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Abstract: Maritime transportation is vital to the global economy. With the increased operating and
labor costs of maritime transportation, autonomous shipping has attracted much attention in both
industry and academia. Autonomous shipping can not only reduce the marine accidents caused
by human factors but also save labor costs. Path planning is one of the key technologies to enable
the autonomy of ships. However, mainstream ship path planning focuses on searching for the
shortest path and controlling the vehicle in order to track it. Such path planning methods may lead
to a dynamically infeasible trajectory that fails to avoid obstacles or reduces fuel efficiency. This
paper presents a data-driven, efficient, and safe path planning (ESP) method that considers ship
dynamics to provide a real-time optimal trajectory generation. The optimization objectives include
fuel consumption and trajectory smoothness. Furthermore, ESP is capable of fast replanning when
encountering obstacles. ESP consists of three components: (1) A path search method that finds an
optimal search path with the minimum number of sharp turns from the geographic data collected by
the geographic information system (GIS); (2) a minimum-snap trajectory optimization formulation
with dynamic ship constraints to provide a smooth and collision-free trajectory with minimal fuel
consumption; (3) a local trajectory replanner based on B-spline to avoid unexpected obstacles in real
time. We evaluate the performance of ESP by data-driven simulations. The geographical data have
been collected and updated from GIS. The results show that ESP can plan a global trajectory with
safety, minimal turning points, and minimal fuel consumption based on the maritime information
provided by nautical charts. With the long-range perception of onboard radars, the ship can avoid
unexpected obstacles in real time on the planned global course.

Keywords: kinematics; improved A* algorithm; path planning; GIS

1. Introduction

With the rapid development of the global economy, according to the survey of the
Baltic and International Maritime Council/International Chamber Shipping (BIMCO/ICS),
the maritime industry has accounted for 80% of the world’s trade and transportation [1].
Thus, the safety and efficiency of maritime transportation are of paramount importance.
Current issues of maritime transportation include: (1) about 75–96% marine vessel accidents
being caused by humans; (2) a severe shortage of seafarers and management personnel; (3)
more than 80% of shipping costs being from fuel and labor [2]. Autonomous navigation
is vital to mitigate the above issues for ships in that it can be more vigilant than humans
at avoiding accidents by perceptions from heterogeneous sensors such as a camera, laser
scanner, and mmWave radar [3]. Ship autonomy not only saves human labor costs but also
utilizes intelligent path planning methods to achieve optimized fuel consumptions.

Realizing autonomous ships requires localization and path planning. Currently, the
global positioning system (GPS) and compass have been commonly available to provide
reliable location services. In contrast, path planning for ships still poses several challenges.
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Existing works mainly focus on the path planning for lightweight surface vessels, which are
agile and applicable to harbor patrol, marine resource exploration, etc. [4]. Ships, however,
exhibit high inertia and thus a significant delay in motion control. When encountering
sudden situations, e.g., encountering a large iceberg, its dynamic nature prevents agile
avoidance [5]. In addition to the “shortest path”, dynamical feasibility is crucial for ship
path planning [6].

Existing ship path planners are typically optimal path searching methods based on
A* and its modifications [7]. Although they provide optimal paths in a given map [8], the
optimality is limited in ideal maps including the occupancy grid map, Voronoi-visibility
roadmap [9], risk contour map [10], etc. Their path searching is conducted by discretized
heading directions without considering the ships’ dynamical constraints, making the
planned path dynamically infeasible. More recent works [11,12] have taken the dynamical
constraints into consideration. However, their iterative methods have high computational
complexities, failing to plan in real time to avoid expected sudden risks. Researchers also
proposed hybrid approaches that fuse the artificial potential field (APF) algorithm with
velocity odometry and path optimization [13–15] to achieve real-time obstacle avoidance in
complex maritime environments. However, the APF causes oscillations when searching for
paths through narrow areas, causing frequent turning and increasing fuel consumptions
and navigation risks. In addition to optimization-based methods, researchers incorporate
reinforcement learning into path planning [16,17]. However, learning-based methods suffer
from a trade-off between generality and accuracy. Their stochastic results cannot guarantee
the safety and efficiency of ship navigation. In summary, none of the existing path planning
methods meet the safety and efficiency needs when considering ship dynamics.

