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Abstract: Automated extraction of key points from three-dimensional (3D) point clouds in trans-
mission corridors provides technical support for digital twin construction and risk management of
the power grid. However, accurately and efficiently segmenting the point clouds of transmission
corridors remains a challenging problem. Traditional segmentation methods for transmission
corridors suffer from low accuracy and poor generalization ability, and the potential of deep
learning in this field has been overlooked. Therefore, the PointNet++ deep learning model is em-
ployed as the backbone network for the segmentation of 3D point clouds in transmission corridors.
Additionally, given the distinct distribution of key components, an end-to-end CA-PointNet++
architecture is proposed by integrating the Coordinate Attention (CA) module with PointNet++.
This approach captures long-distance spatial contextual features and improves feature saliency for
more precise segmentation. Furthermore, CA-PointNet++ is evaluated on a dataset of 3D point
clouds collected by unmanned aerial vehicles (UAV) equipped with Light Detection and Ranging
(LiDAR) for inspecting transmission corridors. The results show that CA-PointNet++ achieved
93.7% overall accuracy (OA) and 67.4% mean Intersection over Union (mIoU). Comparative studies
with established deep learning models confirm that our proposed CA-PointNet++ exhibits high
accuracy and strong generalization ability for point cloud segmentation tasks in transmission
corridors.

Keywords: Coordinate Attention (CA); transmission corridor; PointNet++; semantic segmentation

1. Introduction

The electric power transmission grid is a crucial component of the power system
infrastructure, serving as the primary carrier for long-distance transmission of electricity.
Monitoring its operational status is critical for ensuring safety and has always been a
priority for power system maintenance and management departments. However, tradi-
tional methods for transmission grid inspection typically rely on professional personnel
supplemented by laser rangefinders, optical theodolites, and other related equipment to
complete the inspection. These methods have drawbacks such as safety risks and low
efficiency and cannot meet the needs of power system management or the requirements of
power grid development and institutional reform [1]. For reliable and safe transmission of
power resources, ultra-high voltage (UHV)/High voltage (HV) grids call for an advanced,
scientific, and efficient power inspection mode [2].

Amidst the context of the smart grid, efficient inspection methods that utilize in-
formation processing techniques such as electric big data and computer vision have
sparked a trend in intelligent identification and prevention of safety risks [3,4]. In the
field of electric power, two-dimensional (2D) images have played an important role in
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safety production monitoring, defect detection, and other areas; however, they have lim-
itations in spatial distance perception [5]. Taking into account the advantages of spatial
distance measurement, three-dimensional (3D) point cloud technology is increasingly
being recognized and effectively applied in various industrial domains [6]. In the power
industry, there is a growing appreciation for the potential of 3D point cloud technology.
With the rapid development of high-resolution and fine remote sensing technology,
unmanned aerial vehicles (UAVs) equipped with light detection and ranging (LiDAR)
can quickly acquire high-precision and high-density 3D spatial geometry information
of transmission grids, providing advantages such as high efficiency, no wireless loss,
and immunity to terrain conditions [7,8]. UAVs fly along the transmission line corridor
and use onboard LiDAR to scan the line, towers, and surrounding environmental point
clouds, thereby establishing a high-precision digital model of the transmission line cor-
ridor [9–11]. As a consequence, the integration of remote sensing techniques, such as
acquiring point cloud data through UAVs, with research in the field of computer vision
holds tremendous potential for intelligent detection in transmission corridors [1].

With the emergence of the concept of a digital twin in the power grid, research
on mapping the physical scenes of transmission corridors into virtual digital represen-
tations has garnered significant attention. This facilitates comprehensive awareness
and fine-grained management of the power system [12]. For instance, in the case of
transmission lines, trees located too close to the conductors can cause line tripping or
even lead to fires [13]. By utilizing digital twins, it becomes easier to assess the clearance
distance between trees and conductors within a specific area and even identify potential
tree-related hazards as the vegetation grows or under different weather conditions in
the power corridor [14]. Similarly, during live-line work, the distance between workers
and transmission lines or towers has a significant impact on worker safety [15,16]. By
reconstructing a digital twin of specific corridors, including the lines and towers, it
becomes possible to simulate live-line work and mitigate safety hazards in real-world
projects. The construction of a digital twin for the power grid heavily relies on the accu-
rate reconstruction of typical power equipment and surrounding environments. Many
scholars have already explored the reconstruction of power facilities based on 3D point
cloud data [17]. Based on 3D point cloud data, key elements such as transmission lines,
towers, and the surrounding environment are extracted to achieve the segmentation of
transmission corridor scenes, which provides support for the reverse construction of a
3D digital model of transmission corridor scenes. However, there are still some pressing
issues that need to be addressed in order to automatically and accurately extract the
individual parts from the complex 3D point clouds of transmission corridors, which is
crucial in digital twin modeling.

