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Abstract: Example-based image relighting aims to relight an input image to follow the lighting
settings of another target example image. Deep learning-based methods for such tasks have become
highly popular. However, they are often limited by the geometric priors or suffer from shadow
reconstruction and lack of texture details. In this paper, we propose an image-to-image translation
network called DGATRN to tackle this problem by enhancing feature extraction and unveiling context
information to achieve visually plausible example-based image relighting. Specifically, the proposed
DGATRN consists of a scene extraction, a shadow calibration, and a rendering network, and our
key contribution lies in the first two networks. We propose an up- and downsampling approach to
improve the feature extraction capability to capture scene and texture details better. We also introduce
a feature attention downsampling block and a knowledge transfer to utilize the attention impact
and underlying knowledge connection between scene and shadow. Experiments were conducted to
evaluate the usefulness and effectiveness of the proposed method.

Keywords: image relighting; upsampling and downsampling; attention; knowledge transfer; neural
network

1. Introduction

Example-based image relighting is an important topic in computer vision and graphics.
It renders the scene of the input image under new lighting conditions of a given example
target image to generate an output. Image relighting has several practical applications and
can significantly impact various fields, such as Virtual Reality (VR), Augmented Reality
(AR), product visualization, forensics and surveillance, and art restoration and conservation.
Specifically, it can create more realistic and immersive environments by adapting virtual
lighting to match real-world lighting conditions, enhancing the sense of presence and
realism in virtual experiences. In product visualization, image relighting can be applied
to product images on e-commerce websites, allowing customers to view products under
different lighting conditions and assess their appearance accurately. Furthermore, in the
fields of forensics and surveillance, image relighting can enhance security camera footage
by adjusting lighting conditions, making it easier to identify suspects or details in low-light
or overexposed situations.

In general, scene information is essential for relighting tasks. The conventional relight-
ing methods usually obtain scene information through 3D scene reconstruction. However,
this information obtaining process [1] is not easy; it often requires tedious efforts, high
computational costs and special acquisition equipment to obtain geometry details, surface
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properties, and lighting conditions. Recently, deep learning [2] technology has proven
to be successful for a variety of computer vision and graphics tasks, such as neural ren-
dering [3], inverse rendering [4], and scene reconstruction [5]. Introducing deep learning
technology to image relighting can reduce the 3D reconstruction efforts while achieving
visually pleasing results. The common approaches are leveraging geometric priors and
image-to-image translation.

By leveraging scene information such as architectural, geometric, depth, and facial
priors, convincing relighting effects under multiple views can be achieved. These methods
largely rely on those scene priors and lack the capability of generalization; that is, they are
limited by the priors and are mainly suitable for the respective specific building, object,
scene, or face scenarios.

Image-to-image translation relighting technology aims to establish an end-to-end
rendering process and minimize the dependency on unnecessary scene information that
achieves image relighting effects by learning a mapping between the input and output.
However, it is still challenging to generate visually appealing results, especially for texture
details and shadows. This is mainly because the real-world lighting conditions are more
complex and fine, so it is difficult to effectively remove shadows and reconstruct texture de-
tails from the original image, which leads to the degrading of realism. The image-to-image
translation methods mainly focus on the end image generation. The scene information,
especially the features and embedded context information of the features, may not be
adequately extracted and used. Moreover, the scene and its shadow information are closely
allied; however, the underlying knowledge connection between them is underutilized.

In this paper, we propose an image-to-image translation network called DGATRN for
image relighting. The proposed DGATRN consists of a scene feature extraction, a shadow
calibration, and a rendering network; it has the following features:

1. In order to improve the feature extraction capability, we propose new up- and down-
sampling blocks for a back-projection-based network by integrating dense and global
residual blocks for scene and shadow features, respectively.

2. In order to better reconstruct shadows and preserve texture details, we propose a
context-aware approach by utilizing spatial information of features and underlying
knowledge connection. We introduce a feature attention downsampling module that
combines channel attention and spatial attention, as well as introduce a knowledge
transfer from the scene extraction to the shadow calibration based on L1 Loss.

3. The proposed techniques are integrated as DGATRN. We evaluate it on the represen-
tative datasets VIDIT to showcase that DGATRN can achieve convincing results.