This paper presents ESP, a combinatorial optimized path planning approach that
generates a safe, smooth, and dynamically feasible trajectory while minimizing the shipping
cost. Realizing such an elegant approach poses several challenges: (1) to quantify the
turning cost in optimal and dynamically feasible path searching; (2) to minimize the
shipping cost in terms of fuel by formulating a minimum-snap problem, which is non-
trivial in combining the dynamic model of ships; (3) to cope with sudden risks, e.g., avoid
expected obstacles or enemy vessels, which requires replanning a smooth, safe, feasible
and optimized path in real time.

To address the above challenges, ESP consists of three components. First, we propose
A-turning, a path searching algorithm that quantifies the turning cost in order to obtain
the optimal path with fewer turns. Then, we formulate the minimum-snap optimization
problem subject to the dynamic constraints of ships to achieve the minimum shipping
cost in terms of fuel. Finally, we propose a real-time path replanning algorithm using
quasi-uniform cubic B-spline, achieving millisecond-level path replanning to cope with
sudden risks.

In summary, the contributions of this paper include: (1) quantifying the turning cost
and incorporating it into an optimal global path search through a modified A* algorithm;
(2) formulating a minimum-snap optimization problem to generate a smooth trajectory that
consumes the least fuel and satisfies the ship’s dynamic constraints; (3) enabling real-time
obstacle avoidance for ships through a B-spline-based local trajectory replanner.

ESP is evaluated in a data-driven simulator implemented by MATLAB and our de-
veloped geographic information system (GIS). The simulation results demonstrate the
effectiveness of ESP in generating a safe, smooth, and feasible path with minimal turns
and fuel consumption. Moreover, ESP enables a quick reaction for ships to smoothly avoid
unexpected obstacles by path replanning in less than 48 ms.

The rest of this paper is organized as follows. Section 2 reviews related works. Then,
we elaborate on the design of ESP in Section 3. The performance evaluation in Section 4
demonstrates the effectiveness of ESP. Section 5 concludes this paper.



Electronics 2023, 12, 2206 3 of 19

2. Related Works

Path planning can be divided into two steps: path searching and path optimization.
Path searching involves searching for an obstacle-free path from the start to the end. Path
optimization involves optimizing the searched path to meet users’ specific objectives, e.g.,
the shortest sailing distance, minimum fuel consumption, and minimum shipping cost.

Path searching has been well-studied for decades. It can be categorized by graph-
search-based and random-sampling-based path searching approaches. Graph-search-based
path planning methods follow a set of steps to generate unique navigation paths. The classic
algorithm, Dijkstra, expands a large number of irrelevant nodes during searching, which
greatly slows down the searching process. In order to improve the searching efficiency, A*-
family algorithms have been proposed. They make the searching process more purposeful
to the destination by introducing heuristic functions [18–20]. These heuristic functions
treat vessels as a mass point with unlimited turning and sailing speeds. Their results may
have large-angle steers between consecutive path segments. However, to the best of our
knowledge, the maximum speed of a ship (displacement > 320 t) is 15 knots, the maximum
acceleration is 1, and the turning radius is three times the ship length. Simply considering
the ship as a mass point leads to infeasible path planning, making the above heuristic
solutions impractical. In addition, Yu et al. [21] proposed an A* algorithm with velocity
variation and global optimization (A*-VVGO), which achieves the purpose of obstacle
avoidance by changing the speed of the ship, and combines the artificial potential field
method to ensure the smoothness of the path. Sang et al. [22] proposed a hybrid algorithm
of an artificial potential field based on A* and local programming, which is often combined
with many algorithms, such as the genetic algorithm (GA) [23], Fuzzy artificial potential
field (FAPF) [24], etc. These hybrid algorithms contain various advantages. However,
these methods do not consider vehicles’ dynamic constraints. Tracking the paths cannot
guarantee safety and smoothness. Moreover, graph-search-based methods cannot work
efficiently in large environments due to the searching space being exponential to the size of
the occupancy grid maps.