In the context of transmission corridor scenes, the primary focus of segmentation
includes power lines, towers, and vegetation. In the field of vegetation, Knapp et al. [18]
proposed integrating LiDAR remote sensing with dynamic modeling of tropical forests,
revealing the future potential of related research. Kohek et al. [19] suggested automating
the simulation of forest growth using LiDAR-derived point cloud data and predicting and
estimating the growth status of forests. These studies present promising opportunities
for vegetation segmentation, laying the foundation for establishing dynamic models of
vegetation in transmission corridors [20]. Currently, there are mainly three methods
for extracting transmission corridor components from LiDAR point clouds: rule-based
methods, machine learning-based methods, and deep learning-based methods. The rule-
based method, which utilizes prior knowledge to formulate constraints such as elevation
thresholds, linear constraints, and spatial positional constraints, is the most conventional
approach for scene segmentation. Jwa et al. [21] applied voxel-based classification and Line
Compass Filtering (LCF) to the point cloud data and then utilized the Hough transform
(HT) on the projected point clouds to extract the transmission lines. Zhang et al. [22]
extracted power lines by estimating height similarity and clustering linear features based
on the local distribution characteristics of denoised point clouds in sparse grids, and the
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characteristics of grids in both horizontal and vertical directions were analyzed to identify
transmission towers. Chen et al. [23] utilized the spatial topology and geometric features of
transmission towers to achieve a coarse extraction of towers, combined region growth, and
the random sample consensus (RANSAC) algorithm to accurately extract multiple types
of towers. However, these rule-based methods require extremely high regularity in the
spatial distribution of point cloud scenes, and the accuracy is greatly affected when there
is missing data. When significant changes occur in the terrain, towers, and other factors
in transmission corridors, corresponding judgment criteria need to be adjusted to adapt
to the scene changes. In response to the above issues, some scholars have proposed the
supervised classification approach, which extracts global and local representative point
feature descriptors such as density, flatness, and curvature from training samples and
then uses the geometric structural information to classify the point clouds into predefined
semantic categories through machine learning classification models. Guo et al. [24] defined
over ten features using points as input and utilized the JointBoost classifier to classify
ground and power lines while considering contextual relationships. Toschi et al. [25]
fed the five deep features into a random forest classifier to extract the transmission line
point clouds and further implement the model reconstruction. However, it is still subject
to factors such as the strong subjectivity of handcrafted features and the complexity of
hyperparameter tuning. Moreover, when extended to complex transmission corridor
scenarios, the generalization ability and accuracy of point cloud classification are not
satisfactory [26].

In view of the excellent performance of deep learning in 2D image processing, scholars
have applied it to the classification and segmentation tasks of 3D point clouds, which can be
divided into indirect and direct methods. One approach in the former method is to project
the point clouds from multiple viewpoints into 2D images and then process them with a 2D
convolutional neural network. In contrast, Su et al. [27] proposed multi-view convolutional
neural networks (MVCNN) based on multiple 2D images from different views that extract
3D shape descriptors to achieve 3D object recognition. Although the above processing
method reduces the complexity of the network to some extent, it may cause a loss of 3D
spatial information [28]. Another indirect approach is voxelization-based methods, and
Maturana et al. [29] proposed the Voxnet model, an end-to-end object detection neural
network for voxelized point clouds. Nevertheless, this method’s drawbacks include the
potential loss of resolution and the associated increase in memory utilization. In contrast to
the indirect methods above, direct methods take the raw point clouds as the input to the
deep learning model. As it has not undergone complex transformations, it retains more
information and has become a key research object in recent years. Qi et al. [30] proposed
a PointNet for direct processing of irregular and unstructured point clouds, regarded
as the pioneer of end-to-end direct processing of point cloud data, which can be used
for classification, part segmentation, and scene segmentation. However, PointNet only
considers global features and may suffer from information loss in the local structure. In
response to the aforementioned limitations, Qi et al. [31] proposed an improved version
of PointNet called PointNet++, which adds a local feature extraction module on top of
PointNet. Subsequently, some algorithms, such as PointCNN [32], DGCNN [33], and
ShellNet [34], were proposed by improving domain feature extraction and the convolu-
tion kernel. PointCNN [32] proposed hierarchical convolution and the X-Conv operator.
DGCNN [33] emphasized the dynamic generation of node neighbors, with its core being
the EdgeConv operator. ShellNet [34] is a lightweight and efficient neural network struc-
ture based on the ShellConv operator. However, these algorithms have achieved good
results on publicly available indoor scene datasets, and their performance on large-scale
outdoor datasets is still to be further confirmed. Meanwhile, as an important and classic
outdoor scene, there are only a few examples of applying point cloud-related deep learning
algorithms to the segmentation of transmission corridors [35,36], and the potential of deep
learning in this field is overlooked.
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Although a significant amount of research has been conducted on the segmentation
of transmission corridors, there are still some limitations. Firstly, existing studies have
mostly focused on extracting transmission lines, with less attention paid to equally
important components such as transmission towers and ground wires, which are crucial
for building a digital twin of the power grid. Secondly, when applying deep learning
models to semantic segmentation in transmission corridors, the accuracy of segmenting
each component needs to be improved due to the presence of invalid position infor-
mation and channel information. Due to the lightweight structure and robustness of
the PointNet++ model, it has been widely used in the industrial field. Therefore, in
this paper, the CA-PointNet++ model is proposed, with PointNet++ as the backbone
network, embedded with a Coordinate Attention (CA) [37] module to integrate channel
relationships and feature space position information. The proposed CA-PointNet++
structure is applied to a 3D point cloud data set of transmission corridors collected by
UAVs carrying LiDAR from Jiangsu, Hubei, and Sichuan provinces, segmenting the
transmission corridor into transmission lines, towers, ground wires, and ground, which
lays the foundation for the digital twin modeling of transmission corridors. The main
contributions of this paper are as follows:

