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Abstract: Perovskite solar cells (PSCs) have revolutionized the field of photovoltaics, achieving certi-
fied power conversion efficiencies reaching 26% at the laboratory scale. High performance, enhanced
stability, and long lifetime are prerequisites for the industrialization and commercialization of this
class of third-generation photovoltaic technology. Toward the development of well-performing and
robust PSCs against environmental stresses, advanced engineering strategies have been employed,
targeting the preparation of perovskite absorbing layers with minimal defects and energy-level
fine-tuning hydrophobic contacts. Focusing on both the electron transport layer/perovskite and
perovskite/hole transport layer interfaces, this review work encompasses some of the most promising
engineering methodologies that were recently proposed in order to optimize the device architecture.
Machine learning approaches have also been used to validate experimental data and predict with
accuracy solar cell parameters, further confirming the significance and justifying the application
potential of the proposed innovative interface functionalization approaches.

Keywords: perovskite solar cells; interface engineering strategies; power conversion efficiency
increase; enhanced stability

1. Introduction

In recent years, intensive research activity has been conducted in the field of third-
generation photovoltaics, especially in the development of metal halide perovskite materials
and perovskite-based PV devices, where the certified power conversion efficiency (PCE)
now reaches 26% [1–5].

Perovskites employed in solar cells are usually described by the general formula ABX3,
where A stands for organic (MA or FA) and/or inorganic (Cs or Ru) cations, B stands for
metal cations (Pb or Sn), and X refers to halide anions (I, Br, or X) [6]. A PSC device, indepen-
dently of its normal or inversed architecture, has a multilayered structure (Figure 1), where
the perovskite active layer, which absorbs light and creates photogenerated charge carriers
(electrons and holes), is placed between two charge extraction/transport layers (electron
transport layer (ETL) and hole transport material (HTM)). A conducting glass substrate
(FTO or ITO) below the ETL (HTM) and a metal evaporated film (Au, Ag, or Al) on top of
the HTM (or ETL) ensure the charge collection [7]. Despite PCEs outperforming those of
silicon counterparts, the poor stability of their absorber when humidity, oxygen, and/or
light is present is the main issue impeding the long-term operation of PSCs and affecting
their industrialization and commercialization. To address the stability issues and obtain sig-
nificantly efficient and robust PSCs, a number of advanced strategies have been proposed
in the literature, including optimization in terms of composition (cation–anion mixing,
perovskite doping, and lead-free perovskite) and band-gap, additive, solvent/antisolvent,
film deposition, and interface engineering [8,9]. In the last case, interface functionalization
is realized through perovskite dimension (3D/0D, 3D/1D, and 3D/2D), molecular (dyes,
polymers, etc.), ETL (SnO2, PCBM, fullerene derivatives, sulfides, and metal doped-oxides),
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and HTM (spiro-OMeTAD replacement, NiOx, C-based PSCs, and other p-type materials)
innovative engineering approaches [10–12]. This leads to appropriate energy-level align-
ment, minimal defects, and the development of highly hydrophobic interfaces with a high
resistance to humidity attack. Justifying the high importance of interface functionalization
for the development of highly significantly and robust devices, this review focuses on
ETL/perovskite and perovskite/HTM interface engineering and encompasses the most
recently proposed innovations with the purpose of optimizing the performance of PSCs.
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Figure 1. Schematic representation of conventional n-i-p (left) and inverted p-i-n (right) PSC architec-
tures, depicting the functionalization of ETL/perovskite and perovskite /HTM interfaces (ETL: electron
transport layer; HTM: hole transport material; M: Ag, Au, or Al metal contacts/charge collectors).

2. Functionalization of ETL/Perovskite Interface

The electron transport layer (ETL) plays a pivotal role in obtaining stable perovskite
solar cells with a high power conversion efficiency (PCE) [13,14]. It must be characterized
by high transparency to visible light, photostability, and compatibility with the perovskite
used. Therefore, a thorough comprehension and optimization of the interaction between
perovskite materials and TiO2 ETL underlayers, as well as a special focus on the behavior
of the corresponding devices, are necessary. Working toward this target, novel approaches
based upon interface engineering in terms of functionalization of the electron transport
layer (ETL) of perovskite solar cells (PSC) have recently been reported [15,16].