To address the searching efficiency problem with respect to the occupancy grid maps,
random-sampling-based algorithms have been proposed to incrementally build maps
by sampling. They can work in the planning of the ocean. Zhang et al. [25] proposed
the adaptive hybrid dynamic step size and target attractive force–RRT (AHDSTAF–RRT),
imposing the dynamic constraints of unmanned surface vehicles (USVs) to allow USVs to
navigate complex aquatic environments. Webb et al. [26] proposed Kinodynamic RRT*,
achieving asymptotically optimal motion planning for robots. However, these approaches
suffer from slow convergence and inflexible settings of step size. Thus, Strub et al. [27]
designed a heuristic function in the exploitation of random sampling with the aim that
the new samples would be more likely to be closer to the destination. Xu et al. [28]
proposed a simplified map-based regional sampling RRT* (SMRS–RRT*) algorithm to
achieve path planning in complex environments. Dong et al. [29] proposed a path planning
method based on improved RRT*–Smart, which optimizes the node sampling method
by sampling in the polar coordinate system with the origin of USV, improves the search
efficiency, and ensures that the navigation path follows the International Regulation for
Preventing Collision at Sea. This design does not only improve the convergence speed but
also improves the quality of the solution. Nevertheless, random-sampling-based methods
cannot provide optimal solutions. Their results are not unique. The searched path usually
contains many sharp turns, which is especially evident in open water.

Based on the path searching from graph-search-based and random-sampling-based
methods, researchers tried to generate smooth trajectories. A strawman option is to use
interpolation. Liang et al. [30] interpolated the trajectory with the Dobbins curve to ensure
the smoothness and reduce the number of sharp turns, but the trajectory curvature was
discontinuous. To solve this problem, Candeloro et al. [31] used the Fermat spiral to
connect the straight line segment with the curved segment, generating the trajectory with
a continuous curvature. Wang et al. [32] used B-spline interpolation to construct smooth
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trajectories with sparse waypoints. It, however, does not impose the vehicle’s dynamic
constraints, making trajectories infeasible to be executed. To generate dynamic feasible
trajectories, control-space sampling approaches [5,6,33] are simple and effective. However,
such approaches lack purpose, so their sampling process could take too much time and
fail to plan paths in real time. MahmoudZadeh et al. [34] combined a novel B-spline data
frame and the particle swarm optimization (PSO) algorithm to establish a continuous
route planning system to achieve route planning for USV ocean sampling missions. Zheng
et al. [35] proposed a ship collision avoidance decision method based on improved cultural
particle swarm to achieve the steering collision avoidance of a ship, but without considering
the speed constraint of the ship.

3. Methods
3.1. Problem Formulation

The obstacles considered in this paper are the static obstacles in the chart and the
unexpected static obstacles that appear within the detection range of the ship’s radar
during the actual navigation of the ship. One primary objective of our path planning
is to be collision-free. Additionally, we optimize two more objectives: best stability and
minimum fuel consumption. The specific objective function and constraints are given in
the following subsections.

3.2. Kinematic Model

The previous studies often ignored the influence of marine environments on the ship’s
motion state for the ease of modeling. In order to make the planned path fit the actual
sailing situation, this paper establishes the kinematics model of ships considering the
ocean current.

Figure 1 illustrates the kinematic model of a ship. OeXeYe denotes the world frame,
which refers to the coordinate system with respect to the earth. The earth’s gravity points to
the positive direction of the z-axis. The x–y–z axes follow the right-hand rule. The origin of
the world frame Oe is the geometrical center’s initial position, the positive direction of the
OeXe axis points to east, and the positive direction of OeYe points to north. ObXbYb denotes
the local frame, which refers to the ship’s body frame, Ob is used as the center of gravity of
the ship, the positive direction of the ObXb axis points to the bow, and the positive direction
of the ObYb axis points to the port side. Ψ denotes the yaw angle, u the surge velocity, v
the sway velocity, and δ the rudder angle. According to Newton’s second law, considering
surge, sway, and yaw, the force at the center of gravity of the ship is

Xe = m
..
x

Ye = m
..
y

Nr = IZ
..
Ψ

(1)

IZ =
∫

V

(
x2 + y2

)
ρmdV (2)

where Xe denotes the force along the x-axis, Ye the force along the y-axis, x, y the position
of the ship’s center of gravity in the world frame, m the mass of the ship, Nr the force along
the z-axis,