1. Proposing a novel end-to-end CA-PointNet++ network for semantic segmentation.
To improve segmentation accuracy, a Coordinate Attention module is embedded to
integrate channel relationships and feature space position information, suppressing
unimportant information in the 3D point clouds.

2. Applying the proposed improved deep learning network to the actual collected
transmission corridor data set for semantic segmentation, accurately dividing the
transmission corridor into transmission lines, towers, ground wires, and ground,
effectively demonstrating the feasibility and effectiveness of the model.

3. Conducting a comprehensive comparative analysis of the segmentation effect of
different attention modules embedded in the backbone network in transmission
corridor semantic segmentation, verifying the superiority of the proposed model.

2. Methodology

In this section, we first provide an overview of the proposed CA-PointNet++ model’s
network architecture, which utilizes an embedded attention mechanism to enhance the
accuracy of 3D point cloud segmentation in transmission corridor scenes. Furthermore, we
present a detailed description of the CA module’s structure as well as the specific structure
and implementation process of incorporating the CA module into the PointNet++ model to
form the CA-PointNet++ model.

2.1. CA-PointNet++ Framework

When applying deep learning methods to point cloud segmentation tasks, challenges
arise due to the inability to ignore irrelevant feature information and insufficient exploration
of spatial relationships, resulting in high computational costs and suboptimal accuracy. In
the context of 3D point cloud semantic segmentation, a CA-PointNet++ network architec-
ture is proposed, which combines the CA module with the PointNet++ model. Figure 1
illustrates the framework of CA-PointNet++.

PointNet++ serves as the backbone network, consisting of an encoder and a decoder.
The encoder consists of four cascaded set abstraction modules, with each set abstraction
module embedded with the corresponding CA module to capture important features and
spatial relationships within the point cloud data. Similarly, the decoder is composed of
four corresponding feature propagation modules. The following subsections will introduce
the network structure of the Coordinate Attention block and the CA-PointNet++ model,
providing detailed explanations of the composition of the individual set abstraction module
and the feature propagation module.
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Figure 1. An illustration of the proposed CA-PointNet++.

2.2. Coordinate Attention

Compared with typical attention mechanism modules, the squeeze-and-excitation (SE)
attention module [38] only considers the importance of channels while ignoring positional
information, and the convolutional block attention module (CBAM) [39] only focuses on
local positional correlation, leading to insufficient long-range dependency. In contrast, the
CA module embeds positional information into channel attention, which helps the model
locate the regions of interest more accurately [37]. Figure 2 shows the structure of the CA
module.
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Given an input feature map X = [x1, x2, . . . , xc] ∈ RH×W×C, where H, W, and C repre-
sent the height, width, and number of channels, respectively, the CA module computes a
set of spatial coordinates as follows: The CA module first considers embedding coordinate
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information by using two one-dimensional global pooling operations to encode each chan-
nel of the input along the vertical and horizontal directions, respectively. The expression of
the c channel with height h is as follows:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (1)

Similarly, the output expression of the c channel with width w is as follows:

zw
c (w) =

1
H ∑

0≤i≤H
xc(j, w) (2)

Then, Coordinate Attention is generated by concatenating the two feature maps
generated above, followed by convolutional dimension reduction and activation to generate
an intermediate feature map of spatial information.

f = δ
(

F1

([
zh, zw

]))
(3)

where F1 is a 1 × 1 convolutional kernel; δ is a non-linear activation function; f ∈
RC/r×(H+W) is the feature map in two directions; and r is the downsampling ratio.