Transition metal semiconducting oxides (TMSO, e.g., TiO2, SnO2, ZnO, Zn2SnO4,
CeO2, Cr2O3, Fe2O3, and Nb2O5) [17] and fullerene derivatives (e.g., 6,6-phenyl-C61-
butyric acid methyl ester/PCBM) [18–20] have been commonly employed as selective
electron transport layers in PSCs. H.S. Kim et al. explored the addition of MXene/TMSO
nanocomposites (MXenes: transition metal carbides, nitrides, or carbonitrides having a
two-dimensional layered structure) to modify the PCBM ETL and further boosted the per-
formance (PCE and long-term stability) of inverted perovskite solar cells (p-i-n PSCs) [21].

Inverted PSCs usually employ PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)
fullerene derivative as the ETL. However, the efficiency and lifespan of the corresponding
devices are limited by a high degree of disorder and severe self-aggregation of the PCBM
ETL. Working on inverted planar PSCs, Y. Jiang et al. used the chelation effect as a very
useful tool to reduce the ETL disorder and, thus, enhance the efficiency and stability of
the devices. The authors designed a series of functional dyads FP-Cn (n = 4, 8, 12), where
fullerene and terpyridine chelating groups are linked via a flexible alkyl chain spacer. Using
the FP-C8/C60 ETL dyad as the electron transport layer and Cs0.05FA0.90MA0.05PbI2.85Br0.15
as the light absorber, PSCs with a PCE of 21.69%, minor hysteresis, good reproducibility,
and high stability were obtained. By replacing perovskite with FAPbI3, PSCs with the
FP-C8/C60 ETL gave an optimal PCE of 23.08%, which is one of the highest efficiency
values ever obtained with solution-processed fullerene derivatives [22].

In addition, following an interlayer strategy involving the in situ generation of
polyethylenimine-based two-dimensional (2D) perovskite, C. Wang et al. boosted the
efficiency, stability, and reproducibility of inverted planar perovskite solar cells by effec-
tively reducing the lattice match between the NiOx HTL and the MAPbI3 absorber, thereby
suppressing the interfacial defect formation and developing perovskite layers with a high
crystalline quality [23]. Moreover, working on FTO/NiOx/MAPbI3/PC61BM/BCP/Ag
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PSCs, I-H. Ho et al. modified the HTL/absorber interface with quaternary ammonium
halide-containing cellulose derivatives and succeeded in producing perovskite films of high
crystalline quality with large grains, low surface roughness, enhanced light absorption,
and increased hole mobility. The coating with cellulose polymeric materials smoothens the
NiOx HTL surface, tunes its wettability, improves the compatibility with the perovskite
absorber, and passivates uncoordinated Pb2+ species. As a result, the MAPbI3-based in-
verted PSCs modified by cellulose polymers showed improved photovoltaic performance
and high stability after storage under ambient conditions [24].

Taking the advantage that perovskite solar cells are considered the evolution of dye-
sensitized solar cell technology, the idea of dye sensitization for optimizing the ETL/perovskite
interface was investigated by N. Balis et al. [25]. The use of the solution-processable D35
[triphenylamine-based metal-free (E)-3-(5-(4-(bis(2′,4′-dibutoxy-[1,1′-biphenyl]-4-yl) amino)
phenyl) thiophen-2-yl)-2-cyanoacrylic acid] D-π-A organic chromophore to sensitize the TiO2
compact layer (Figure 2) led to planar PSCs based on MAPbI3 achieving a power conversion
efficiency of 17% (against 15% of those with a non-sensitized layer), which was accompanied
by further improved stability. The obtained results suggest that this performance improvement
can be attributed to enhanced recombination resistance, increased electron transport, better
crystallization of the deposited perovskite, defect passivation, roughness reduction, dipole
moment effects, and the humidity sealing character of the hydrophobic dye monolayer. Thus,
for the first time in the literature, it was demonstrated that dye sensitization could be effectively
applied to interface engineering in PSCs.
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layer (CL) by the hydrophobic D35 dye.

PSCs’ instability remains the most significant issue preventing them from industrial
scaling up. In this context, the dye-sensitization approach was expanded by investigating
its effect on the stability of planar PSCs against thermal and light stresses [26]. The stability
investigation showed an improved endurance of devices after the insertion of D35 under shelf-
shield conditions and especially after accelerated thermal treatment (retaining almost 80% of
their initial efficiency after 60 min at 100 ◦C) and prolonged light saturation exposure (low
degradation following continuous illumination for 7 h at 76.5 mWcm−2 incident irradiance in
the 300–800 nm spectral range). This study confirmed the plethoric role of the dye-sensitization
approach and the advantages it confers to interfacial engineering via organic chromophores
for achieving efficient and stable PSCs. Further developments are expected as the dye-
sensitization methodology can further employ a large number of molecular hydrophobic dyes,
disposing exceptional structural and optoelectronic properties.

