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Abstract: Data sparsity limits the performance of point-of-interest (POI) recommendation models,
and the existing works ignore the higher-order collaborative influence of users and POIs and lack
in-depth mining of user social influence, resulting in unsatisfactory recommendation results. To
address the above issues, this paper proposes a personalized POI recommendation using an improved
graph convolutional network (PPR_IGCN) model, which integrates collaborative influence and social
influence into POI recommendations. On the one hand, a user-POI interaction graph, a POI-POI
graph, and a user–user graph are constructed based on check-in data and social data in a location-
based social network (LBSN). The improved graph convolutional network (GCN) is used to mine the
higher-order collaborative influence of users and POIs in the three types of relationship graphs and
to deeply extract the potential features of users and POIs. On the other hand, the social influence of
the user’s higher-order social friends and community neighbors on the user is obtained according to
the user’s higher-order social embedding vector learned in the user–user graph. Finally, the captured
user and POI’s higher-order collaborative influence and social influence are used to predict user
preferences. The experimental results on Foursquare and Yelp datasets indicate that the proposed
model PPR_IGCN outperforms other models in terms of precision, recall, and normalized discounted
cumulative gain (NDCG), which proves the effectiveness of the model.

Keywords: POI recommendation; location social network; data sparsity; graph convolutional
network; social influence

1. Introduction

With the development of smart devices with GPS satellite positioning functions and
mobile internet, location-based services have received widespread attention in social net-
works [1–5]. A large number of location-based social network (LBSN) service websites and
software, such as Gowalla, Foursquare, Yelp, Twitter, Dianping, etc., appear in people’s
social lives. Users can check in on LBSNs through a series of activities, such as recording,
location sharing, and interacting with friends. Point-of-interest (POI) recommendation
is one of the important services of LBSNs, which not only facilitates users discovering
locations of interest and reduces decision-making time but also helps merchants know
user preferences more comprehensively, find target groups more accurately, and provide
personalized services [6,7]. Due to the important role played by POI recommendations in
real life, it has gradually become a current research hotspot [8–11].

Initially, POI recommendations adopt the collaborative filtering (CF) method for
recommendations. Matrix factorization (MF) is the most commonly used method to learn
the potential embedding vectors of users and POIs and calculate users’ preferences for POI
by modeling the two vectors in the form of the inner product. However, the MF method
makes it difficult to capture collaborative information in user-POI interaction data. In this
case, people began to use a series of methods, such as neural networks and graph models,
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to solve them. Someone used the graph neural network (GNN) to learn embedding vectors
in graph data. GNN updates the current node embedding vector by aggregating neighbor
node information, which can integrate node information, edge information, and topology
structure in the graph to better learn the embedding vector [12]. T. N. Kipf et al. [13] derived
a simplified graph convolutional network (GCN) operation model based on approximate
techniques, which is considered the “pioneering work” in the field of GNN. Recently, graph
neural network collaborative filtering recommendations [14,15] have become an effective
recommendation method, which uses GCN to encode user–item historical interaction
information into the representation embedded space, thus improving the recommendation
effect [16].

With the explosive growth of the number of users and locations, POI recommen-
dation faces three challenges. Firstly, data sparsity reduces the accuracy of traditional
POI recommendation models. Secondly, the massive amounts of data in real life require
models to have higher data-processing capabilities. While ensuring the recommendation’s
performance, both model efficiency and scalability need to be considered [17]. Finally,
current POI recommendation methods are unable to effectively capture complex collabora-
tive information in users’ social relationships and user-POI interactions, which limits the
performance of POI recommendations [18].

In response to the problems of data sparsity, low model efficiency, and poor recom-
mendation performance in the current POI recommendation task, this paper proposes a
personalized POI recommendation using an improved graph convolutional (PPR_IGCN)
model. The main contributions are as follows:

• Apply the improved GCN to POI recommendation, construct a user-POI interaction
graph, a POI-POI graph, and a user–user graph based on user history check-in data,
deeply mine collaborative information in three types of relationships, and learn user
and POI higher-order collaborative embedding vectors to improve recommendation
performance;

• Based on the users’ higher-order social embedding vector learned in the user–user
graph, the higher-order social friend influence of the user and social friends and the
community neighbor influence of the user and close neighbors are captured to alleviate
data sparsity;

• Conduct experiments on real datasets to evaluate the performance of the proposed
model, PPR_IGCN. The experimental results show that the model outperforms other
existing models, which verifies the effectiveness of the proposed model.