..
Ψ the angular acceleration, and IZ the moment of inertia around the z-axis. As

shown in Equation (2), it depends on the volume of the ship V and the mass density ρm.
With the yaw Ψ, we express the transformation between the world frame and the local
frame as [

Xb
Yb

]
=

[
cosΨ −sinΨ
sinΨ cosΨ

][
Xe
Ye

]
(3)

Then, the forces on the surge and sway directions can be expressed as{
Xb = m

( .
u− vr

)
Yb = m

( .
v + ur

) (4)
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where r denotes the yaw rate, and
.
u and

.
v denote the acceleration on the surge and sway

directions, respectively. From Equations (3) and (4), we obtain the kinematic model as follows. .
x
.
y
.

Ψ

 =

 cosΨ −sinΨ 0
−sinΨ cosΨ 0

0 0 1

u
v
r

 (5)
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3.3. Dynamic Model

This paper uses the first-order K–T model to represent the hydrodynamic model of
the ship, assuming that the port and starboard sides of the ship are symmetrical and the
ship mass is uniformly distributed. The hydrodynamic equation can be expressed as:

M
.
v + Cv + Dv = τ (6)

where v = [u, v, r]T ,

M =

m11 0 0
0 m22 0
0 0 m33

 =

m− X .
u 0 0

0 m−Y .
v 0

0 0 Iz − N.
r

 (7)

C =

 0 0 −(m−Y .
v)v

0 0 (m− X .
u)u

(m−Y .
v)v −(m− X .

u)u 0

 (8)

D =

d11 0 0
0 d22 0
0 0 d33

 =

−Xu 0 0
0 −Yv 0
0 0 −Nr

 (9)

τ = τE + τr (10)

where M denotes the inertial mass matrix, C the Coriolis centripetal force matrix, and D the
drag coefficient matrix. Xu and Yv denote the derivatives for the hydrodynamic, X .

u = ∂X
∂

.
u

,
Y .

v = ∂Y
∂

.
v

, and N.
r =

∂N
∂

.
r

. τE denotes the force imposed by the environment and τr denotes
the thrust of the propeller.

3.4. Ocean Circulation Model

Affected by the environment such as sea wind and ocean currents, a ship easily
deviates from its course or even capsizes during sailing, resulting in property damage and
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even casualties. Therefore, we consider the influence of ocean currents on the ship’s motion
state when planning its path.

Ocean currents are formed when seawater flows in a certain direction at a regular,
relatively steady speed. It is a large-scale, aperiodic form of seawater movement. According
to the characteristics of its location and time, ocean currents can be divided into uniform
currents, non-uniform currents, steady currents, and unsteady currents. In offshore or
seabed areas with irregular topography, the model of ocean currents is more complicated.
To simplify the modeling, we assume that ocean currents are constant and uniform. Let Vc
denote the ocean current speed and Ψc the direction of the current. Then, the velocity of the
ocean currents can be expressed as

vc =
[
VccosΨc VcsinΨc

]T (11)

Affected by ocean currents, the actual velocity of the ship is different from its velocity
in still water. At this time vr = v− vc, where vr is the velocity of the ship relative to the
ocean current.

3.5. Optimization Objectives

When a ship sails along a trajectory, the collision-free cost function is

fc = −
n

∑
i=0

Dis(Obstacle(pi)) (12)

where Dis(Obstacle(pi)) denotes the minimum distance from a waypoint pi to the obstacles,
which can be obtained by the Euclidean signed distance field (ESDF) [36]. The distance will
be negative if a waypoint is within an obstacle.

The smoothness is determined by the sum of snaps along the trajectory. The smooth-
ness cost can be defined as

fs =
∫ T

0
(p(4)(t))

2
dt (13)

where p(4)(t) denotes the fourth-order derivative, i.e., jerk, at time t.
The fuel consumption depends on the sailing speed. We use the exponential dis-

tribution model proposed in [37] as follows to describe the relationship between fuel
consumption and speed.

FCPH = 0.128e0.243V (14)

where V =
√

v2 + u2. Thus, we define the cost function of fuel consumption as

fo =
n−1

∑
i=1

ti · FCPHi (15)

where ti denotes the time duration between waypoint pi and pi+1 and FCPHi the fuel
consumption per hour between waypoint pi and pi+1.