2. Related Work
2.1. Reconstruction-Based Image Relighting

Image relighting approaches often focused on the reconstruction of the scene or the
physical aspects of the problem [1,6,7], neural rendering [3], neural inverse rendering [4],
and scene reconstruction [5,8]. While these methods create physically realistic models for
relighting, they frequently rely on explicit geometry, illumination parameters, or multiview
datasets, which may impede their performance.

2.2. Image-to-Image Deep Learning Image Relighting

Isola et al. [2] achieved significant success in many different types of image-to-image
transformation tasks using the Pix2Pix method, which uses a U-Net type network structure.
Wei et al. [9] studied Retinex-Net, which is based on the Retinex theory for low-light
images. It first decomposes the low-light image into reflectance and illumination elements
and then adjusts sub-networks to refine the illumination to light up the input image.
Xu et al. [10] used a U-Net network to approximate the light transmission function in the
image, thereby achieving the relighting process. Their relighting method can achieve good
results with only five reference images, but it is still a relighting method for a specific
scene. Wang et al. [11] proposed a scene relighting method called DRN based on the VIDIT
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datasets [12]. This method consists of three sub-networks that complete the tasks of scene
reconstruction, shadow prior estimation, and re-rendering. Both the scene reconstruction
and shadow estimation sub-networks use a structure similar to the U-Net network. Based
on DRN, Wang et al. [13] proposed MCN, which used a new downsampling feature self-
calibration block (DFSB) and upsampling feature self-calibration block (UFSB) as the basic
module units for the feature encoder and decoder in the scene reconstruction and shadow
estimation tasks. In addition, Yang et al. [14] proposed S3Net, a single-stream network
architecture that uses a depth map to guide the relighting task using attention modules
and enhancement modules.

Recent results such as [15,16] can achieve convincing image relighting results; however,
preserving texture and shadow details is still challenging. Some feature details and context
information are underutilized; these can be helpful in improving the relighting results. Our
proposed DGATRN considers feature extraction and feature space information on the basis
of the methods DRN [11], MCN [13], and S3Net [14].

3. Overview

For input image X under lighting condition, LΦ, we would like to generate relit
output image Y under the target lighting condition LΨ. Inspired by [11,13], according
to Retinex theory, the intrinsic scene information (S) would not change under different
lighting conditions. Thus the relighting problem can be formulated based on image-to-
image translation:

Y = R(L−1
Φ (X), LΦ→Ψ(X)), (1)

where L−1
Φ (X) is the scene S, and it represents the scene extraction operation. LΦ→Ψ(X)

represents the lighting condition transferring operation that migrates lighting condition LΦ
to LΨ. This is approximated by the shadow calibration network in DGATRN. R represents
the rendering operation using the extracted scene and the new lighting condition to generate
the final output. That is, DGATRN consists of three operations: scene extraction, shadow
calibration, and rendering networks (Figure 1). The detailed structures of the networks are
as shown in Figure 2:

1. The scene structure extraction network is a GAN network. The generator consists of a
7× 7 convolutional layer combined with a feature attention downsampling module
(Section 5.1), four upsampling blocks, a residual block, four downsampling blocks,
and a 3× 3 convolutional layer. The up- and downsampling blocks will be discussed
in Section 4. The scene extraction network also uses skip connections to fuse the
feature information of the first, second, third, and fourth upsampling blocks together,
and to fuse the feature information outputs by the 7× 7 and 3× 3 convolutional layers.
The discriminator structure is the same as PatchGAN [17].

2. The shadow calibration network is similar to the scene extraction network. The main
differences are that (1) it removes skip connections, which helps the shadow calibration
network focus on global lighting effects; (2) the loss functions and discriminators are
different (discussed later); and (3) it accepts the knowledge transferred from the scene
structure extraction network (Section 5.2).