The rest of this paper is organized as follows: Section 2 introduces the related work on
POI recommendations and GCN. Section 3 provides a detailed introduction to the proposed
model, PPR_IGCN. Section 4 conducts a series of experiments on two real datasets, intro-
duces the experimental setup, and analyzes the experimental results. Section 5 summarizes
the work of this paper.

2. Related Work

This section introduces the related work of POI recommendations and GCN-based
recommendations.

2.1. POI Recommendation

POI recommendation is an important task in the recommendation field, which can
help users find new locations of interest. Gao et al. [19] considered the characteristics
of user check-in behavior changing over time. They used the MF model to model the
check-in behavior at different time states and learned users’ time check-in preferences for
location recommendations. Liu et al. [20] jointly learned users’ geographic and interest
preferences through a Poisson factorization model. Aiming at data sparsity and preference
dynamics, Wang et al. [21] used knowledge graph embedding technology to encode time,
geographic, and semantic information and built a joint MF framework on the user-POI
graph to use side information to enhance the dynamic preference prediction of users.
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Xu et al. [22] proposed a POI recommendation framework that integrates the influence
of users’ social and personal interests and check-in order. They used the convolutional
filter and multilayer perceptron model to mine the sequential influence between user
check-in POIs and used the metric learning method to model users’ social relationships.
Zhu et al. [23] proposed a graph embedding representation model that integrates social
and geographic influences. The user embedding vector is obtained by combining user
embedding with social graph embedding, and the POI embedding vector is obtained by
combining POI embedding with geographic graph embedding. Under the neural network
framework, the potential connections between users and POIs are explored to obtain user
preferences. Cao et al. [24] used the Bayesian personalized sorting method to integrate
social relationships and geographic information and combined the BPR framework with
POI clustering information to form the POI recommendation list. Lian et al. [25] used
the two-dimensional kernel density estimation method to simulate the phenomenon of
spatial clustering. Based on the weighted MF, the user active region vector and POI
influence region vector are fused into the user and POI implicit spaces to improve the
recommendation effect.

2.2. Recommendation Based on GCN

GNN can be used to handle various types of graph structures and has a wide range
of applications in the fields of knowledge graphs and recommendation systems. GCN is
a category of GNN and has strong feature extraction and learning abilities. GCN applies
the convolutional neural network used for image processing to deal with the problem of
graph structure and obtains node feature information in space by continuously optimizing
convolution parameters. The basic equations of GCN are as follows:

h(l+1)
i = σ( ∑

j∈Ni

1
Cij

h(l)
j w(l)) (1)

1
Cij

= D̂−
1
2 ÂD̂−

1
2 (2)

Â = A + I (3)

where σ(·) is the activation function for nonlinear transformation, Ni is the neighbor set
of node i, Cij is the normalization factor, A is the adjacency matrix of node i, D̂ is the

corresponding degree matrix of Â, h(l+1)
i is the embedding vector of node i in layer l + 1,

the embedding vector of the node i and all the neighbors of node i in layer l are represented
by h(l)

j , and w(l) is the weight of layer l.
The GCN model is mainly divided into the embedding layer, embedding propagation

layers, and prediction layer. Firstly, the data are input into the embedding layer, the
initialized embedding vector representation is obtained, and then the embedding vectors
are input into the embedding propagation layers. Secondly, during the message-passing
process of the embedding propagation layer, the embedding vectors are updated through
message construction and message aggregation operations. Finally, based on the updated
embedding vectors, the prediction results are made in the prediction layer. The framework
graph is shown in Figure 1.