The resulting f is then converted into two separate tensors f h ∈ RC/r×H and f w ∈
RC/r×W along the spatial dimension, and the convolutional kernels are used to transform
the two feature maps, respectively.

gh = σ
(

Fh

(
f h
))

(4)

gw = σ(Fw( f w)) (5)

where σ is the sigmoid function; Fh and Fw are both 1×1 convolutional kernels; and g
represents the attention weight.

Considering the above weight, for the original feature map X passed through the CA
module, after multiplication weighting calculation in the width and height directions, the
output tensor expression is as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

2.3. Proposed CA-PointNet++ Model

The CA-PointNet++ algorithm takes N × (d + c) dimensional raw point cloud data as
input, where N is the number of points, d is the geometric position information, and c is the
point cloud feature. The input raw point clouds undergo the first set of abstraction modules
for local feature extraction directly. Each set abstraction (SA) module consists of a sampling
layer, a grouping layer, and a PointNet layer, where the CA mechanism is embedded in
the PointNet. For example, as seen in Figure 3, in the first SA module, a fixed number of
N/4 distant center points are randomly selected using the furthest point sampling (FPS)
algorithm. Then, K points are sampled within the sphere with a radius r centered on each
center point using the ball query, which divides the point clouds into N/4 overlapping
small regions. The input data dimension is then transformed into N/4 × K × (d + c), which
is used as input for the PointNet to complete shallow feature extraction of the local area
point clouds, with an output dimension of N/4 × 64. It should be noted that the CA
module is embedded in the aforementioned PointNet structure. The input of PointNet is
processed by Multilayer Perceptron (MLP) to extract high-dimensional features, resulting
in N/4 × K × (d + c) dimensional data, which is then fed as the input of the CA module.
After undergoing a series of transformations, the CA module obtains important features
and their positional relationships, followed by local max pooling of the output to obtain
local global features. Similarly, the extracted local features are combined with coordinate
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information and further grouped into larger units as input for the next SA module to
generate higher-level features until the global features of the entire point set are extracted.
For the segmentation task of CA-PointNet++, the encoder consists of four SA modules,
with the data dimension changing from N × (d + c) to N/4 × 64, N/16 × 128, N/64 × 256,
and N/256 × 512, respectively, constituting an iterative multilevel feature learning process.
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Similarly, for the segmentation task, the decoder part consists of four feature propaga-
tion modules, each of which is composed of an interpolation layer, a skip link concatenation
layer, and a unit PointNet layer. In each feature propagation (FP) module, the point features
are interpolated to the target points using the inverse distance weighting (IDW) method. The
shallow features are then calculated based on the deep features of each point in the current
network, i.e., the features of N1 × (d + c) points are transferred to Nl-1 points, where Nl-1 and
N1 are the number of points before and after downsampling by the SA module, respectively.
Based on this, the interpolated features and the output features of the corresponding set
abstraction layer are fused using skip link concatenation and then fed into PointNet to
obtain new features. After four cascaded feature propagation modules for upsampling,
the final classification results for each point are obtained, thus accomplishing the semantic
segmentation task. Figure 4 shows the specific structure of the last FP module. For the
CA-PointNet++ model that performs the segmentation task, after four cascaded FP modules,
each point’s classification result is obtained, ultimately achieving semantic segmentation.
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3. Experiments and Results
3.1. Data Descriptions

In this study, the DJI M300RTK flight platform was used in conjunction with the
integrated Livox L1 LiDAR module to obtain point cloud data of power transmission
corridors. 3D point cloud data for the transmission corridors located in Wuxi, Jiangsu
Province, Xiangyang, Hubei Province, and Bazhong, Sichuan Province, were collected.
The collected LiDAR data included 3D coordinate information for the points as well as
their RGB color information. The data covers both double-circuit and quadruple-circuit
transmission lines with voltage levels of 110 kV and 220 kV and tower types including
straight-line towers, tension towers, angle towers, and terminal towers. The majority of
the transmission corridors are located in plain areas. Considering that there are almost
no houses, railways, etc. in the collected point cloud data of the transmission corridors,
to meet the demand for digital twin reconstruction of transmission corridors, the point
clouds were classified into four categories: towers, transmission lines, ground wires, and
ground. Trees and other objects that are connected to the ground were classified as ground
surfaces without further division. The dataset was labeled using the open-source software
CloudCompare, and Figure 5a–d shows the rendered image with labeled color information
of the transmission corridors.
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Figure 5. Comparison of the results of semantic segmentation of transmission corridors using
CA-PointNet++. Subplots (a–d) show the ground truth segmentation renderings of test areas I–IV, re-
spectively, while subplots (e–h) show the corresponding predicted segmentation results, respectively.