3. The rendering synthesis network uses a multiscale perception structure. First, the in-
put information of the rendering synthesis network is inputted into convolutional
layers with different kernel sizes N × N (N = 2i + 1, i ∈ [1, 12]) to extract feature
information of different scales. Large feature scales help to obtain global lighting
information about the scene, and small feature scales help to obtain local texture
information about the scene. The feature information of different scales is fused
together, and then the fused feature information is processed by average pooling,
fully connected layers, and activation layers. This part mainly learns the weights of
different channels of the features. The obtained weights and fused feature information
are multiplied and added element-wise and processed by convolutional layers to
output the relit image.
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Figure 1. Three module structure of DGATRN. The input image is fed into the scene extraction
network and the shadow calibration network separately, resulting in output results. After combining
the outputs of these two networks, they are input into the rendering and compositing network to
obtain the final relit image.

Figure 2. The overall structure of DGATRN. The scene extraction network (top) is trained first and is
followed by the shadow estimation network (middle) with the same input. Their outputs, the ex-
tracted scene, and calibrated shadow images are used as the input for the rendering network (bottom).
The shadow estimation and rendering networks use the same ‘target lighting’ image, which is the
given example for lighting the target image. Its shadows are removed for use as the target image
(‘target scene’) for the scene extraction network.

Note that the scene extraction network is trained first and is followed by the shadow es-
timation network. Their results are used for training the rendering network. As mentioned
in Section 5.2, in order to let the shadows be aware of the contextual information from the
scene, the knowledge of the scene extraction network is transferred to the intermediate
feature map of the shadow calibration network through an L1 norm loss function.

Loss Functions

For the scene structure extraction network, there is no explicit geometric prior infor-
mation in the datasets. Thus, we adopt the exposure fusion method [18] as in DRN [11] to
obtain the no-shadow image of the input, as the target image, namely YnoShadow. The loss
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function for generating a no-shadow image (G) is based on the L1 norm and minimization
of the sum of the per-pixel absolute difference.

LG(X, YnoShadow)
= E(‖YnoShadow − G(X)‖)
= ∑N

i=1 | Yi
noShadow − G(Xi) |,

(2)

where Xi, i = 1, . . . , N represents the ith of pixel in X (N pixels in total). The adversarial
loss function with generator D and discriminator G is

minGmaxDLAdv(G, D)

= ∑N
i=1 logD(Yi

noShadow)

+∑N
i=1 log(1− D(G(Xi))).

(3)

It is combined with LG as the loss function for the scene extraction network:

Lscene = γLG(X, YnoShadow)
+(1− γ)minGmaxDLAdv(G, D),

(4)

where γ is the weight to balance the two losses. In this shadow calibration network, the loss
function will incorporate another loss with a shadow discriminator:

Lshadow = γ1LG(X, Y)
+γ2minGmaxDLAdv(G, D)
+γ3minGmaxD′LAdv(G, D′),

(5)

where D′ is the shadow discriminator with the focus on low-intensity regions. It is realized
by applying low-pass filtering on the generated pixel intensity x, using min(α, x), where
α is a shadow sensitivity threshold (0.059 in our experiments). Similarly, γ1, γ2, and γ3
are weights to balance the losses and they sum to one. The loss function of the rendering
network combines the L1 norm loss and perceptual loss using the features using the
pre-trained VGG-19 network f eat:

Lrender = γr(‖Y−Y′‖)
+(1− γr)(‖ f eat(Y)− f eat(Y′)‖), (6)

where Y is the final target, Y′ is the output from the render network, and γr balances
the losses.

4. Feature Extraction Improvement

The up- and downsampling blocks use a sequence of encoding/decoding operations
for input and latent information mapping. We adopt a similar up- and downsampling back
projection structure as MSN. In DGATRN (Figure 2), the scene extraction aims to capture
more scene details. Thus, we incorporate dense residual block (DR_Block) to facilitate
better extraction of scene feature details. On the other hand, shadow calibration requires
paying more attention to the influence of the overall scene on the shadow features. Thus,
we introduce global residual block (GR_Block), which helps to better capture the holistic
scene information to improve shadow feature extraction. We also improve its performance
by using LeakyReLu in place of ReLu (with α as 0.01). This adjustment enhances the feature
learning ability.

4.1. Dense Residual Block and Global Residual Block

DR_Block is inspired by DenseNet [19] as shown in Figure 3. Each layer (to compute
features Xn) connects to the previous n− 1 layers and incorporates their results. The com-
puted Xn is then added with weight λDR element-wise to the input features X to obtain
the output features Y. It enables the network to effectively propagate and retain features.
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In this paper, we use a sequence of 3× 3 convolutional layers with a stride of 2, λDR (the
weight of Xn) is set as 0.1, and n is set to 2 due to its frequent usage.

