., P.O. and O.A.B.; resources, H.L. and
J.C.R.; data curation, J.P.R., P.O. and O.A.B.; writing—original draft preparation, H.L. and J.P.R.;
writing—review and editing, H.L., J.C.R., J.P.R., P.O. and O.A.B.; visualization, J.P.R., P.O. and O.A.B.;
supervision, H.L. and J.C.R.; project administration, J.C.R.; funding acquisition, H.L. and J.C.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the call 852-2019 of the Ministry of Science, Technology and
Innovation of the Republic of Colombia (MinCiencias), which allowed the development of the project
with code 1216-852-72082 called “Descriptive and predictive analysis of the cement and concrete
production process”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been carried out within the framework of the project “Descriptive
and predictive analysis of the cement and concrete production process” that has been financed
by the Science and Technology program with the Ministry of Science, Technology and Innovation
(MinCiencias) of Colombia. The authors also want to thank Daniel Duque, Juan Tobón and Ana
Gómez from the company Cementos Argos, and John Fernando Vargas, Leonardo Betancur and
Ana Isabel Oviedo from Universidad Pontificia Bolivariana who are part of the research team of the
research project and have contributed to the understanding of cement and concrete processes.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

DD-plot Data-depth plot
GAN Generative adversarial networks
ML Machine learning
RD Real data
SD Synthetic data
SMOTE Synthetic minority oversampling technique

References

1. Liang, Y.; Nobakht, B.; Lindsay, G. The application of synthetic data generation and data-driven modelling in the development of
a fraud detection system for fuel bunkering. Meas. Sens. 2021, 18, 100225. [CrossRef]

2. Dilmegani, C. What is Synthetic Data? What Are Its Use Cases & Benefits? 2023. Available online: https://research.aimultiple.
com/synthetic-data/ (accessed on 1 January 2023).

3. Rankin, D.; Black, M.; Bond, R.; Wallace, J.; Mulvenna, M.; Epelde, G. Reliability of Supervised Machine Learning Using Synthetic
Data in Health Care: Model to Preserve Privacy for Data Sharing. JMIR Med. Inform. 2020, 8, e18910. [CrossRef]

4. Yale, A.; Dash, S.; Dutta, R.; Guyon, I.; Pavao, A.; Bennett, K.P. Generation and evaluation of privacy preserving synthetic health
data. Neurocomputing 2020, 416, 244–255. [CrossRef]

http://doi.org/10.1016/j.measen.2021.100225
https://research.aimultiple.com/synthetic-data/
https://research.aimultiple.com/synthetic-data/
http://dx.doi.org/10.2196/18910
http://dx.doi.org/10.1016/j.neucom.2019.12.136


Electronics 2023, 12, 1601 16 of 17

5. Yoon, J.; Drumright, L.N.; van der Schaar, M. Anonymization Through Data Synthesis Using Generative Adversarial Networks
(ADS-GAN). IEEE J. Biomed. Health Inform. 2020, 24, 2378–2388. [CrossRef]

6. Douzas, G.; Bacao, F. Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert
Syst. Appl. 2018, 91, 464–471. [CrossRef]

7. Ahmed, J.; Green II, R.C. Predicting severely imbalanced data disk drive failures with machine learning models. Mach. Learn.
Appl. 2022, 9, 100361. [CrossRef]

8. Moreno-Barea, F.J.; Franco, L.; Elizondo, D.; Grootveld, M. Application of data augmentation techniques towards metabolomics.
Comput. Biol. Med. 2022, 148, 105916. [CrossRef] [PubMed]

9. Temraz, M.; Keane, M.T. Solving the class imbalance problem using a counterfactual method for data augmentation. Mach. Learn.
Appl. 2022, 9, 100375. [CrossRef]

10. Lashgari, E.; Liang, D.; Maoz, U. Data augmentation for deep-learning-based electroencephalography. J. Neurosci. Methods 2020,
346, 108885. [CrossRef]

11. Porcu, S.; Floris, A.; Atzori, L. Evaluation of Data Augmentation Techniques for Facial Expression Recognition Systems. Electronics
2020, 9, 1892. [CrossRef]

12. Andreini, P.; Ciano, G.; Bonechi, S.; Graziani, C.; Lachi, V.; Mecocci, A.; Sodi, A.; Scarselli, F.; Bianchini, M. A Two-Stage GAN for
High-Resolution Retinal Image Generation and Segmentation. Electronics 2021, 11, 60. [CrossRef]

13. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

14. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Netsworks: An overview IEEE Signal Process. Mag. 2018, 35, 53–65.

15. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

16. Poudevigne-Durance, T.; Jones, O.D.; Qin, Y. MaWGAN: A Generative Adversarial Network to Create Synthetic Data from
Datasets with Missing Data. Electronics 2022, 11, 837. [CrossRef]

17. Sklar, A. Fonctions de Répartition à n Dimensions et Leurs Marges. Publ. L’Institut Stat. L’UniversitÉ Paris 1959, 8, 229–231.
18. Patki, N.; Wedge, R.; Veeramachaneni, K. The Synthetic Data Vault. In Proceedings of the 2016 IEEE International Conference on

Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 399–410. [CrossRef]
19. Nejad, M.M.; Erdogan, S.; Cirillo, C. A statistical approach to small area synthetic population generation as a basis for carless

evacuation planning. J. Transp. Geogr. 2021, 90, 102902. [CrossRef]
20. Li, Z.; Zhao, Y.; Fu, J. SynC: A Copula based Framework for Generating Synthetic Data from Aggregated Sources. In Proceedings

of the 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020, Volume 2020;
pp. 571–578. [CrossRef]

21. Benali, F.; Bodénès, D.; Labroche, N.; de Runz, C. MTCopula: Synthetic Complex Data Generation Using Copul. In Proceedings
of the 23rd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data (DOLAP), Nicosia,
Cyprus, 23 March 2021; Volume 2840, pp. 51–60.

22. Endres, M.; Mannarapotta Venugopal, A.; Tran, T.S. Synthetic Data Generation: A Comparative Study. In Proceedings of the
International Database Engineered Applications Symposium, Budapest Hungary, 22–24 August 2022; ACM: New York, NY, USA,
2022; pp. 94–102. [CrossRef]

23. Reiter, J.P. Using CART to generate partially synthetic, public use microdata. J. Off. Stat. 2005, 21, 441–462.
24. Ping, H.; Stoyanovich, J.; Howe, B. DataSynthesizer: Privacy-Preserving Synthetic Datasets. In Proceedings of the 29th

International Conference on Scientific and Statistical Database Management, Chicago, IL, USA, 27–29 June 2017; ACM: New York,
NY, USA, 2017; pp. 1–5. [CrossRef]

25. Wang, Q.; Gao, J.; Lin, W.; Yuan, Y. Pixel-Wise Crowd Understanding via Synthetic Data. Int. J. Comput. Vis. 2021, 129, 225–245.
[CrossRef]

26. Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using
Deep Learning. Symmetry 2021, 13, 1176. [CrossRef]

27. Shamsolmoali, P.; Zareapoor, M.; Zhou, H.; Wang, R.; Yang, J. Road Segmentation for Remote Sensing Images Using Adversarial
Spatial Pyramid Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4673–4688. [CrossRef]

28. Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M.; Parvania, M. Adversarial Semi-Supervised Learning for Diagnosing
Faults and Attacks in Power Grids. IEEE Trans. Smart Grid 2021, 12, 3468–3478. [CrossRef]

29. Hernandez, M.; Epelde, G.; Beristain, A.; Álvarez, R.; Molina, C.; Larrea, X.; Alberdi, A.; Timoleon, M.; Bamidis, P.; Konstantinidis,
E. Incorporation of Synthetic Data Generation Techniques within a Controlled Data Processing Workflow in the Health and
Wellbeing Domain. Electronics 2022, 11, 812. [CrossRef]

30. Gonzalez-Abril, L.; Angulo, C.; Ortega, J.A.; Lopez-Guerra, J.L. Statistical Validation of Synthetic Data for Lung Cancer Patients
Generated by Using Generative Adversarial Networks. Electronics 2022, 11, 3277. [CrossRef]

31. Dankar, F.K.; Ibrahim, M.K.; Ismail, L. A Multi-Dimensional Evaluation of Synthetic Data Generators. IEEE Access 2022,
10, 11147–11158. [CrossRef]