Combining the collision-free cost, the smoothness cost, and the fuel consumption cost,
we obtain the overall optimization objective function

F = min{ fc + fs + fo} (16)

subject to
|u| ≤ umax (17)

|v| ≤ vmax (18)

|r| ≤ rmax (19)
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where umax, vmax, and rmax are the maximum surge velocity, the maximum sway velocity,
and the maximum yaw rate, respectively.

3.6. Occupancy Grid Map Construction

In order to apply the environmental information provided by the electronic chart for
path planning, it is necessary to process the chart into a binary occupancy grid map as
shown in Figure 2. In this process, we first set an appropriate binarization threshold that
converts an RGB image into a binary image. Such a threshold [38] is vital to constructing
an accurate grid map that ensures the feasibility of path planning. If the threshold is
inappropriate, as shown in Figure 2c, then a shoal is identified as a passable area, greatly
increasing the navigation risk. Second, the grid size determines the resolution of path
planning. Too large a grid cannot capture the subtle details of environments, e.g., small
obstacles, resulting in unsafe path searching. On the other hand, too small a grid greatly
increases the search space, reducing the computation speed.
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Considering the maneuverability of a ship, this paper chooses the minimum turning
radius as the criterion to measure the grid size. The ship’s minimum turning radius can be
measured through the ship’s maneuverability experiment. The turning radius depends on
the sailing speed and water flow velocity. According to [39], in our simulation, we set the
minimum turning radius of the ship as three times the length of the ship. Finally, we map
the geographic chart represented in terms of longitude and latitude to the grid map using
the following equation: {

lon(i,j) = tlLon + |brLon−tlLon|
w ·(i− 1)

lat(i,j) = brLat + |tlLat−brLat|
h ·(j− 1)

(20)

where lon(i,j) and lat(i,j) denote the longitude and latitude of position (i, j). tlLon and tlLat
denote the longitude and latitude at the top-left corner of the selected area. brLon and
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brLat denote the longitude and latitude at the bottom-right corner of the selected area. w
and h denote the width and height of the electronic chart.

In our simulated forward exploration, we use eight discretized directions in the grid
map to search for paths as shown in Figure 3.
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3.7. Quantification of Turning Cost

The A* algorithm uses Equation (18) as the evaluation function to obtain a path with
the shortest distance.

f (Ni) = g(Ni) + h(Ni) (21)

where f (Ni) denotes the estimated cost from the starting point to the target point, g(Ni)
the actual cost from the initial node to node Ni, and h(Ni) the estimated cost of the best
path from node Ni to the target node.

However, in path searching for ships, the turning is much more difficult than for cars
or aerial vehicles. Thus, we have to add the cost of turning in order to better evaluate the
path. Here we use the diagonal distance to compute the turning cost as shown in Figure 4.

The yaw φi between waypoint pi and pi+1 can be computed as follows.

φi = arctan(
∣∣∣∣ pi+1(y)− pi(y)

pi+1(x)− pi(x)

∣∣∣∣) (22)

where pi(x), pi(y) denote the coordinates of waypoint pi, pi+1(x), pi+1(y) the coordinates
of waypoint pi+1, pi−1(x), pi−1(y) the coordinates of waypoint pi−1. Preventing collisions
is still of the highest priority in path planning. Thus, it is not reasonable to simply pursue
the minimum turning cost in planning. We add a penalty to the turning cost:

c(Ni) = ε ·max(0, ∆φi − φ) (23)

where φ is the penalty threshold of the yaw and ε the penalty coefficient. Empirically, we
set φ = 30◦ and ε = 0.8. ∆φi is computed as follows.

∆φi =

∣∣∣∣arctan(
pi+1(y)− pi(y)
pi+1(x)− pi(x)

)− arctan(
pi(y)− pi−1(y)
pi(x)− pi−1(x)

)

∣∣∣∣ (24)

Finally, the new evaluation function of our path searching algorithm is defined as:

f (Ni) = g(Ni) + h(Ni) + c(Ni) (25)
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The improved A* algorithm is shown in Algorithm 1.