The effect of dye modification on TiO2 and ZnO electron transport layers in planar
PSCs was also reported by R. Chouk et al. [27]. As a sensitizer, the authors employed a
Schiff base–cobalt complex derived from ninhydrin and glycine ligands and succeeded
in improving the photoinduced electron transfer and the resulting device efficiency and
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stability. The authors confirmed the existence of strong interactions between the Cobalt
(II) dye and the ETLs and obtained a significant efficiency increase in the performance of
the corresponding FTO/TiO2/Co-NG/MAPbl3/Spiro-OMeTAD/Ag and FTO/ZnO/Co-
NG/MAPbl3/Spiro-OMeTAD/Ag solar cells (equal to 18.94% and 16.32%, respectively).

Noh et al. [28] selected an electron-accepting n-type organic semiconductor [3,9-bis(2-
metylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno
[2,3-d:2′,3′-d’]-s-indaceno [1,2-b:5,6-b’] dithiophene/ITIC—Scheme 1a] to passivate the sur-
face of SnO2 and, thus, developed an organic/inorganic double ETL. The glass/ITO//PEIE-
SnO2-ITIC//(FAPbI3)0.95(MAPbBr3)0.05//Spiro-OMeTAD/Au planar architecture, incor-
porating the optimized ETL, presents improved energy band alignment, low contact resis-
tance, reduced trap-state density, and reached PCE values exceeding 16% (with marginal
hysteresis), which remained practically unchanged for 200 h.
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Scheme 1. ITIC (a) and QA (b) molecular structures.

Molecular dyes can also be used to functionalize inverted architectures. Y. Qi et al. [29]
designed novel organic cationic cyanine dye molecules and were able to efficiently passivate
the interface between the PC61BM and Ag electrode in ITO/Glass//PTAA//perovskite//
PCBM/Dye/Ag devices, improving the PCE from a value of 14.24% (control) to 19.14%
(functionalized). The efficiency increase was attributed to reduced interface charge recombi-
nation and improved charge transport. The addition of the dye interlayer offered additional
protection from moisture, and the corresponding devices maintained 90% of their initial
PCE for 120 h (under ambient conditions).

In order to address the long-term stability issues of PSCs, Q. He et al. introduced a novel
perovskite (MAPbI3 and triple cation) surface passivation strategy involving quinacridone
(QA—Scheme 1b) hydrophobic coating. The addition of such an insoluble, low-cost industrial
organic pigment results in passivated glass/ITO//SnO2//MAPbI3//Spiro-OMeTAD//Au
PSCs with considerably improved performance (PCE of 21.1% with low hysteresis) and
notable stability (maintaining 85.7% of their initial PCE after 240 h of storage at 85 ◦C) [30].

A number of transition metal oxides and related compounds (including TiO2 and
perovskite oxides) have been successfully used as ETLs [31–41]. However, despite its
extensive use as both a compact and a mesoporous layer, titanium dioxide (TiO2) is charac-
terized by low electron mobility and poor conductivity, and may act as a photocatalyst of
chemical reactions, leading to the degradation of perovskites and permanent polarization
of the film [42–45]. Innovative engineering strategies focusing on ETL/perovskite interface
optimization are necessary to address the above issues. Metal (Y, Co, Li, Ag, Sn, Fe, Ru,
Nb, Zn, Ta, or Mg) and non-metal (F, Cl, or S) doping have been proposed as effective
ETL modification strategies that can lead to enhanced electrical conductivity, increased
charge transport, and reduced charge recombination [46–66]. Furthermore, S.-H. Chen et al.
synthesized mesoscopic Ag-doped TiO2 (meso-Ag:TiO2) to address the serious hysteresis
problems encountered in planar structures. Thus, perovskite devices [FTO glass/dense
TiO2/meso-Ag:TiO2/CH3NH3Pbl3/spiro-OMeTAD/Ag] incorporating a meso-Ag:TiO2
ETL present low hysteresis, and their optimization results in a PCE as high as 17.7% [67].
On the other hand, the efficiency and stability of PSCs are sensitive to UV light, heat, and
humidity, and strongly depend on the properties of ETLs. Transition metal oxides such as
TiO2 can trigger light instability due to photocatalysis [68]. Indeed, it has been recently
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demonstrated that the presence of a hygrophobic copper-modified TiO2 ETL (Figure 3)
primarily mitigates the photodegradation action of the substrate, boosts the perovskite
nanomorphology, passivates the surface trap states of the perovskite absorber, and facili-
tates electron transport to the ITO charge collector [69]. The addition of Cu monovalent
cations downshifts the Fermi level of TiO2 and gives rise to a significant improvement in the
performance of perovskite nanohybrids in terms of efficient energy conversion to electricity.
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Indeed, perovskite devices using a Cu-modified compact TiO2 ETL present a PCE
exceeding 18%, outperforming by more than 1% the corresponding efficiency of the ref-
erence device [69]. This work confirms the advantages of interface engineering via metal
ion doping as a totally aspiring and novel strategy with multiple consequences in the field
of PSCs. The above strategy can be employed to many photosensitive metal oxide ETL
materials possessing suitable optoelectronic and structural characteristics with TiO2, thus
enabling the development of highly efficient and more robust energy systems (solar cells,
LEDs, and FETs) against environmental stresses.