GR_Block is inspired by OIDDR-Net [20]. As shown in Figure 4, it uses a multiscale
feature extraction method to guide the network to optimize the feature map while main-
taining the correspondence between the image and the input features. First, the input X
is connected to a 3× 3 convolutional layer with a stride of 2 to extract features, then a
pooling layer is applied for dimension reduction from (n, c, h, w) to (n, c). The output is
then added to a fully connected layer to further extract features. Next, they are upsampled
from (n, c) to (n, c, 1, 1), and the obtained features are multiplied by the input features X.
The resulting output is then inputted to a 3× 3 convolutional layer with a stride of 2 and
added element-wise (with weights λGR = 0.1) with the input feature X to obtain the output
feature Y of the GR_Block.

Figure 3. The structure of DR_Block.

Figure 4. The structure of GR_Block.

4.2. Up- and Downsampling Blocks

We use the downsampling block of the scene extraction network as an example to
present our method (shown at the top of Figure 5). The downsampling block first passes
the input features into a 3× 3 convolutional layer with a stride of 2, mapping them to a
smaller scale as Fsmall . Then, the Fsmall is inputted into a 4× 4 transpose convolutional layer
with a stride of 2 and mapped back to the input scale space Fnormal . Meanwhile, another
branch generates calibration weight w1 by passing the input features through a DB_Block
and a LeakyReLU function. w1 calibrates Fnormal by element-wise multiplication as the
calibrated features Fw1

normal . They are then remapped to the small-scale space by a second
3× 3 convolutional layer with a stride of 2, obtaining the feature Fw1

small . Fsmall will be also
put into a branch that includes a DB_Block to obtain calibration weight w2. The calibrated
weights w1 and w2 are applied and added to obtain the output features Fout, which are
half-sized features. This can be represented as follows:

Fout = Conv2
3(w1DeConv4(Conv1

3(F))) + w2, (7)

where Con1
3 and Con2

3 represent two different 3× 3 convolutional layers, DeCon4represents
a 4× 4 transpose convolutional layer, and the w1 and w2 are the new calibration weights.
They can be defined as

w1 = LeakyReLu(DR_Block(F))
w2 = DR_Block(Conv1

3(F)).
(8)
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Likewise, the upsampling block of the scene extraction network (shown at the bottom of
Figure 5) with the output features Fout double-sized is defined as follows:

Fout = DeConv2
4(w1Conv3(DeConv1

4(F))) + w2. (9)

The scene extraction network focuses more on the detailed information of features, while
the shadow calibration network needs to consider the overall impact of global lighting,
so it pays more attention to the global information of features. Thus GR_Block learns
global information and calculates calibration weights in the shadow calibration network.
As shown in Figure 5, the up- and downsampling structure in the shadow calibration net-
work follows the same network structure as in the scene extraction network. The difference
lies in the calculation of the two calibration weights; in Equation (8), DR_Block is replaced
with GR_Block.

Figure 5. The down- (top) and upsampling (bottom) blocks for the scene extraction network.
The shadow calibration network uses a similar structure with DR_Block replaced by GR_Block.

5. Attention and Knowledge Transfer
5.1. Feature Attention Downsampling

To consider the importance of the spatial information associated with the features,
inspired by S3Net [14], we introduce the feature attention downsampling module (FADM)
as the attention emphasizes the contextual information. As shown in Figure 6, the FADM
combines a channel attention block (CA) and a pixel attention block (PA) to form a network
module [21].

This is introduced to both the scene extraction and shadow calibration networks.
The scene information needs to be preserved; moreover, the shadow calibration network
needs to change the color temperature and lighting direction of the image while preserving
the inherent scene information of the image.

FADM is added before the downsampling block. Since the output feature resolution
of the network’s shallow layers is higher, it contains more detail and positional information
and is closer to the input image [22]. The addition of attention in DGATRN is shown in
Figure 2. We also conducted an ablation study to verify this, which is referred to in the
next Section.