Wang et al. [26] emphasized the importance of collaborative signals in the CF method
and proposed the GNN-based recommendation framework NGCF. In the NGCF framework,
collaborative signals are explicitly encoded in the form of higher-order connectivity through
embedding propagation to obtain the user–item interaction embedding vector. Wu et al. [27]
pointed out the importance of spatial and temporal factors in POI recommendations and
proposed a GARG model that combines attention mechanisms and GCN to improve the
recommendation’s performance. He et al. [28] found that the two most common feature
transformations and nonlinear activation designs of GCN in NGCF have little effect on
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the performance improvement of CF, so they proposed a LightGCN model that only
contains the most basic components of GCN. Chang et al. [29] utilized GGLR to capture
highly nonlinear geographic influences in POIs. The potential representations of input and
output geographic influences are obtained based on a graph autoencoder, and the trained
geographical potential representations are used to estimate users’ preferences in the GNN-
based POI recommendation model (GPR); thus, the accuracy of POI recommendations is
improved. Li et al. [30] obtained the social impact set of users on Markov nets through the
belief propagation algorithm, calculated the similarity and familiarity of social users in the
set, and linearly integrated the social impact and geographical location impact for location
recommendations. Zhong et al. [31] proposed the hybrid graph convolution networks
for the POI recommendation framework, built a spatial graph based on the geographical
distance between POI pairs, and used GCN to represent the higher-order connectivity
in POIs, which alleviated the sparse check-in problem. Ying et al. [32] first proposed the
PinSage algorithm by applying GCN to recommendation systems. This algorithm combines
efficient random walks with graph convolution to generate node embeddings containing
graph structure and node feature information.
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3. Proposed Model
3.1. Preliminaries

Define the user set U =
{

u1, u2, . . . , u|U|
}

and POI set P =
{

p1, p2, . . . , p|P|
}

, where
|U| denotes the total number of users and |P| denotes the total number of POIs. According
to the user and POI interaction records, the user-POI interaction matrix R can be obtained.
If a user has visited the POI, the element value of R is 1, otherwise, it is 0. The potential
embedding vectors of user u and POI p are represented by d-dimension mu and mp, respec-
tively. The check-in behavior is denoted by the three tuple < u, p, c >, which represents
that user u has checked in c times on POI p. The user check-in behavior can be transformed
into the user-POI interaction frequency matrix Rc. When user u has not visited POI p, the
value of element Rup is the number of visits in Rc. The goal of this paper is to discover the
top K previously unvisited locations that users are most interested in a given user check-in
information.
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3.2. PPR_IGCN Model

The PPR_IGCN model includes the following two parts: collaborative influence and
social influence. The collaborative influence uses the improved GCN to mine higher-order
collaborative information in the user check-in data, which reaches the limited convergence
state of the embedding propagation layer through the loss function, in order to learn the
impact of the three types of relationships represented by a user-POI interaction graph, a
POI-POI graph, and a user–user graph on users’ preferences and obtain the collaborative
embedding vector between user and POI. Based on the users’ social information and
characteristics, social influence combines friend-based collaborative filtering with improved
GCN to mine the influence of higher-order social friends and community neighbors on
users’ preferences to alleviate data sparsity. The overall framework of the model is shown
in Figure 2.
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3.3. The Learning Mode of Multi-Dimensional Collaborative Influence

Based on the three types of relationships represented by a user-POI interaction graph,
a POI-POI graph, and a user–user graph, this section proposes a learning mode of multi-
dimensional collaborative influence.

3.3.1. Learning the Collaborative Influence of the User-POI Interaction Graph

User-POI check-in information can be expressed as a user-POI interaction graph, as
shown in Figure 3a, which can be converted into a higher-order neighbor node graph, as
shown in Figure 3b. Since the neighbors of the node ui carry collaborative information,
they can affect the preference of node ui. Therefore, GCN is used to mine the higher-
order neighbor information of node ui to enrich the characteristic information of node
ui, which can alleviate the sparsity of the interaction data. In the embedding layer, the
d-dimensional initial embedding vectors of user and POI are defined, which are shown in
Equations (4) and (5).