32. Hernadez, M.; Epelde, G.; Alberdi, A.; Cilla, R.; Rankin, D. Synthetic Tabular Data Evaluation in the Health Domain Covering
Resemblance, Utility, and Privacy Dimensions. Methods Inf. Med. 2023. [CrossRef]

http://dx.doi.org/10.1109/JBHI.2020.2980262
http://dx.doi.org/10.1016/j.eswa.2017.09.030
http://dx.doi.org/10.1016/j.mlwa.2022.100361
http://dx.doi.org/10.1016/j.compbiomed.2022.105916
http://www.ncbi.nlm.nih.gov/pubmed/35961091
http://dx.doi.org/10.1016/j.mlwa.2022.100375
http://dx.doi.org/10.1016/j.jneumeth.2020.108885
http://dx.doi.org/10.3390/electronics9111892
http://dx.doi.org/10.3390/electronics11010060
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.3390/electronics11060837
http://dx.doi.org/10.1109/DSAA.2016.49
http://dx.doi.org/10.1016/j.jtrangeo.2020.102902
http://dx.doi.org/10.1109/ICDMW51313.2020.00082
http://dx.doi.org/10.1145/3548785.3548793
http://dx.doi.org/10.1145/3085504.3091117
http://dx.doi.org/10.1007/s11263-020-01365-4
http://dx.doi.org/10.3390/sym13071176
http://dx.doi.org/10.1109/TGRS.2020.3016086
http://dx.doi.org/10.1109/TSG.2021.3061395
http://dx.doi.org/10.3390/electronics11050812
http://dx.doi.org/10.3390/electronics11203277
http://dx.doi.org/10.1109/ACCESS.2022.3144765
http://dx.doi.org/10.1055/s-0042-1760247


Electronics 2023, 12, 1601 17 of 17

33. Matejka, J.; Fitzmaurice, G. Same Stats, Different Graphs. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, Denver, CO, USA, 6–11 May 2017; ACM: New York, NY, USA, 2017; Volume 2017; pp. 1290–1294. [CrossRef]

34. Matejka, J.; Fitzmaurice, G. Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics
through Simulated Annealing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver,
CO, USA, 6–11 May 2017.

35. Nelsen, R.B. An Introduction to Copulas; Springer Series in Statistics; Springer: New York, NY, USA, 2006. [CrossRef]
36. Liu, R.Y.; Parelius, J.M.; Singh, K. Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with

discussion and a rejoinder by Liu and Singh). Ann. Stat. 1999, 27, 783–858. [CrossRef]
37. Wasserman, L. All of Nonparametric Statistics; Springer Texts in Statistics, Springer New York: New York, NY, USA, 2006. [CrossRef]
38. Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T.; Reis, J. Modeling wine preferences by data mining from physicochemical

properties. Decis. Support Syst. 2009, 47, 547–553. [CrossRef]
39. Hollander, M.; Wolfe, D.A.; Chicken, E. Density Estimation. In Nonparametric Statistical Methods; John Wiley & Sons: New York,

NY, USA, 2015; pp. 609–628. [CrossRef]
40. Silverman, B. Density Estimation for Statistics and Data Analysis; Routledge: New York, NY, USA, 2017. https://www.taylorfrancis.

com/books/mono/10.1201/9781315140919/density-estimation-statistics-data-analysis-bernard-silverman (accessed on 1
January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3025453.3025912
http://dx.doi.org/10.1007/0-387-28678-0
http://dx.doi.org/10.1214/aos/1018031260
http://dx.doi.org/10.1007/0-387-30623-4
http://dx.doi.org/10.1016/j.dss.2009.05.016
http://dx.doi.org/10.1002/9781119196037.ch12
https://www.taylorfrancis.com/books/mono/10.1201/9781315140919/density-estimation-statistics-data-analysis-bernard-silverman
https://www.taylorfrancis.com/books/mono/10.1201/9781315140919/density-estimation-statistics-data-analysis-bernard-silverman

	Introduction
	Methodology
	Mathematical Framework
	Experiments
	Homogeneity Test
	Sensitivity Analysis

	Results and Analysis
	Conclusions
	References