5.2. Knowledge Transfer

Shadows are closely correlated to the scene information. Therefore, it is beneficial to
transfer and fuse the knowledge of the scene extraction network and the shadow correction
network. Conceptually, we would like to let the shadows be aware of the contextual
information from the scene. This paper refers to the design ideas of KTDN [12].

When training the shadow calibration network, the knowledge of the scene extraction
network is transferred to the intermediate feature map of the shadow calibration network
through an L1 norm loss function, in order to help the shadow correction network utilize
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the prior knowledge of the trained scene extraction network to help to reconstruct shadows
under the target lighting conditions.

Figure 6. Feature attention down sampling.

Our experiments demonstrated that by using the knowledge transfer method, tex-
ture details can be better preserved and be more realistic in the reconstructed image.
The L1 norm loss function minimizes the sum of the absolute pixel-wise differences be-
tween the intermediate layer features of the scene extraction network and the shadow
estimation network:

LKT(Xmid−scene, Xmid−shadow)

= ∑N
i=1 | Xmid−scene − Xmid−shadow | .

(10)

6. Experiments

Experiments were conducted to train the three sub-networks in DGATRN: the scene
extraction network, the shadow calibration network, and the rendering synthesis network.
First, the scene extraction network was trained using the designed loss function and
paired input images and target images without shadows. Next, the shadow calibration
network was trained using paired input images and target images. Finally, with the scene
extraction network and shadow calibration network fixed and their discriminators and the
last convolutional layer removed, the rendering network was trained using the designed
loss function. During training, all image sizes were resized from 1024× 1024 to 512× 512,
and the mini-batch size was set to 6. The Adam optimizer was used to adjust the network
parameters, with a momentum of 0.5 and a learning rate of 0.0001. Each network was
trained for 20 epochs. All experiments were conducted using the PyTorch deep learning
training framework on a workstation with three NVIDIA GTX3060Ti GPUs. The VIDIT
datasets [23] were used for training and testing, and the evaluation metrics used were
PSNR, SSIM, LPIPS, and MPS.

6.1. Comparison

We compare the results using our method DGATRN with these representative methods:
U-Net [24], Pix2Pix [2], Retinex-Net [9], DRN [11], MCN [13], and S3Net [14]. We also
include the results of the method by taking away the attention and transfer modules from
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DGATRN, namely DGRN, as well as results from the baseline method with attention added
to the residual sampling blocks, namely BP + AD.

The results (Table 1) demonstrate that by using the proposed method to leverage the
detailed and global information, the image relighting results can be improved.

Table 1. Comparison based on VIDIT datasets [23].

Method PSNR (↑) SSIM (↑) LPIPS (↓) MPS (↑)

U-Net [24] 13.06 0.561 0.307 0.627
Pix2Pix [2] 16.27 0.621 0.274 0.678
Retinex-Net [9] 12.28 0.162 0.657 0.253
DRN [11] 16.08 0.633 0.283 0.675
MCN [13] 16.19 0.641 0.280 0.680
S3Net [14] 16.56 0.621 0.282 0.669

DGRN 16.38 0.649 0.273 0.688
DGATRN 16.70 0.660 0.260 0.700

Figure 7 shows the evaluation results of our proposed method, DGATRN, and other
comparative methods on a test set of 800 images. This graph provides a visual representa-
tion of the performance of different methods in terms of evaluation metrics across the entire
test set. As shown in Figure 7, our method, DGATRN, outperforms other comparative
methods comprehensively in terms of PSNR, SSIM, LPIPS, and MPS on the entire test set of
800 images. Performance-wise, our method is similar as MCN [13], since both are founded
on the same basis.

In terms of visual quality, as shown in Figure 8, comparing to the representative
methods DRN, MCN, and S3Net, we observed that all methods can relight the scene;
however, our method can better preserve the details of the scene and shadow, such the
rock, shadow, and terrain details. Such details are relatively fine details and the subtle
shadows (occlusion) help to depict such bumpy surface details. As our method explicitly
addresses feature details as well as the connection between the scene and shadow, thus it
can preserve these details better.

We also tested our method in the AIM track1 challenge [25], as shown in Figure 9,
the target images are unfortunately not available. We observed that all methods, in general,
can achieve similar relighting results with some artifacts, especially for the regions that
are very dark, as these features are challenging to capture and recover. Compared to other
methods, some details including the fire, shadow, and hole can be better preserved using
our method.