Algorithm 1. Improved A* algorithm

Input: Start node Xstart, end node Xend
1: OPEN_list:= Xstart, where f (Xstart) = h(Xstart)
2: CLOSE_list:={ }
3: while OPEN_list is not empty do
4: current node Xn:= the node in the OPEN_list with the lowest f (X)
5: if Xn = Xend break
6: Remove Xn from OPEN_list and add it to CLOSE_list
7: for each adjacent node, Xi of Xn do
8:: if f (Xi) = 0 || Xi ∈ CLOSE_list continue
9: if Xi 6∈ OPEN_list
10: add Xi into OPEN_list
11: the parent node of Xi=, Xi > parent = Xn

12: calculate f (Xi), g(Xi), h(Xi) and c(Xi)
13: if Xi ∈ OPEN_list
14: calculate f (Xi) via (25)
15: Resort and keep OPEN_list sorted by f value
16: Xp = Xend
17: Path_list:= Xp
18: while Xp 6= Xstart do
19: Xp = Xp.parent
20: Path_list = {Path_list, Xp}
Return: Path_list

3.8. Global Trajectory Optimization

The previous path searching gives us a discrete path with the minimum cost. However,
the path does not consider the dynamic feasibility with respect to time, velocity, and
acceleration. This part requires a further step to optimize the searched path into a smooth
trajectory. The trajectory can be defined as a -order polynomial.

p(t) = p0 + p1t + p2t2 + . . . + pntn =
n

∑
i=0

piti (26)

where p0, p1, . . . , pn are the coefficients of this trajectory. We denote P = [p0, p1, . . . , pn]
T ,

and then Equation (23) can be rewritten as
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p =
[
1, t, t2, . . . , tn

]
·P (27)

Then, Equation (14) can be expressed as∫ T

0
(p(4)(t))

2
dt

=
k

∑
i=1

∫ ti

ti−1

(p(4)(t))
2
dt

=
k

∑
i=1

∫ ti

ti−1

(

[
0, 0, 0, 0, 24, . . . ,

n!
(n− 4)!

tn−4
]
·p)

T[
0, 0, 0, 0, 24, . . . ,

n!
(n− 4)!

tn−4
]
·pdt

=
k

∑
i=1

pT
∫ ti

ti−1

[
0, 0, 0, 0, 24, . . . ,

n!
(n− 4)!

tn−4
]T[

0, 0, 0, 0, 24, . . . ,
n!

(n− 4)!
tn−4

]
dt·p (28)

Let

Qi =
∫ ti

ti−1

[
0, 0, 0, 0, 24, . . . ,

n!
(n− 4)!

tn−4
]T[

0, 0, 0, 0, 24, . . . ,
n!

(n− 4)!
tn−4

]
dt (29)

We have ∫ T

0

(
p(4)(t)

)2
dt =

k

∑
i=1

pTQi p (30)

However, the polynomial expression cannot explicitly control the shape of the trajec-
tory. To gain better control, we choose the Bezier curve using Bernstein polynomials. The
k-th segment of the trajectory can be expressed as

Bk(t) =
n

∑
i=0

ci
kbk

n(t) (31)

where bk
n(t) =

(
n
k

)
·ti·(1− t)n−i, t ∈ [0,1] ci

k denotes the control point of the k-th segment

of the Bezier curve.
Since the trajectory must pass through the first and last control points, it can satisfy

the positional constraints of the initial and final states. In addition, based on the hodograph
of the Bezier curve, we impose constraints on the velocity and acceleration of the trajectory,
ensuring the multi-order continuity of the trajectory.

