
Citation: Popa, S.; Ivanovici, M.;

Coliban, R.-M. Optimal

Implementations of 8b/10b Encoders

and Decoders for AMD FPGAs.

Electronics 2024, 13, 1062. https://

doi.org/10.3390/electronics13061062

Academic Editors: Francis Balestra

and Gerard Ghibaudo

Received: 16 February 2024

Revised: 8 March 2024

Accepted: 10 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Optimal Implementations of 8b/10b Encoders and Decoders for
AMD FPGAs
Stefan Popa * , Mihai Ivanovici and Radu-Mihai Coliban

Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania
University of Brasov, B-dul Eroilor nr. 29, 500036 Brasov, Romania; mihai.ivanovici@unitbv.ro (M.I.);
coliban.radu@unitbv.ro (R.-M.C.)
* Correspondence: stefan.popa@unitbv.ro

Abstract: The 8b/10b IBM encoding scheme is used in a plethora of communication technologies,
including USB, Gigabit Ethernet, and Serial ATA. We propose two primitive-based structural designs
of an 8b/10b encoder and two of an 8b/10b decoder, all targeted at modern AMD FPGA architectures.
Our aim is to reduce the amount of resources used for the implementations. We compare our
designs with implementations resulting from behavioral models as well as with state-of-the-art
solutions from the literature. The implementation results show that our solutions provide the lowest
resource utilization with comparable maximum operating frequency and power consumption. The
proposed structural designs are suitable for resource-constrained data communication protocol
implementations that employ the IBM 8b/10b encoding scheme. This paper is an extended version
of our paper published at the 2022 International Symposium on Electronics and Telecommunications
(ISETC), Timisoara, Romania, 10–11 November 2022.

Keywords: 8b/10b encoding; encoder; decoder; FPGA; LUT; BRAM; SRAM; serial links

1. Introduction

Field-Programmable Gate Arrays (FPGAs) are integrated circuits that can be config-
ured after manufacturing. The logic functions that are used for configuration are typically
obtained through synthesis from a user-provided behavioral description of the design in
the form of RTL (Register Transfer Level) code written using an HDL (Hardware Descrip-
tion Language). Additional inputs to the synthesis tool include libraries describing the
resources on the target device, a list of constraints that the design must conform to, and a
list of arguments defining the synthesis strategy. The result of the synthesis process is a
netlist, i.e., a structural description of the design in the form of interconnected primitive
blocks. The efficiency of the resulting netlist depends strongly on the RTL description and
the additional inputs, as well as on the synthesis tool. If the result is not satisfactory, the
RTL description and the inputs must be changed accordingly. For greater control over
the results, the user can directly instantiate primitive blocks in the HDL code to provide a
structural description of the entire design or a part of it, making it more efficient, with the
drawbacks of increased complexity of the design process and reduced portability.

The basic resource used for the implementation of user-defined logic in FPGAs de-
veloped by AMD is the Configurable Logic Block (CLB) [1]. A CLB consists of slices,
with each slice containing several Look-Up Tables (LUTs), multiplexers, storage elements,
and carry logic for arithmetic functions. All the CLBs in the FPGA are interconnected
through configurable routing resources. LUTs are used as Boolean function generators,
the implementation of the functions being based on the corresponding truth tables. On all
FPGAs developed by AMD since Virtex-5 except for the latest Versal Adaptive Compute
Acceleration Platform (ACAP) [2], each LUT has six inputs and two outputs and can be
used to implement either a Boolean function of six variables, two Boolean functions of the
same five variables, or two Boolean functions of three and two or fewer separate variables.

Electronics 2024, 13, 1062. https://doi.org/10.3390/electronics13061062 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061062
https://doi.org/10.3390/electronics13061062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9275-4536
https://orcid.org/0000-0002-0803-2918
https://orcid.org/0000-0002-8182-3230
https://doi.org/10.3390/electronics13061062
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061062?type=check_update&version=1

Electronics 2024, 13, 1062 2 of 28

The AMD Versal ACAP integrates software-programmable processors and accelerator
engines with a new FPGA fabric. Each Versal LUT has four outputs and can additionally
implement two Boolean functions of the same six variables [3]. Other embedded resources
available on AMD FPGAs are Blocks of Static RAM (BRAM), arithmetic logic units, and
transceivers. In [4], a comparison of modern FPGA LUT characteristics from the three
leading producers (including AMD) is presented.