6.2. Ablation Study

We also conducted an ablation study for both the scene extraction (Table 2) and shadow
calibration (Table 3) to demonstrate the usefulness of each component of our method.

BP is the baseline, AD, AUD, AU, and ARes indicate that the attention is added
to the down- (AD), down-/up- (AUD), up- (AU), and residual sampling (ARes) blocks,
respectively. DG indicates adding DR_Block and GR_Block for improving feature extraction.
DGRN means only the improved feature extraction part is included but the attention and
knowledge transfer parts are taken away. Based on this study, we found that adding
DR_Block and GR_Block leads to an enhancement in the results.

We observed that adding knowledge transfer (+K) can also enhance the results. More-
over, it is optimal to add the attention FADM to the downsampling part, such that we can
make full use of the semantic and detailed information on the shallow features as much as
possible, whereas adding attention to other parts may degrade the overall performance as
this may cause undesired conflicts.
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Figure 7. Comparison with other representative methods on the test set of 800 images. The horizontal
axis of the graph represents the sequence number of the 800 test images, while the vertical axis
represents the values of the evaluation metrics.

Figure 8. Comparison with other representative methods. The details can be better preserved as
shown in the regions highlighted using the green boxes. Comparing the proposed methods DGRN
and DGATRN (labeled as ‘Ours’), DGATRN performs slightly better.
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Figure 9. Comparison with other representative methods on the AIM track1 challenge [25]; note that
the target example image is not available. As shown in the regions highlighted in green, some key
details such as the fire, shadow, and hole might not be well preserved. The proposed methods DGRN
and DGATRN (labeled as ‘Ours’) achieve similar results.

Table 2. Ablation study for scene extraction network.

Method PSNR (↑) SSIM (↑) LPIPS (↓) MPS (↑)

BP 18.81 0.638 0.256 0.691
BP + AD 18.93 0.655 0.255 0.700
BP + DG(DGRN) 19.38 0.668 0.245 0.712
DGRN + AUD 18.42 0.607 0.288 0.659
DGRN + AU 19.33 0.675 0.248 0.714
DGRN + ARes 19.32 0.660 0.260 0.700

DGRN + AD 19.57 0.681 0.243 0.720

Table 3. Ablation study for shadow calibration network.

Method PSNR (↑) SSIM (↑) LPIPS (↓) MPS (↑)

BP 15.24 0.475 0.463 0.506
BP + K 15.60 0.510 0.438 0.536
BP + AD 15.70 0.504 0.448 0.528
BP + AD + K 15.74 0.525 0.431 0.547
DGRN 15.76 0.521 0.429 0.546
DGRN + AUD 15.68 0.499 0.458 0.520
DGRN + AU 15.76 0.521 0.429 0.546
DGRN + ARes 15.78 0.523 0.415 0.554
DGRN + AD 15.76 0.537 0.413 0.562

DGRN + AD + K 15.66 0.539 0.406 0.566
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6.3. Limitations

As previously noted, our technique might exhibit the same artifacts as other methods,
particularly in extremely dark regions where features are difficult to capture and restore.
Utilizing prior information could aid in minimizing these artifacts.

We also noted that when there is a significant difference in the lighting directions
between the input and output images both our method in this paper and existing methods
experience a decrease in effectiveness. In future work, we consider predicting depth
maps to further extract scene information and optimize the training datasets to enhance
the results.

7. Conclusions

This paper presents a method for the problem of attaining visually realistic image
relighting by introducing an image-to-image translation network called DGATRN. The pro-
posed method focuses on enhancing feature extraction and utilizing context information.
DGATRN integrates a sequence of methods including the up- and downsampling approach
for improved feature extraction and the feature attention downsampling block and knowl-
edge transfer for better utilization of the attention impact and scene–shadow correlation.
Experiments were conducted to evaluate the proposed method and demonstrate that
DGATRN can achieve convincing results.

In the future, we plan to generate our method for more computer vision and graphics
tasks such as correction of overexposed images, texture synthesis, and scene reconstruc-
tion. We would also like to improve our method for dark scenes by considering the
prior information.
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