According to the literature, mesostructured devices are among the most efficient
PSCs where titanium dioxide pastes are commonly employed to deposit compact and
mesoporous ETLs. Graphitic carbon nitride (g-C3N4) is a very promising two-dimensional
(2D) polymeric material for photovoltaic applications due to its good stability and suitable
electronic properties (heat-resistant n-type semiconductor).

Z. Liu et al. employed n-type g-C3N4 ultrathin films to modify the ETL/perovskite
and perovskite/HTL interfaces in planar PSCs, and despite a challenging band alignment,
they achieved a PCE as high as 19.67% and long-term stability, which was attributed to
the dramatically reduced trap density at the ETL/perovskite and perovskite/HTL inter-
faces [70]. In a recent contribution, it was demonstrated that the presence of a 2D g-C3N4
material on the surface of a mesoporous TiO2 ETL (Figure 4 on the left) primarily results
in the exact conduction band alignment of mp-TiO2 and CH3NH3PbI3 perovskite, thus
enhancing the charge carrier transfer and minimizing the energy losses of the photogen-
erated excitons [71]. Furthermore, the conduction band alignment is extended until the
FTO by substituting the widely used TiO2 compact layer with an ultrathin ALD ZnO layer
(Figure 4 on the right), and thus, the electron transport to the charge collector is further
facilitated, achieving PCE values as high as 20.53%. Another significant aspect of this
interface modification is the long-term stability of these devices, which can be attributed
to the hydrophobic environment that g-C3N4 creates before the perovskite layer. As such,
this gives rise to a substantial improvement in the performance of perovskite nanohybrids
in terms of efficient energy conversion to electricity. This work confirms the advantages
of interface engineering via 2D carbon-based materials as a totally aspiring and novel
approach with multiple consequences in the field of PSCs. This strategy can be further
exploited by investigating the impact of other 2D structures and nanocarbon composites.
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3. Functionalization of Perovskite/HTM Interface

The hole transport material (HTM) used and especially its interface with the per-
ovskite absorber also plays a pivotal role in obtaining PSCs with a high power conversion
efficiency (PCE) and enhanced stability. Thus, advanced engineering methodologies have
been developed, focusing on perovskite HTL/interface optimization and including the
incorporation of polymers, semiconductors, metal oxides, and molecular materials (both
organic and inorganic) [72–74] to regulate and refine the physicochemical properties and
electronic levels of the interface between perovskite active layers and HTM materials.

Stable radical molecules disposing unpaired valence electrons and high electron
acceptance–donation ability are excellent candidates for improving the performance of
both perovskite absorber and charge transporting layers [75]. Indeed, to this direction,
Q. Jiang et al. synthesized a donor–acceptor radical molecule combining an electron de-
ficient para-diazine core with four methoxytriphenylamine electron-donating peripheral
units. The novel PT-TPA molecule with a resonance structure is able to interact (take an
electron) with perovskite, forming p-type doping accompanied by band bending. Thus, the
corresponding ITO/SnO2/FA0.92MA0.08PbI3/PT-TPA/Spiro-OMeTAD/Ag PSCs incorpo-
rating the radical-doped interface delivered an efficiency of 23.4% [76].