Electronics 2023, 12, 3495 6 of 17

M(0)
U = [m(0)

u1 , . . . , m(0)
u|U| ]

T
(4)

M(0)
P = [m(0)

p1 , . . . , m(0)
p|P| ]

T
(5)
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The standard GCN model mentioned in Section 2.2 uses the nonlinear activation func-
tion and multiple feature transformation matrices in the embedding propagation layer to
update the node embedding vector. However, when GCN is applied to the recommendation
field, the nodes in the user-POI interaction graph do not have rich semantic information,
and only the data of user ID and POI ID are put into the model for training. Therefore,
the above two operations are not conducive to learning node embedding vectors and will
increase the training difficulty. So, the GCN model can be simplified, i.e., the first-order
neighbor’s collaborative information is obtained through message aggregation of an embed-
ding propagation layer, and multiple embedding propagation layers are stacked to obtain
the higher-order neighbor’s collaborative information to update the node embedding vec-
tor. After removing the nonlinear activation function and feature transformation matrices,
the message-passing process is abstracted, considering the self-connection operation of the
nodes, as shown in Equations (6) and (7).

m(l+1)
u =

1
|Nu|+1

m(l)
u + ∑

q∈Nu

1√
|Nu|+1

√∣∣Nq
∣∣+1

m(l)
q (6)

m(l+1)
p =

1∣∣Np
∣∣+1

m(l)
p + ∑

v∈Np

1√
|Nv|+1

√∣∣Np
∣∣+1

m(l)
v (7)

where u and v represent users, p and q represent POIs, m(l+1)
u and m(l+1)

p represent the em-
bedding vectors of user u and POI p in the embedding propagation layer l + 1, respectively,
Nu, Np, Nv, and Nq represent the neighbor sets of the nodes u, p, v, and q, and |Nu|,

∣∣Np
∣∣,

|Nv|, and
∣∣Nq
∣∣ represent the neighbor numbers of the nodes u, p, v, q.

Generally speaking, deeper collaborative information can be learned by stacking more
embedding propagation layers, but too many embedding propagation layers will cause an
over-smoothing problem, i.e., each node will tend to form an exactly identical embedding
vector, resulting in a decrease in model performance [26]. Therefore, this paper further
improves the GCN model, and the specific process is as follows:
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According to Equation (1), the limit of message passing can be obtained when the
number of embedding propagation layers tends to infinity, as shown in Equation (8).

lim
l→∞

(
1

Cij
)

l
=

√
|Ni|+1

√∣∣Nj
∣∣+1

2a + b
(8)

where a and b are the total number of nodes and edges in the graph, respectively.
Due to the existence of the limit, the superposition of multiple embedding propagation

layers can be skipped and directly enable the user and POI embedding vectors to reach the
convergence state of infinite layer message propagation, as shown below.

mu = lim
l→∞

m(l+1)
u = lim

l→∞
m(l)

u (9)

mp = lim
l→∞

m(l+1)
p = lim

l→∞
m(l)

p (10)

Equations (9) and (10) align the end user embedding vector that aggregates higher-
order neighbor collaboration information with the embedding vectors of layer l and layer
l + 1. Therefore, Equation (6) can be rewritten as Equation (11).

mu =
1

|Nu|+1
mu + ∑

p∈Nu

1√
|Nu|+1

√∣∣Np
∣∣+1

mp (11)

By further simplifying Equation (11), the convergence state of the GCN embedding
propagation layer can be obtained, as shown below.

mu = ∑
p∈Nu

wupmp (12)

wup =
1
|Nu|

√
|Nu|+1∣∣Np

∣∣+1
(13)

Next, convergence is reached by making the values on both sides of Equation (12)
closer, i.e., the higher the similarity on both sides of the equation, the closer to the con-
vergence state. Specifically, after normalizing the embedding vector, the cosine similarity
between the two is maximized, and Equation (14) is obtained.

max ∑
p∈Nu

wupmu
Tmp (14)

To facilitate optimization and avoid over-smoothing, the sigmoid activation function
and negative log-likelihood estimation are introduced, random negative sampling [33] is
added to the training process, and, finally, the constraint function Lup is obtained.