3.2. Experimental Setting

The experimental environment of this paper is configured as follows: using an i5-
10400F CPU and an NVIDIA GeForce RTX 4080 GPU, with the Pytorch1.7.0 deep learning
framework to implement all tests. During the model training process, the number of
sampled points N was set to 4096; when using the ball query method, K was set to 32; for
the four SA modules, r was sequentially set to 0.1, 0.2, 0.4, and 0.8; the optimizer used was



Electronics 2023, 12, 2829 9 of 14

adaptive moment estimation (Adam). The initial learning rate, momentum, batch size, and
max epoch were set to 0.001, 0.9, 32, and 100, respectively.

3.3. Evaluation Metrics

To evaluate the experimental results of the 3D point cloud semantic segmentation for
transmission corridor scenarios, the overall accuracy (OA), intersection over union (IoU),
and mean intersection over union (mIoU) were introduced as evaluation metrics for the
model. The formulas for calculating each evaluation metric are presented below.

OA =
TP + TN

TP + TN + FP + FN
(7)

IoU =
TP

TP + FP + FN
(8)

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(9)

where TP represents true positive samples that are correctly identified, TF represents true
negative samples that are correctly identified, FN represents false negative samples that
are mistakenly identified, and FP represents false positive samples that are mistakenly
identified. k represents the number of divided categories.

3.4. Results Analysis

To evaluate the performance of the proposed CA-PointNet++ network, we trained
and tested the model on a 3D point cloud dataset of transmission corridors that we
constructed. In order to reduce information leakage and more accurately reflect the
model’s performance, the LiDAR data was split into training, validation, and test sets in
a 6:2:2 ratio. Figure 5 shows the segmentation results of the CA-PointNet++ model on
the test set of the transmission corridor 3D point clouds, where we listed the predicted
results of areas I–IV as a demonstration of the results. According to the results shown in
Figure 5, it can be seen intuitively that all four categories are generally classified correctly.
Specifically, comparing the ground truth in Figure 5a–d with the predicted values in
Figure 5e–h, it can be seen that the ground, transmission line, and tower parts were
accurately segmented, but some ground wire points were misclassified as transmission
line points. This phenomenon may be due to the fact that the spatial geometric structure
and distribution characteristics of transmission lines and ground wires are too similar
and the spatial differences are not sufficient to distinguish them, leading to misjudgment.
Additionally, due to insufficient sampling accuracy, the lack of insulation and hardware
components resulted in mixed categories and unclear boundaries between tower and
transmission line categories, and the segmentation results at the junctions were not clear.

To perform a qualitative analysis accurately, we selected the ground truth and pre-
dicted values for each category of test area II and analyzed them in detail, listing them as a
confusion matrix in Table 1.

Table 1. Confusion matrix composed of each category in the scene segmentation of test area II.

Categories Ground Wire # Ground # Tower # Transmission Line # OA (%)

ground wire * 1363 0 110 0 92.5
Ground * 0 387,659 141 0 99.9
Tower * 173 11,212 50,154 2035 78.9

transmission line * 1413 0 2658 8005 66.3

* represents the category of ground truth, # represents the category of predicted values.

Based on the comparison of the ground truth and predicted values for each category
mentioned above in test area II, it can be observed that for the ground wire category, the
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classification accuracy is as high as 92.5%, with only a small portion of ground wire points
being misidentified as tower points, which may be due to the unclear boundary between
ground wires and towers. Almost all ground points were accurately identified, while
merely 141 points were mistakenly classified as tower points due to the interaction and
overlap between tower points and some vegetation points in the middle of the ground.
For tower points, the identification accuracy is only 78.9%, possibly due to the neglect
of some components such as insulators and fittings at the connection between the tower
and the line, which were roughly processed and caused inconsistencies between ground
truth and predicted values. In addition, due to the obstruction of bushes and vegetation on
the ground, a part of the tower base was not detected, resulting in 11,212 points (17.6%)
being identified as tower points. As for transmission line points, 1413 transmission line
points (11.7%) were confused with ground wire points due to the high similarity in spatial
distribution and geometric structure between line and ground. Moreover, 2658 points
(22.0%) were mistakenly classified as tower points due to insufficient refinement at the
junction between line and tower. However, overall, the ground wire, ground tower, and
transmission line categories were all relatively accurately classified.