In addition, a recent contribution reports on the use of 3,4-Bis(4-bromophenyl)cyclobut-
3-ene-1,2-dione (BED) squaraine chromophore with a zwitterionic resonance structure to
adjust the perovskite energy levels [77]. More precisely, it was demonstrated that the
ortho-squaraine BED zwitterionic derivative is able modify the perovskite surface and lead
to PSCs (Figure 5) achieving a PCE of 23.82%. Indeed, existing electron delocalization in
the stabilized four-membered quadrupolar structure could result in p-type interaction with
perovskite, involving intermolecular pairing between a single electron of BED and an elec-
tron in the absorber. This interaction is accompanied by surface doping and corresponding
energy band reorganization, which leads to a significant increase in Voc. Meanwhile, a
threefold increase in hole mobility was observed, which is attributed to the formation of
BED π-π stacking with the spiro-OMeTAD HTM and consistent with easier charge transfer.
However, taking into account the importance of squaraine derivatives as interface modi-
fiers, more significant developments are expected, targeting to the design and synthesis
of novel resonant of π-conjugated squaraines with substituted peripheral phenyl groups,
which are able to directly coordinate with Pb2+ through van der Waals forces.
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Graphene and graphene-based nanomaterials present excellent optoelectronic, pho-
tonic, thermal, and mechanical properties. They can be used to modify the transparent
electrode, the absorber, the charge extracting layers, and the corresponding interfaces and
address the stability, scalability, and flexibility challenges that limit the industrial applica-
tions of PSCs [78]. In particular, graphene oxide (GO) and reduced graphene oxide (rGO)
are ideal candidates, being able to improve device performance in real working conditions.
This is due to their outstanding optoelectronic properties, their high number of oxygen
functionalities, and their large surface area, which affect the charge transport properties.
In the literature, there are significant studies adopting graphene and graphene oxide in
charge transport or perovskite layers with positive effects on the performance of the devices
examined [79–83]. However, the works on graphene materials are fragmentary and further
elucidation of their influence when added in PSCs is necessary. Thus, the effects of reduced
graphene oxide (rGO)’s presence within the main components of a planar PSC (namely the
compact electron transport layer, the perovskite absorber, and the hole transporter) was
extensively investigated by N. Balis et al., who adopted a novel approach by combining
an optimized rGO synthetic protocol with one-step perovskite layer deposition using lead
acetate precursor [84]. Therefore, for the first time in the literature, high functionality
in both the TiO2 ETL and MAPbI3 perovskite layers was obtained (Figure 6), resulting
in significant performance enhancement of the PSCs under eximination. Consequently,
the power conversion efficiency of the PSCs was improved by 20%, resulting in a ~14%
stabilized power for the best rGO-containing device.
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The contribution of rGO is significant not only by offering improved conductive
pathways for charge carriers’ transport, but also by favoring the growth of robust and ho-
mogenous perovskite layers, thus affecting the nanomorphology of the perovskite absorber.
Therefore, the obtained results contribute significantly to a thorough comprehension of the
interaction between perovskite materials and graphene derivatives, as well as the behavior
of the corresponding devices. X. Lin et al. focused their efforts on the optimization of the
rear electrode of PSCs by stabilizing a Cu-Ni alloy between two layers of graphene de-
posited by CVD. The composite alloy substrate improves the work function of copper and
its electrochemical properties, acts as a buffer preventing its diffusion into the perovskite
absorber, and presents increased resistance against humidity, heat, and oxygen. It, thus,
results in devices with a PCE exceeding 24%, which remains practically stable for several
months of continuous operation [85].

To avoid the decomposition of soft semiconducting hybrid perovskites, Y. Wang et al.
proposed the formation of robust perovskite films in a stabilized heterostructure consisting
of a perovskite surface rich in Pb and a chlorinated graphene oxide layer, characterized by
the presence of strong Pb-Cl and Pb-O bonds in the crystalline structure. In addition to low
recombination and high stability, this solid perovskite interface presents high selectivity
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for charge extraction and permits the fabrication of PSCs that are able to operate with an
enhanced PCE at a high temperature for more than one month [86].

Moreover, graphene quantum dots (GQDs) were used by S. Pang et al. [87] to modify
the SnO2 ETL in perovskite solar cells. The performed modification results in strong
electronic coupling and energy level matching at the perovskite/SnO2 interface, leading
to ITO/SnO2:GQDs/MAPbI3Cl3−x/Spiro-OMeTAD/Ag devices with improved charge
carrier extraction, suppressed charge recombination, and a high PCE of 21.1%.

PSCs’ instability remains the most significant reason preventing them from indus-
trial scaling up. Low-dimensional (LD) perovskites are primarily perceived as effective
active materials for optoelectronic devices [88], and there are some interesting reports
suggesting their incorporation in PV applications [89,90]. PSCs’ stability can be signifi-
cantly enhanced using dimensionality engineering strategies combining the 3D absorber
with LD perovskites (0D, 1D, or 2D) [91]. Among them, sulfur-based perovskites and
especially novel 1D materials based on organic trimethylsulfonium [(CH3)3S+] cations
present improved chemical stability in ambient conditions and show great application
potential [92–97]. Looking for novel approaches for interface engineering in perovskite
solar cells (PSCs), A. Kaltzoglou et al. expanded their research on the double perovskite ap-
proach by investigating the effect of tridimensional/monodimensional (3D/1D) perovskite
bilayer consisting of (FA/MA/Cs)PbI3−xBrx (3D) and (CH3)3SPbI3 (1D) perovskites [98]
on the stability of PSCs against humidity and light stresses (Figure 7).
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Figure 7. Interface functionalization of PSCs realized through a 3D/1D engineering strategy, in-
volving the incorporation of 1D (CH3)3SPbI3 perovskite between the main 3D absorber and the
spiro-OMeTAD HTM. The perovskite/spiro-OMeTAD interface can also be appropriately altered to
incorporate 3D/0D and 3D/2D structures.