Lup = − ∑
(u,p)∈D+

wup log(σ(mu
Tmp))− ∑

(u,q)∈D−
wuq log(σ(−mu

Tmq)) (15)

D =
{
(u, p, q)

∣∣(u, p) ∈ D+, (u, q) ∈ D−
}

(16)

where D is the set of all user-POI pairs in the training set, D+ represents the set of positive
sample pairs, and D− represents the set of negative sample pairs. The constraint function
can make the model approximate to reach the effect of infinite superimposed embed-
ding propagation layers, thereby mining the infinite higher-order neighbor collaboration
information in the user-POI interaction graph.
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3.3.2. Learning the Collaborative Influence of the POI-POI Graph

To make the learned user preferences more accurate, the weighted adjacency matrix E
of the POI-POI graph is constructed using the user-POI interaction matrix R, as shown in
Equation (17).

E = RTR (17)

Model the POI-POI graph based on the convergence state of the known GCN embed-
ding propagation layer to capture the impact of different relationships on users’ preferences.
The constraint function of learning the POI-POI graph is similar to Equation (15). The
weighted adjacency matrix E of the POI-POI graph is relatively dense. To avoid introducing
noise or unreliable information during the optimization process, only effective information
pairs are selected for training. In addition, the user-POI positive sample pairs are used to
learn the POI-POI relationship during training, which not only ensures the unity of the
training conditions but also reduces the training difficulty. Thus, the constraint function
Lpq for mining POI-POI relationships is obtained, as shown in Equation (18).

Lpq = − ∑
(u,p)∈D+

∑
q∈N(p)

wpq log(σ(mp
Tmq)) (18)

where wpq represents the constraint coefficient. When the embedding propagation layer
of GCN reaches the convergence state, the value of wpq can be calculated according to
Equation (19). N(p) represents the set of the top n locations selected that are most similar
to POI p, i.e., the top n POIs with the highest wpq value are selected for training.

wpq =
Epq

cp

√
cp + 1
cq + 1

(19)

where cp and cq represent the degrees of POI p and POI q, respectively.

3.3.3. Learning the Collaborative Influence of the User–User Graph

Based on the idea described in Section 3.3.2, learn the user higher-order social embed-
ding vector in the user–user social graph, as shown in Equations (20) and (21).

Luv = − ∑
(u,p)∈D+

∑
v∈N(u)

wuv log(σ(mu
Tmv)) (20)

wuv =
Guv

cu

√
cu + 1
cv + 1

(21)

where Guv is one of the elements in the user–user graph, constructed according to the
information of the user and direct social friends, cu and cv represent the degrees of user u
and user v, respectively, and N(u) represents the set of the top n friends selected that are
most similar to user u.

3.4. Learning Social Influence

In real life, friends attend the cinema to watch movies, eat in restaurants, check in at
scenic spots, etc., as well as friends will recommend favorite locations to each other, and
friends of friends will also affect users’ interest preferences. Under the circumstances, the
user’s behavior is susceptible to the influence of social relations to a certain extent, and this
paper refers to it as higher-order social friend influence. In addition to the higher-order
social friend influence, neighbors also recommend their favorite locations to each other,
and users who are geographically close to the user also affect the user’s behavior, which
forms the community neighbor influence.



Electronics 2023, 12, 3495 9 of 17

Next, use friend-based collaborative filtering and improved GCN technology to
mine users’ social influence. According to the user social embedding vector learned
in Section 3.3.3, the user’s higher-order social friend influence SFup is obtained.

SFup =
∑ v∈SFu Suv · Rvp

∑ v∈SFu Suv
(22)

Suv = w · exp(−‖mu −mv‖2

σ2 ) + (1− w) · |Nu ∩ Nv|
|Nu ∪ Nv|

(23)

where SFu represents the set of direct friends of user u, Suv represents the similarity between
user u and friend v, and Rvp represents the check-in frequency of friend v at POI p. w is the
weight coefficient, σ is the scale parameter, and Nu and Nv represent the check-in sets of
user u and friend v respectively.

The definition of community neighbor influence NFup is similar to Equation (22). The
community neighbor set selects the top n neighbors closest to the user. The similarity
calculation between the user and the community neighbors is shown in Equation (24).

Nuv =
|Nu ∩ Nv|
|Nu ∪ Nv|

(24)

In summary, the user’s social influence Fup is obtained, as shown below.