In order to objectively validate the effectiveness and robustness of our proposed CA-
PointNet framework, we compared it with other point-based 3D point cloud segmentation
deep learning models, including PointNet and PointNet++. Although these models have
achieved good segmentation results on public datasets such as s3dis, they have rarely been
used in power transmission corridor semantic segmentation. In this paper, we compared
our proposed CA-PointNet++ model with other classical models in transmission corridor
semantic segmentation, and the qualitative comparison results of various indicators are
shown in Table 2. In addition, we used test areas I and II as examples to visualize the
segmentation results of the above models. As shown in Figure 6, we highlighted different
categories with different colors to emphasize their classification.

Table 2. Comparison results of our proposed CA-PointNet++ model with other classic deep learning
models on the 3D point cloud segmentation of power transmission corridors.

Model OA (%)
IoU (%)

mIoU (%)
Tower Transmission Line Ground Wire Ground

PointNet 73.9 54.9 32.0 35.6 64.3 46.7
PointNet++ 80.3 52.8 46.6 26.6 78.3 51.1

CA-PointNet++ 93.7 82.9 60.4 32.8 93.5 67.4

According to the results in Table 2, the PointNet model has the lowest relative perfor-
mance for the OA evaluation metric at only 73.9%. Furthermore, except for the ground
and tower category, the IoU for the other two categories is below 50%, indicating that the
segmentation results are generally mediocre. The mIoU is also much lower than the other
two models. As shown in Figure 6, the segmentation results of the PointNet model are
significantly inconsistent with the actual scene. The main reason for this phenomenon is
that the PointNet model ignores the neighborhood relationships between points, resulting
in insufficient segmentation precision and poor generalization ability. In contrast, Point-
Net++ considers the local structure and achieves further improvement in performance,
with significant IoU improvements of more than 10% for both transmission lines and
ground points and an increase in mIoU of about 4.4%. Fusing local features of points while
introducing a channel attention (CA) module that emphasizes channel importance and po-
sition information is conducive to extracting detailed information. Therefore, the proposed
CA-PointNet++ model also achieves further improvement in performance for 3D point
cloud semantic segmentation. The OA of the CA-PointNet++ model reached 93.7%, which
represents an improvement of 19.8% and 13.4% compared to the PointNet and PointNet++
models, respectively. Additionally, the mIoU of the CA-PointNet++ model improved by
20.7% and 16.3% compared to the PointNet and PointNet++ models, respectively, reaching
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67.4%. Furthermore, when compared to PointNet++, the proposed CA-PointNet++ model
demonstrated varying degrees of improvement in the segmentation results for all four cate-
gories, as evidenced by their respective IoU scores. Moreover, the IoU scores for the tower
and ground categories even reached around 90%, indicating a highly precise segmentation
performance. However, it is worth noting that the IoU for ground wire segmentation in
the CA-PointNet++ model is only 32.8%, which may be due to the uneven distribution of
points. Compared with the sufficient number of ground points, the number of ground line
points is relatively small, leading to significant fluctuations in evaluation results. Referring
to Figure 6, the segmentation result of the CA-PointNet++ model shows that the model
misclassifies the top power line as a ground line, causing a sharp drop in the segmentation
result for ground lines.
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Figure 6. The comparison of semantic segmentation results of transmission corridors using different
deep learning models. Subfigures (a–d) show the rendered comparison of scene segmentation results
of ground truth, PointNet, PointNet++, and CA-PointNet++ on test area I. Similarly, subfigures (e–h)
show the rendered comparison of scene segmentation results of ground truth, PointNet, PointNet++,
and CA-PointNet++ on test area II.