One of the originalities of this work lies in its use of a two-perovskite dimensionality
engineering strategy, which consists of interface optimization by adding an air-stable wide
band-gap 1D perovskite layer on top of the main absorber. The devices based the 3D/1D
bilayer show a significant reduction in charge carrier recombination, which is accompa-
nied by high stability against humidity and light stresses. It is clear that dimensionality
engineering employing 1D perovskite as a shield for water molecules and a promoter of
charge carrier transporters in perovskite PV devices constitutes an extremely promising
and novel approach with a significant impact in the relevant field. Contrary to other
approaches, the additional perovskite (1D) layer creates a favorable environment that
improves the action of the main perovskite absorbers in terms of stability improvement and
performance reproducibility. On the other hand, M. Parashar et al. employed trimethyl-
sulfoxonium (TMSO+) aprotic cations and developed very stable PSCs with enhanced
performance and moisture resistance. Their behavior was attributed to the ability of TMSO+

cation to interact with Pb2+, forming a dative Pb-O bond in a separate 1-D structure. The
glass/FTO/TiO2/(TMSOPbI3)x(MAPbI3)100−x/spiro-OMeTAD/Au devices containing the
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fused, highly hydrophobic 1-D/3-D (TMSOPbI3)x(MAPbI3)100−x perovskite achieved a
PCE of 19.94%, together with VOC values exceeding 1.12 V [99].

Poor stability of the perovskite layer is an important issue usually related to ionic
defects on the absorber surface acting as charge recombination sites and water/oxygen
infiltration positions. The incorporation of organic compounds with oxygen functional
groups (e.g., carbonyls and carboxyls) has been proposed as an effective tool to passivate
perovskite structural imperfections and improve device stability [100–106]. To address
the efficiency and stability challenges encountered in PSCs, the perovskite/hole trans-
porter interface was optimized using a multifunctional layer consisting of D35 organic dye
(Figure 8). The presence of the hydrophobic D-π-A interlayer mainly boosts the perovskite
nanomorphology, facilitates the hole transport to the cathode via appropriate energy-level
alignment, and passivates the surface trap states of the perovskite absorber. As a result,
this leads to a substantial improvement in the performance of (FA/MA/Cs)PbI3−xBrx
nanohybrids in PSCs, showing efficient energy conversion to electricity with a PCE of
18.5% [107] and presenting high stability for several weeks after storage in the dark for
several weeks (with no bias).
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Tian Zhang et al. designed and synthesized 4-(5-(7-(5-(5,11-bis(2-ethylhexyl)- 5,11-
dihydroindolo[3,2-b]carbazol-2-yl)-4-hexylthiophen-2-yl)benzo[c][1,2,5]thia diazol-4-yl)-
3-hexylthiophen-2-yl)benzoic acid (ZT001) donor–π–acceptor molecular dye and employed
it to mitigate surface defects and water-sensitivity problems. The D–π–A organic dye
disposes long alkyl hydrophobic chains and carboxyl groups, which coordinate with Pb2+

species. This leads to considerable reduction in the structural defects and passivation of the
perovskite films. The ZT001-modified FTOGlass//SnO2/Cs0.05 (FAPbI3)0.85(MAPbBr3)0.15/
ZT001/spiro-OMeTAD/Au device exhibited a PCE of 20.6%, along with a high VOC and a
large fill factor (FF) as well as improved resistance under humid conditions [108]. These
works confirm the advantage of using functional molecular chromophores as a very am-
bitious and innovative novel interface engineering strategy that can further benefit from
a variety of photosensitive materials with a suitable structure and appropriate optoelec-
tronic properties.

Significant PCE enhancement in the field of PSCs has been achieved using mixed-
cation perovskite films. However, these composite hybrid materials suffer from inherent
instability due to the presence of multiple defects, including halide (I, Br) vacancies or
uncoordinated Pb2+ sites developed during the deposition of the absorber layer. Thus,
destruction of PbX6 octahedral might occur under humid operational conditions, which is
usually accompanied by poor stability and progressive efficiency decline of the correspond-
ing devices [109–113].