Fup = η1SFup + η2NFup (25)

η1 =
1

1 + e−(z1
Tf1)

(26)

where η1 and η2 are the correlation weight coefficients of the two social influences, which
have the same form. Taking η1 as an example, f1 represents the user feature vector, and z1
is the weight vector of f1.

3.5. Model Prediction and Optimization

Based on learning the user-POI interaction graph, POI-POI graph, and user–user
graph, the higher-order collaborative embedding vectors of the user and POI are obtained.
The collaborative influence Xup is obtained in the form of dot product of the higher-order
collaborative embedding vectors of the user and POI.

Xup = mu
Tmp (27)

Combine collaborative influence and social influence to obtain the final user preference
prediction rating Yup.

Yup = αXup + βFup (28)

where α and β are the weight coefficients to control the two influences.
To increase the generalization ability and stability of the model, the Bayesian personal-

ized ranking (BPR) loss function is used to optimize the model, as shown in Equation (29).

LBPR = − ∑
(u,p)∈D+

log(σ(Yup))− ∑
(u,q)∈D−

log(σ(−Yuq)) (29)

where the positive and negative sample pairs used by the BPR loss function are consistent
with Lup.

According to the above idea, the objective function L of the PPR_IGCN model training
is obtained, as shown in Equation (30).

L = LBPR + w1Lup + w2Lpq + w3Luv + λ‖Θ‖ (30)
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where w1, w2, and w3 are hyperparameters that control the importance of user-POI relations,
POI-POI relations, and user–user relations. λ is the L2 regularization parameter, which is
used to prevent overfitting. Θ is a trainable parameter.

4. Experiments
4.1. Datasets

In this section, two real-world datasets, Foursquare [34] and Yelp [35], are used to test
the algorithm’s performance. The datasets include users’ ID, POI ID, check-in timestamp,
POI latitude and longitude, social relationships between users, etc. Preprocess the data
in advance to remove users with less than ten check-in POIs and POIs with less than ten
visitors. The specific dataset information is shown in Table 1. It can be seen that the data
are very sparse. In addition, the dataset is divided based on check-in time, with 70% being
the training set, 20% being the testing set, and the remaining 10% being the validation set.

Table 1. Statistics of the experimental datasets.

Dataset Number of
Users

Number of
POIs

Number of
Check-Ins

Number of
Social Links Density

Foursquare 30,887 18,995 860,888 265,533 0.14%
Yelp 2551 13,474 124,933 32,512 0.29%

4.2. Evaluation Metrics

This paper uses three common evaluation metrics: precision rate Precision@K, recall
rate Recall@K, and normalized discounted cumulative gain NDCG@K. Specifically, as
shown in Equations (31)–(33).

Precision@K =
1
|U|

|U|

∑
u

|Ru ∩ Tu|
K

(31)

Recall@K =
1
|U|

|U|

∑
u

|Ru ∩ Tu|
|Ru|

(32)

NDCG@K =
1
|U|

|U|

∑
u

|Ru ∩ Gu|
|Ru|

(33)

|U| denotes the number of users, K denotes the number of POI recommended to
each user, K ∈ {10, 20}, Ru denotes the set of locations that users actually visit in the test
set, Tu denotes the K POI recommended to the user, and Gu denotes the level of K POI
recommended to the user.

4.3. Parameter Settings

After tuning the parameters through cross-validation, set the batch size to 2048, the
negative sampling rate to 300, the learning rate lr = 10−3, the regularization coefficient
λ = 10−4, the weight coefficient w = 0.5, α = 1.1, β = 1, and the hyperparameter w1 = 1,
w2 = 0.01, and w3 = 0.01. The Adam [36] algorithm is used to optimize the model
parameters. The weight coefficients η1 and η2 of the higher-order social friend influence
and community neighbor influence can be learned in the training model. Next, the value of
dimension d of the user and POI embedding vectors and the value of the number n of the
most similar locations/friends/neighbors are discussed. The experimental parameters are
described and shown in Table 2.
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Table 2. Parameters of the experiment.