As shown in Figure 6, the segmentation results of our proposed CA-PointNet++
model are significantly better than the other two models, with the segmentation boundary
being almost identical to the ground truth. For example, the segmentation of the tower
can be seen as a complete tower model. However, the segmentation boundary of the
PoinNet and PointNet++ models is prone to significant errors, with a large number of
ground points and tower points mixed together in the predicted classification, making
it difficult to further exploit and utilize them. Comparing test area I and test area II,
they also perform far worse than the CA-PointNet++ model in terms of generalization
ability. Overall, by embedding the CA module into the backbone network of PointNet++,
our proposed framework emphasizes important channels and considers point position
information during feature extraction, achieving good segmentation performance for tower,
ground, transmission line, and ground wire extraction in the transmission corridor scenes.
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4. Discussion

The attention mechanism simulates the ability of the human visual system to focus
on the relevant parts and can effectively improve the accuracy and efficiency of models.
Currently, the most popular attention mechanism is SE, which only considers channel
importance and has some limitations compared to CA modules. In order to further demon-
strate the superior performance of the proposed CA-PointNet++ model for 3D segmentation
in transmission corridors, we discuss the fusion of different attention mechanisms, namely
SE modules and the PointNet++ backbone, to construct the SE-PointNet++ model. The qual-
itative comparison results of the above models and the backbone model for transmission
corridor 3D point cloud segmentation are shown in Table 3.

Table 3. Comparison results of our proposed CA-PointNet++ model and PointNet++ incorporating
other attention mechanisms.

Model OA (%)
IoU (%)

mIoU (%)
Tower Transmission Line Ground Wire Ground

PointNet++ 80.3 52.8 46.6 26.6 78.3 51.1
SE-PointNet++ 87.9 74.4 37.3 23.6 85.9 55.3
CA-PointNet++ 93.7 82.9 60.4 32.8 93.5 67.4

An analysis of the data in Table 3 reveals that, for the 3D point cloud segmentation
of transmission corridors using PointNet++, the integration of two different attention
mechanisms led to improvements in various evaluation metrics, except for the IoU of
transmission lines and ground wires. This indicates that attention mechanisms indeed play
a supportive role in improving the segmentation performance of the scene. Comparing
the SE-PointNet++ and CA-PointNet++ models, the latter significantly outperformed the
former in all evaluation metrics, achieving higher segmentation accuracy. Specifically, CA-
PointNet++ improved the OA metric by 5.8%, and the IoU of the four categories, including
towers, transmission lines, ground wires, and ground, increased by 8.5%, 23.1%, 9.2%, and
7.6%, respectively. Moreover, the mIoU also increased by 12.1%. These results confirm
that CA effectively captures long-range spatial contextual features that are helpful for
more accurate semantic segmentation by emphasizing channel importance and positional
relationships. When integrated with the PointNet++ backbone network, the CA module
demonstrates a positive and effective performance in improving the quality of 3D point
cloud semantic segmentation for power transmission corridors, even outperforming the
classical SE attention mechanism.

5. Conclusions

Automated segmentation of power components and scenes in Lidar data of trans-
mission corridors is the basis for constructing a digital twin and risk management of the
power grid, such as providing decision-making assistance for hazardous live-line work.
In this study, we propose an improved PointNet++ model named CA-PointNet++, which
is a robust and accurate method for segmenting transmission corridor 3D point clouds.
CA-PointNet++ is a novel end-to-end network architecture that incorporates the latest
CA module into the encoder part of the PointNet++ model. The CA module highlights
important channels and suppresses unimportant ones, capturing cross-channel informa-
tion and location-aware features. A dataset of Lidar data collected by a small UAV for
transmission corridor detection is divided into four typical categories: transmission lines,
towers, ground wires, and ground. The dataset is used to qualitatively and quantitatively
analyze the accuracy and robustness of CA-PointNet++. The experimental results show
that the CA-PointNet++ model achieves 93.7% OA and 67.4% mIoU in the segmentation of
3D point clouds in transmission corridors. For the four categories of towers, transmission
lines, ground wires, and ground, their IoU values are 82.9%, 60.4%, 32.8%, and 93.5%,
respectively. Compared with classical point cloud segmentation algorithms (PointNet and
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PointNet++), CA-PointNet++ outperforms them in both performance indicators and gener-
alization ability. The addition of the CA module increases the OA by 13.4% and the mIoU
by 16.3%, demonstrating the effectiveness and superiority of the integrated CA-PointNet++
network. In addition, compared with the classical SE module, the integration of the CA
module into the backbone model of CA-PointNet++ has a more significant effect on improv-
ing performance indicators. Furthermore, considering the limitations of our study, future
research can focus on more fine-grained segmentation of transmission corridors, including
buildings and other smaller electrical equipment. Additionally, the generalizability of the
method should be explored when dealing with variable point quantities and densities.
These aspects can be considered to enhance the scope of the research in the context of
semantic segmentation of transmission corridor 3D point clouds.
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19. Kohek, Š.; Žalik, B.; Strnad, D.; Kolmanič, S.; Lukač, N. Simulation-Driven 3D Forest Growth Forecasting Based on Airborne
Topographic LiDAR Data and Shading. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 1–13. [CrossRef]

20. Tompalski, P.; Coops, N.C.; White, J.C.; Goodbody, T.R.; Hennigar, C.R.; Wulder, M.A.; Socha, J.; Woods, M.E. Estimating Changes
in Forest Attributes and Enhancing Growth Projections: A Review of Existing Approaches and Future Directions Using Airborne
3D Point Cloud Data. Curr. For. Rep. 2021, 7, 1–24. [CrossRef]

21. Jwa, Y.; Sohn, G.; Kim, H.B. Automatic 3d Powerline Reconstruction Using Airborne Lidar Data. Int. Arch. Photogramm. Remote
Sens. 2009, 38, 105–110.