3.9. Real-Time Obstacle Avoidance

In a static chart, a ship can navigate safely along the aforementioned global trajectory.
However, the marine environment is complex and changeable. Ships need to deal with
unexpected risks when sailing, e.g., avoiding islands and reefs. As shown in Figure 5, if
the ship maintains the planned global trajectory, it will collide with a temporary obstacle.
To address this issue, we perform local path planning based on the B-spline curve. The
advantage of the B-spline trajectory is that it can change the curve locally by adjusting
few control points, while any control point of a Bezier curve will change the shape of the
whole trajectory. Moreover, it guarantees that the locally replanned trajectory still satisfies
the ship’s kinematic and dynamic constraints. This not only achieves the goal of real-time
obstacle avoidance, but also satisfies all optimization objectives.
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A B-spline can be expressed as

Cp(u) =
n

∑
i=0

Ni,p(u)Pi (32)

where Pi denotes the i-th control point and Ni,p(u) is the B-spline basis function of degree
p. u = [u0, u1, . . . , um] is the knot vector. Typically, a three-degree B-spline can ensure the
smoothness of accelerations. Thus, we have

P(0,3) =
1
6
[
1 t t2 t3 ]


1 4 1
−3 0 3
3 −6 3

0
0
0

−1 3 −3 1




P0
P1
P2
P3

 (33)

Figure 6 illustrates the collision avoidance algorithm. In this figure, P0 = [x0, y0] and
P3 = [x3, y3] are the start and the end of the local planning. The gray area ABCD represents
an obstacle. Ψi denotes the yaw at position Pi. di denotes the distance between Pi−1 and Pi.
The geometrical relationship among these positions can be expressed as{

x1 = x0 + d1cosΨ0
y1 = y0 + d1sinΨ0

(34)

{
x2 = x3 − d3cosΨ2
y2 = y3 − d3sinΨ2

(35)

First, based on random sampling [40] and collision detection [41], we obtain d1, d3
and Ψ2(Ψ0 = 0), and then use the geometric relations in Equations (34) and (35) to solve for
the position of P1 = [x1, y1] and P2 = [x2, y2]. At last, the locally replanned B-spline can be
generated by the control points P0, P1, P2, and P3.
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4. Simulation and Results

We conduct the evaluation of ESP by implementing a data-driven simulator in MAT-
LAB. All simulation experiments are run on a quad-core 2.40 GHz Intel i5-1135G7 processor
and 16 GB RAM. We input the data from the database of our developed GIS. The data
include image and vector maps, longitude and latitude coordinates, and ship route infor-
mation. During the simulation, we use environmental data such as shoals and whirlpools
that are not currently marked in the GIS database to evaluate the effectiveness of ESP. The
simulated settings are listed in Table 1. Specifically, the ship length is 30 m, the maximum
turning radius is 3 times the ship length. The maximum velocity is 7.7 m/s. The maximum
acceleration and jerk are 1 m/s2 and 10 m/s3 [42], respectively.

Table 1. Simulation parameters.

Parameter Value

Length of the ship 30 m
Maximum velocity 7.7 m/s

Maximum acceleration 1 m/s2

Maximum jerk 10 m/s3

We simulate ESP in two scenes using the GCJ-02 coordinate system. In both scenes,
the velocities and accelerations at the start and the end are 0. The simulated occupancy grid
map is of size 50 × 50. We compare the path searching results of ESP with the A* algorithm
as shown in Figure 7. The results show that ESP effectively reduces the number of turning
points and the planned path is safe.
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Figure 8 shows the performance of RRT. Due to the randomness of RRT, the planned paths
have many unnecessary turning points, which is detrimental to the safe navigation of ships.
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Figure 8. The results of the RRT algorithm. (a–c) are the three stochastic planning results of the RRT
algorithm. The solid black line is the planned route, the solid red line records the sampling process of
the algorithm, and the solid blue line shows the planning results.

Figure 9 shows the result of RRT*. RRT* needs to rewire parents to find asymptotically
optimal paths. The result will be close to the optimal solution with more iterations.

Figure 10 shows the optimized trajectory of our proposed ESP. It can be seen that
the optimized trajectory (the green curve in Figure 10a) meets the requirements of safety,
feasibility, and smoothness.