8b/10b is a line code proposed by Widmar and Franaszek in [5]. The code defines
a mapping between an eight-bit data word and a ten-bit symbol, with the objectives of
achieving Direct Current (DC) balance, a running disparity (RD) between -2 and 2 and
frequent transitions for clock recovery, while providing special symbols for synchroniza-
tion and custom control functions. A communication channel that employs 8b/10b is
implemented using an encoder–decoder pair, with the former being a component in the
transmitter and the latter a part of the receiver. A multitude of 8b/10b encoding schemes
have been proposed [6,7]. In this paper, we focus on the IBM 8b/10b code [5], which is
used in a wide variety of communication standards such as Aurora [8], Gigabit Ethernet [9],
Serial ATA [10], and USB [11].

We propose two implementations of an 8b/10b encoder and two of an 8b/10b decoder,
all based on structural descriptions targeted at the configurable logic of AMD FPGAs, which
minimize resource utilization without compromising features. We detail the proposed
encoders and decoders and compare them with other solutions from the literature and
equivalent behavioral descriptions in terms of their resource utilization, longest propagation
delays, and power consumption. The proposed encoders and decoders have the lowest
resource utilization while achieving comparable maximum operating frequency and power
draw. The structural models can be used on all AMD FPGAs architectures since Virtex-5,
including Versal ACAP, as they only require six-input LUTs with two outputs or BRAMs
and do not employ architecture-specific carry or multiplexing logic. The designs might be
even more compact on Versal devices due to their more complex LUTs, but are optimal
for pre-Versal architectures. While the per instance gains are relatively small, they can be
significant in large custom designs employing multiple communication channels using
8b/10b encoding, e.g., custom designs for complex physics experiments sich as [12] or
network FPGA-based hardware with a large amount of channels.

Section 2 contains the following three subsections: (i) Section 2.1 explains the rules
of the IBM encoding scheme with examples; (ii) Section 2.2 presents the proposed 8b/10b
encoders; and (iii) Section 2.3 details the proposed 8b/10b decoders. Sections 2.2 and 2.3
employ a similar structure, starting with the module’s block diagram and interface, then
presenting the cascading feature, continuing by explaining the top-view architecture, and
ending with two subsubsections, one detailing the BRAM-based structural module and the
other the LUT-based one. Section 3 presents the simulation and implementation results
in terms of resource utilization, propagation delay, and power consumption, followed
by a comparison them with behavioral models and state-of-the-art solutions. For a fair
comparison, all implementations targeted the AMD Kintex-7 KC705 evaluation board [13]
having the XC7K325T-2FFG900C FPGA device. Section 4 presents a rationale concerning
which codecs are suitable for various applications employing the IBM 8b/10b line code
and includes various observations. Finally, the paper ends with a brief conclusion.

2. Materials and Methods
2.1. The IBM 8b/10b Code

In the IBM 8b/10b encoding scheme, the eight input bits are labeled HGFEDCBA, with
H being the most significant bit (MSB) and A the least significant bit (LSB). The input is
mapped to a symbol consisting of ten bits, labeled abcdeifghj, with a being the LSB and j
being the MSB. The mapping is done using two encoding schemes: (i) 5b/6b, mapping
EDCBA to abcdei; and (ii) 3b/4b, mapping HGF to fghj. Several mapping examples are
detailed in Tables 1 and 2 for the 5b/6b and 3b/4b encoding schemes, respectively. These
are explained in the following paragraphs; for the complete encoding scheme, refer to [5].

Electronics 2024, 13, 1062 3 of 28

Table 1. Several examples of the 5b/6b encoding scheme (0 ≤ y ≤ 7 = 23 − 1).

Input Output abcdei

Notation EDCBA RD = −1 RD = +1

D.0.y 00000 100111 011000
D.1.y 00001 011101 100010
D.3.y 00011 110001
D.7.y 00111 111000 000111

D.23.y or K.23.7 10111 111010 000101
D.27.y or K.27.7 11011 110110 001001

D.28.y 11100 001110
K.28.y 001111 110000

D.29.y or K.29.7 11101 101110 010001
D.30.y or K.30.7 11110 011110 100001

Table 2. Several examples of the 3b/4b encoding scheme (0 ≤ x ≤ 31 = 25 − 1).