22. Zhang, R.; Yang, B.; Xiao, W.; Liang, F.; Liu, Y.; Wang, Z. Automatic Extraction of High-Voltage Power Transmission Objects from
UAV Lidar Point Clouds. Remote Sens. 2019, 11, 2600. [CrossRef]

23. Chen, S.; Wang, C.; Dai, H.; Zhang, H.; Pan, F.; Xi, X.; Yan, Y.; Wang, P.; Yang, X.; Zhu, X. Power Pylon Reconstruction Based on
Abstract Template Structures Using Airborne Lidar Data. Remote Sens. 2019, 11, 1579. [CrossRef]

24. Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of Airborne Laser Scanning Data Using JointBoost. ISPRS J. Photogramm.
Remote Sens. 2015, 100, 71–83. [CrossRef]

25. Toschi, I.; Morabito, D.; Grilli, E.; Remondino, F.; Carlevaro, C.; Cappellotto, A.; Tamagni, G.; Maffeis, M. CLOUD-BASED
SOLUTION FOR NATIONWIDE POWER LINE MAPPING. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13,
119–126. [CrossRef]

26. Chen, C.; Jin, A.; Yang, B.; Ma, R.; Sun, S.; Wang, Z.; Zong, Z.; Zhang, F. DCPLD-Net: A Diffusion Coupled Convolution Neural
Network for Real-Time Power Transmission Lines Detection from UAV-Borne LiDAR Data. Int. J. Appl. Earth Obs. Geoinf. 2022,
112, 102960. [CrossRef]

27. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3d Shape Recognition. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953.

28. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3d Point Clouds: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. 2020, 43, 4338–4364. [CrossRef]

29. Maturana, D.; Scherer, S. Voxnet: A 3d Convolutional Neural Network for Real-Time Object Recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015;
pp. 922–928.

30. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep Learning on Point Sets for 3d Classification and Segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

31. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5105–5114.

32. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-Transformed Points. In Proceedings of the Advances
in Neural Information Processing Systems, Montreal, Canada, 3–8 December 2018; pp. 820–830.

33. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph Cnn for Learning on Point Clouds. Acm
Trans. Graph. 2019, 38, 1–12. [CrossRef]

34. Zhang, Z.; Hua, B.-S.; Yeung, S.-K. Shellnet: Efficient Point Cloud Convolutional Neural Networks Using Concentric
Shells Statistics. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1607–1616.

35. Yang, J.; Huang, Z.; Huang, M.; Zeng, X.; Li, D.; Zhang, Y. Power Line Corridor LiDAR Point Cloud Segmentation Using
Convolutional Neural Network. In Proceedings of the Pattern Recognition and Computer Vision: Second Chinese Conference,
Xi’an, China, 8–11 November 2019; pp. 160–171.

36. Peng, S.; Xi, X.; Wang, C.; Xie, R.; Wang, P.; Tan, H. Point-Based Multilevel Domain Adaptation for Point Cloud Segmentation.
IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [CrossRef]

37. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.

38. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

39. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs8010036
https://doi.org/10.1016/j.rse.2017.11.018
https://doi.org/10.1016/j.jag.2022.102844
https://doi.org/10.1007/s40725-021-00135-w
https://doi.org/10.3390/rs11222600
https://doi.org/10.3390/rs11131579
https://doi.org/10.1016/j.isprsjprs.2014.04.015
https://doi.org/10.5194/isprs-archives-XLII-2-W13-119-2019
https://doi.org/10.1016/j.jag.2022.102960
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1145/3326362
https://doi.org/10.1109/LGRS.2020.3037702

	Introduction 
	Methodology 
	CA-PointNet++ Framework 
	Coordinate Attention 
	Proposed CA-PointNet++ Model 

	Experiments and Results 
	Data Descriptions 
	Experimental Setting 
	Evaluation Metrics 
	Results Analysis 

	Discussion 
	Conclusions 
	References