Parameter Meaning Value

lr Learning rate 10−3

d The dimension of user and POI embedding vectors 192

w Calculate the weight coefficient of similarity between the
users and friends 0.5

α, β
Coefficients that control the weight of collaborative and social

influence when computing user preferences 1.1, 1

n The number of the most similar locations/friends/neighbors 10

w1, w2, w3
Hyperparameters that control the importance of user-POI

relation, POI-POI relation, and user–user relation 1, 0.01, 0.01

λ L2 regularization parameter 10−4

(1) Determination of user and POI embedding vector dimension d

Figure 4 shows the impact of different d values on the PPR_IGCN model on the
Foursquare and Yelp datasets. When d < 192, the evaluation metric shows a gradual
upward trend as d increases. When d = 192, the recommendation performance reaches its
best. When d > 192, the recommendation performance deteriorates. The main reason is that
smaller d cannot capture potential features in the data well, which will lead to information
loss. A larger d may introduce too much noise and redundant information, leading to the
overfitting of the model. So set the user and POI embedding vector dimensions to d = 192.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

  

(a) (b) 

Figure 4. The impact of d on performance. (a) Foursquare; (b) Yelp. 

(2) Determination of the number n  of the most similar locations/friends/neighbors 

Figure 5 shows that as the n  value increases, the evaluation metrics display a trend 

of rising first and then falling. When n is 5, the performance is poor due to insufficient 

utilization of POI-POI and user–user relationships, ignoring a part of useful interaction 

influences, making it difficult to capture real user preferences. When n   is too large, 

some less similar relationships may be introduced in the learning process, making the 

accuracy of the recommendation decrease. Therefore, set n  to 10. 

  

(a) (b) 

Figure 5. The impact of n  on performance. (a) Foursquare; (b) Yelp. 

4.4. Compared Experiment 

To verify the effectiveness of the method proposed in this paper, the following meth-

ods are selected for comparison: 

(1) LightGCN [28]: This model removes unnecessary feature transformation and nonlin-

ear activation in traditional GCNs, simplifying the design of neighborhood aggrega-

tion in GCN; 

(2) FGRec [34]: A fine-grained POI recommendation framework is proposed; a group 

friend model is designed to capture social influence; a joint Poisson factor model is 

used to learn category influence; and the personalized Gaussian kernel model is used 

to capture geographic information influence; 

(3) LGLMF [37]: A method for implementing POI recommendations by integrating the 

local geographic model into the logistic MF algorithm; 

(4) FGCRec [38]: A unified probability distribution model based on four key geographic 

features that captures geographic influence from the perspectives of users and loca-

tions and explores the contribution of check-in frequency; 

Figure 4. The impact of d on performance. (a) Foursquare; (b) Yelp.

(2) Determination of the number n of the most similar locations/friends/neighbors

Figure 5 shows that as the n value increases, the evaluation metrics display a trend
of rising first and then falling. When n is 5, the performance is poor due to insufficient
utilization of POI-POI and user–user relationships, ignoring a part of useful interaction
influences, making it difficult to capture real user preferences. When n is too large, some
less similar relationships may be introduced in the learning process, making the accuracy
of the recommendation decrease. Therefore, set n to 10.
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4.4. Compared Experiment

To verify the effectiveness of the method proposed in this paper, the following methods
are selected for comparison:

(1) LightGCN [28]: This model removes unnecessary feature transformation and nonlin-
ear activation in traditional GCNs, simplifying the design of neighborhood aggrega-
tion in GCN;

(2) FGRec [34]: A fine-grained POI recommendation framework is proposed; a group
friend model is designed to capture social influence; a joint Poisson factor model is
used to learn category influence; and the personalized Gaussian kernel model is used
to capture geographic information influence;

(3) LGLMF [37]: A method for implementing POI recommendations by integrating the
local geographic model into the logistic MF algorithm;

(4) FGCRec [38]: A unified probability distribution model based on four key geographic
features that captures geographic influence from the perspectives of users and loca-
tions and explores the contribution of check-in frequency;

(5) SUCP [39]: A social user activity center POI recommendation system, which jointly
models the user activity center and social relationships based on CF.

4.5. Performance Comparison and Analysis

This section compares the proposed PPR_IGCN model with the five models in
Section 4.4 on the Foursquare and Yelp datasets through the three evaluation metrics
described in Section 4.2. Figures 6–8 show that PPR_IGCN performs better than the other
five models, proving the positive impact of introducing POI-POI relations and user–user
relations into the improved GCN on recommendation performance.