Table 2 shows the numeric comparison in Scene 1 among ESP, A* [12], RRT [43] and
RRT* [44] in terms of computation time, number of turns, and fuel consumption. It can be
seen that due to the need to measure the turning cost of the path, the searching time of ESP
is 0.105 s longer than that of the A* algorithm, and the algorithm’s operating efficiency is
reduced by 36.71%. Nevertheless, it is still 1.771 s shorter than that of the RRT algorithm,
and 6.021 s shorter than that of the RRT* algorithm. The efficiency of the algorithm is
improved by 4.35 times and 15.42 times, respectively. In addition, the number of turns of
ESP is obviously less than that of the A* algorithm, which reduces the number of large-
angle steers to 8 and improves the safety of ship navigation. The fuel consumption of ESP
is 164.6008 kg less than that of the A* algorithm, 387.1543 kg less than that of the RRT
algorithm, and 24.3311 kg less than that of the RRT* algorithm.
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planning results of the RRT* algorithm. The solid black line is the planned route, the solid red line
records the sampling process of the algorithm, and the solid blue line shows the planning results.
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Figure 10. (a) The blue rectangles represent the sailing corridor. (b) The black line is the searched
path. The optimized trajectory is shown as the red curve.

To evaluate the smoothness, Figure 11 shows the generated positions, velocities, accelera-
tions, and jerks. All these curves are continuous and satisfy the ship’s dynamic constraints.
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Table 2. Performance comparison in Scene 1 with 1000 trials.

Methods Computation Time (s) No. of Turns Average Fuel Consumption (kg)

A* [12]
Average 0.286

18 921.7465Max 0.327

RRT [43]
Average 2.162

11 1144.3000Max 3.534

RRT* [44]
Average 6.412

4 781.4768Max 7.282

ESP
Average 0.391

8 757.1457Max 0.532
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Figure 11. The optimized smooth trajectory in terms of position, velocity, acceleration, and jerk.

To highlight the effectiveness of ESP, Figure 12 compares the result of ESP with that
which did not consider the ship’s dynamic constraints. The blue line denotes the searched
path. The green line shows that Bezier curve without considering the dynamic constraints.
The red line is the optimized trajectory from ESP.

From the enlarged part, we can see that there are knots in the result without con-
sidering the dynamic constraints, making sailing control very difficult. In contrast, ESP
generates a smooth and continuous trajectory with the lowest number of turns, which
is safer.

Figures 13 and 14 show the collision avoidance in Scene 1 and 2. In Scene 1, ESP
generates a feasible and smooth local trajectory (the orange line) that avoids the unexpected
circular obstacle. In Scene 2, the original planned trajectory is very close to the shoal,
increasing the risk of the ship running aground. The local replanned trajectory effectively
solves the problem. In both scenarios, the goal of safely avoiding temporarily appearing
static obstacles is achieved.

The computation times of the local replanning in both scenes are listed in Table 3.
Over 1000 trials, the best calculation time is 48 ms, and the maximum computation time is
265 ms. The mean computation time is 192 ms in Scene 1 and 194 ms in Scene 2, ensuring
real-time processing.
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Table 3. Computation time of the local replanning in both scenes with 1000 trials.

Test Scene Max Computation Time (s)

Scene 1 0.233
Scene 2 0.265

Avoiding multiple obstacles requires multiple iterations of the above process, and the
response time will be multiplied by the number of iterations.

5. Conclusions

This paper proposes a GIS-data-driven method for the efficient and safe path planning
of autonomous ships in maritime transportation, which makes up for the shortcomings of
existing methods that ignore the motion dynamic limitations of ships in order to achieve
the shortest path, leading to sudden changes in the planned route and thus lacking practical
applicability. To this end, we propose ESP, a new path planner that provides comfortable
sailing while saving fuel. The key intuition of our proposal is to reduce the expensive
turning in path searching. The expensiveness comes from the inertia exhibited by the huge
weight of the ship. To realize the above intuitive idea, we design three components for
ESP. First, we quantify the ship’s turning cost based on its kinematic and dynamic model
and develop a modified A* path search algorithm. Second, we formulate an optimization
problem subject to dynamic ship constraints and environment constraints to produce
a safe and smooth trajectory that consumes minimal fuel. Finally, we use the B-spline
representation to perform real-time local replanning, enabling autonomous ships to quickly
respond to unexpected risks while maintaining the previous optimization objectives. The
data-driven experiments demonstrate the effectiveness of ESP. However, we currently only
consider the effect of ocean currents on the dynamic ship model. In future, we will consider
the influence of other environmental factors, e.g., sea wind, to build a more robust model
for autonomous ships. The avoidance of dynamic obstacles and the real-time avoidance of
multiple static obstacles will also be investigated on this basis.
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