In order to improve waterproof performance, 1-Dodecanethiol (DDT) was used to
passivate the surface and provide perovskite films with high hydrophobicity. This work fo-
cused on the most known mixed-cation perovskite formulation, (FAPbI3)0.85(MAPbBr3)0.15,
which is targeted to repair defects and improve moisture resistance of the absorber. Through
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a series of tests, it was found that perovskite defects repaired by the thiol group in DDT
(Figure 9) could reduce trap density, inhibit non-radiative recombination, and improve
charge carrier transportation and extraction performance.
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In addition, a significant improvement was observed in the device performance (in
terms of efficiency and stability), which was attributed to the existence of highly hydropho-
bic dodecyl organic groups in the DDT modifier. Accordingly, following post-treatment
with DDT, a PCE value of 20.89% was obtained, together with exceptional long-term stabil-
ity (exceeding 90%) after storage under humid conditions for more than 40 days [114]. These
very promising results confirm the high potential of using thiol-functionalized molecules
for repairing perovskite structural defects and justify the necessity of coordinated and
intensive research in the field with high prospects of practical implementation.

Functional electron-rich sulfur containing small molecules has also been used as an inter-
facial passivator to coordinate Pb atoms. D.A. Kara et al. introduced 2-thiophenecarboxylic
acid (2TiCOOH) as a passivation interlayer between perovskite and spiro-OMeTAD HTM
by spin coating a solution of 2TiCOOH in chlorobenzene (CB) on the top surface of the
absorber. The modified FTO/TiO2/Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3/2TiCOOH/spiro-
OMeTAD/MoO3/Ag devices with an n–i–p planar architecture present high carrier lifetime,
easy charge extraction, and low recombination, together with enhanced photovoltaic parame-
ters and extremely stable operation for more than 100 days [115].

The long-term instability of PSCs restricts their scaling up for commercialization.
To alleviate this very challenging issue, the development of devices with self-healing
properties and improved resistance against humidity has been proposed [116–121]. Very
recently, Y. Niu et al. introduced polyvinylpyrrolidone (PVP) to a methylammonium lead
iodide (MAPbI3) perovskite precursor in order to control crystal growth and endow such
devices with self-healing ability in a humid environment [122]. The nuclear magnetic
resonance measurements confirmed the existence of strong hydrogen bonding interaction
between PVP and MAPbI3 (Figure 10). As a result, a compact perovskite film with excellent
electronic, morphological, and structural quality was formed, leading to PSCs with a power
conversion efficiency (PCE) of up to 20.32%.
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In addition, CH3NH3
+ cation decomposition was suppressed and MAPbI3 recrystal-

lization was improved due to the existence of hydrogen bonds at the grain boundaries.
The corresponding PVP-modified devices exhibit remarkable resistance to moisture attack,
with a slight efficiency decline following operation for 20 days under conditions of high
humidity. This behavior is directly related to the excellent self-healing behavior of the
perovskite layer following PVP introduction, which is characterized by slow crystal growth
and low number of trap states.

Focusing on polymers, Y. Jing et al. synthesized fully conjugated porous aromatic
frameworks (PAFs) having a stable tetraphenylene and pyrene backbone bridged by C=C.
Polymeric materials with a high surface area were successfully applied to dope the per-
ovskite absorber, acting as an efficient nucleation template and regulating perovskite
crystallinity. As a result, the corresponding ITO/SnO2/Cs0.05FA0.8MA0.15PbI2.55Br0.45 +
PAF/Spiro-OMeTAD/Ag uncapsulated devices showed improved performance with an
optimal PCE of 22.76 %, suppressed hysteresis, and high stability for at least half a year
under ambient conditions [123].

A polymer-based additive engineering approach was also used by Yang-Yen Yu et al. in
inverted ITO/NiOx/CH3NH3PbI3/PC61BM/BCP/Ag p-i-n PSCs. The authors confirmed
that functional groups in polyamic acid and polyimide could strongly interact with Pb2+ and
CH3NH3

+ cations to passivate perovskite grain boundary defects. Following the addition
of polymers, the grain size in the modified absorbers increased and the corresponding
devices showed improved performance, which was accompanied with exceptional stability
after storage under controlled conditions [124].