The results show that the recommendation effects of LGLMF and FGCRec are inferior
to other models because these models only consider geography influence and do not con-
sider rich context influence. FGRec introduces the inherent influence of social, category,
and geographic information on users into the model, which can more accurately capture
users’ preferences. Similarly, SUCP takes into account the influence of social, geographical,
and temporal information, and the performance of the model is also improved. Taking
the Foursquare dataset, for example, the Recall@20 of FGRec and SUCP have increased by
83.7% and 98.8%, respectively, compared with LGLMF, indicating that rich context infor-
mation and multiple relationships can significantly affect model performance. However,
the recommendation effect of PPR_IGCN is better than SUCP. Taking the Yelp dataset,
for example, the Recall@10 of PPR_IGCN is 16.9% higher than SUCP. These show that
mining higher-order collaborative information in the user–user relationship graph while
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considering the influence of multiple social relationships on users is more conducive to
learning social influence.
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LightGCN shows better performance than SUCP, which indicates that traditional
methods, such as MF based on CF, cannot learn the deep influence of user-POI interaction
information, which reflects the important role of using GCN to mine higher-order collabo-
rative information in graphs. In addition, during the training process of the Yelp dataset,
LightGCN needs more than 300 epochs to achieve the best results, but PPR_IGCN only
needs more than 30 epochs. The main reason is that the message passing and multiple
stacked embedding propagation layers in GCN are omitted, which fully reflects the ad-
vantages of learning the improved GCN on large graphs. For the Foursquare and Yelp
datasets, PPR_IGCN compared with LightGCN, Precision@10 increased by 12.1% and
11.3%, respectively, Recall@10 increased by 15.8% and 19.6%, respectively, and NDCG@10
increased by 12.2% and 20%, respectively. The reason is that PPR_IGCN not only takes into
account the higher-order collaborative information in the user-POI interaction graph but
also captures the collaborative influence and social influence in the POI-POI graph and
user-POI graph. As a result, model performance is improved, providing users with more
accurate recommendations.

4.6. Ablation Study

To evaluate the impact of POI-POI relations and user–user relations on the model,
this section compares the experimental results of two variants of PPR_IGCN, which are
PPR_IGCN-I and PPR_IGCN-II, respectively. PPR_IGCN-I only learns from the user-POI
relationship graph, i.e., w2 and w3 of Equation (30) are set to 0, respectively. PPR_IGCN-II
learns from the user-POI relationship graph and POI-POI relationship graph, i.e., w3 of
Equation (30) is set to 0.

Figures 9 and 10 show that the model performance is improving continuously with
the increase in learning relationships. The experimental results of PPR_IGCN-II and
PPR_IGCN-I verify the effectiveness of learning POI-POI relations. The experimental
results of PPR_IGCN-II and PPR_IGCN show the positive effect of social influence on POI
recommendations. In the process of learning social influence, mining the higher-order
collaborative influence between the user and friends and comprehensively considering the
user’s higher-order social friends and community neighbors in the model can alleviate the
data sparsity, thus improving POI recommendation performance.
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5. Conclusions

This paper proposes a personalized POI recommendation using an improved GCN
model. This model comprehensively considers the higher-order collaborative influence of
users and POIs and the social influence between users, which alleviates the problems of data
sparsity and poor recommendation performance. The message-passing process in GCN is
simplified, i.e., the constraint loss is directly used to reach the convergence state of infinite
layer embedding propagation. The improved GCN is used to deeply mine the collaborative
influence of the user-POI interaction graph, POI-POI graph, and user–user graph to learn
the higher-order collaborative embedding vectors of the user and POI. The model also
captures the social influence of higher-order social friends and community neighbors on
the user. The experimental results prove that the recommendation effect of the PPR_IGCN
model is superior to other models. In addition to the three types of relationships and social
factors considered in this paper, factors such as POI category and time can also have an
impact on users’ preferences. In future work, more context information will be effectively
integrated into the model to further improve POI recommendation performance.
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