Despite significant progress, there is a lack of understanding about the underlying
physical phenomena and chemistry of PSCs and the corresponding processes that determine
the formation and stability of the perovskite absorber, the size and shape of perovskite
crystals, the presence of defects, and the charge recombination and transport. There are
significant research efforts in the literature to overcome the deficiency that could limit
the ability to optimize device performance and improve device stability and lifetime.
Indeed, Lewis acid and base adducts, dye sensitizers, crystal growth control, and organic
compounds with multidentate groups have been employed for the successful modification
of perovskite absorbers. Moreover, machine learning (ML) methods have been used to gain
valuable insights from experimental data and to predict the structural and optoelectronic
properties of the most promising materials for PSCs [125–135].

Inspired by recent developments in the field using functional chromophores, very
recently, M. Elsenety et al. investigated an efficient and highly hydrophobic tripheny-
lamine organic compound as an interlayer between the 3D perovskite absorber and the
common Spiro-OMeTAD HTM, thus proposing a new route to fabricate highly efficient
and thermally stable PSCs (Figure 11). The importance of the proposed strategy lies in
the fact that triphenylamine molecules can further substitute triphemylamine derivatives,
thus taking a significant step forward by designing and synthesizing novel passivating
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agents and increasing their application potential. In their study, DN-F10 ultra-hydrophobic
triphenylphosphine derivative with a D-π-A structure was employed to form strong p-type
interaction on the surface of perovskite and promote the fine tuning of energy levels, thus
leading to devices with PCE values close to 21% [136].
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The high values of the cell parameters were attributed to improved crystallization of
perovskite and to the effective passivation of uncoordinated Pb2+ by the carboxyl groups of
the DN-F10 dye. This interaction also affects the growth activation energy and decreases
the crystallization rate, producing larger perovskite without significant defects. Meanwhile,
due to the passivation effect, hole extraction at the perovskite/spiro-OMeTAD interface was
enhanced and the charge carriers’ recombination was suppressed, thus increasing the power
conversion efficiency. Moreover, the terminal organic chains of DN-F10 endow the interface
with an ultra-hydrophobic character, shielding perovskite from moisture while alleviating
ionic diffusion, thus leading to excellent device stability. Furthermore, statistical analysis
and machine learning (ML) modeling further confirmed the significance of the proposed
innovative approach by identifying correlations between the photovoltaic parameters and
predicting the coefficients of determination. In parallel, the ML models were able to suggest
the relative significance of cell parameters to optimize device performance and accurately
predict the corresponding PCE. Taking into account the plethora of functional groups
able to interact with both the absorber and the corresponding charge transporting layers,
we anticipate the employment of machine learning approaches to optimize molecular
structures for interface engineering strategies and achieve PCEs exceeding 26% [137].

Indeed, in a very recent study, L. Zhang et al. [138] further elaborated the dye-
modification approach by using machine learning and symbolic regression methods to
discover the most appropriate organic interlayers, leading to optimized MAPbI3/TiO2
interfaces in hostile aqueous conditions. The authors were able to model and predict en-
hanced photovoltage and stability in water, achieving in parallel to experimentally validate
with success their findings for a champion system comprising two molecular dyes. This
work highlights the importance and the high potential of ML platforms to accelerate the
design of functional interfaces, enabling the development of efficient and robust devices
and their long-term operation in extreme environmental conditions.

4. Conclusions and Perspectives (and Future Directions)

Despite the spectacular enhancement in photovoltaic performance, device stability
remains a key issue preventing the commercialization of PSCs. This work confirms that
the functionalization of ETL/perovskite and perovskite/HTM interfaces results in per-
ovskite layers with a low intrinsic defect density and balanced energy-level alignment that
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facilitates charge extraction. Previous research has demonstrated that dyes and functional
chromophores with a D-π-A structure, polymers, transition metals, graphene oxides, and
2D carbon materials, as well as resonant molecules and 1D perovskites, are ideal candidates
for interface modification, which can inhibit the degradation of the light absorber and
ensure the robustness of PSCs. Following these innovative functionalization approaches,
the PCE of the corresponding devices considerably increases and reaches very high values
(from 15% for non-modified cells to almost 24% for interface-modified ones). Finally, it
has been proven that validation of experimental results is possible by combining machine
learning and autonomous experimentation, which leads to a better knowledge of the corre-
lations between photovoltaic parameters and permits the determination of their optimized
values. In parallel, ML offers the possibility of developing models for accurate prediction of
cell performance, thereby speeding up the development of highly efficient practical devices.
Significant progress toward industrialization can be expected in terms of both performance
and stability by introducing all these innovative interface engineering strategies supported
by advanced ML procedures in scale-up protocols (including also tandem devices), in
combination with appropriate encapsulation and innovative sealing materials.
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