Input Output fghj

Notation HGF RD = −1 RD = +1

D.x.0 or K.x.0 000 1011 0100

D.x.1 001 1001
K.28.1 0110 1001

D.x.3 or K.28.3 011 1100 0011

D.x.6 110 0110
K.28.6 1001 0110

D.x.P7
111

1110 0001
D.x.A7 0111 1000K.x.7

There are 256 normal data symbols, labeled in 8b/10b notation as D.x.y with the
meaning from Equation (1). Additionally, there are twelve special control symbols used for
synchronization or other user-defined functions, labeled as K.28.y and K.x.7 and explained
in Equations (2) and (3), respectively. They are detailed in Table 3.

D.x.y = HGFEDCBA, H = MSB, A = LSB,

where x = EDCBA, 0 ≤ x ≤ 31 = 25 − 1

and y = HGF, 0 ≤ y ≤ 7 = 23 − 1

(1)

K.28.y = HGFEDCBA, H = MSB, A = LSB,

where EDCBA = 28 and y = HGF, 0 ≤ y ≤ 7 = 23 − 1
(2)

K.x.7 = HGFEDCBA, H = MSB, A = LSB,

where HGF = 7 and x = EDCBA, x ∈ {23, 27, 29, 30}
(3)

The IBM 8b/10b code is constructed in such a way that there is a maximum of
five consecutive identical bits in the encoded data stream. All normal data symbols and
nine special symbols contain a maximum of four consecutive bits, while the remaining three
special symbols (K.28.1, K.28.5 and K.28.7) contain five consecutive identical bits. These
three symbols, called comma symbols, are used for transmitter-receiver synchronization
and are highlighted in Table 3. The integrated circuit detailed in [14,15] employs K.28.5 in
all its input and output data channels for this purpose.

Electronics 2024, 13, 1062 4 of 28

Table 3. The twelve special control symbols with their 8b/10b notation, input value in decimal and
binary, and the resulting encoded binary values for both possible input disparities. The three comma
symbols having five consecutive bits of the same value are highlighted.

Input Output abcdei fghj

Notation Decimal HGF EDCBA RD = −1 RD = +1

K.28.0 28 000 11100 001111 0100 110000 1011
K.28.1 60 001 11100 001111 1001 110000 0110
K.28.2 92 010 11100 001111 0101 110000 1010
K.28.3 124 011 11100 001111 0011 110000 1100
K.28.4 156 100 11100 001111 0010 110000 1101
K.28.5 188 101 11100 001111 1010 110000 0101
K.28.6 220 110 11100 001111 0110 110000 1001
K.28.7 252 111 11100 001111 1000 110000 0111
K.23.7 247 111 10111 111010 1000 000101 0111
K.27.7 251 111 11011 110110 1000 001001 0111
K.29.7 253 111 11101 101110 1000 010001 0111
K.30.7 254 111 11110 011110 1000 100001 0111

The difference between the number of high bits (of value 1) and low bits (of value 0)
represents the disparity of a binary code. The 5b/6b and 3b/4b encoding schemes produce
either a single output code with null disparity (i.e., an equal number of high and low bits,
e.g., D.3.y and D.28.y from Table 1 and D.x.1 and D.x.6 from Table 2) or two complementary
codes (i.e., one is the bitwise negation of the other, e.g., the rest of the examples from
Tables 1 and 2) with a disparity of −2, 0 or +2. The RD at the end of the previous symbol
determines the chosen 5b/6b code for the current symbol, while the RD after the selected
5b/6b code establishes the chosen 3b/4b code. The initial RD is considered negative,
i.e., more bits are low than high. For the non-null disparity codes, the rule is that the
code with disparity opposite to the current RD is used. There are two complementary
5b/6b and 3b/4b codes with null disparity for the D.7.x and D.x.3 symbols detailed in
Tables 1 and 2, respectively. In these cases, the code that avoids five consecutive bits of the
same value is chosen. The D.x.7 symbols have four variants for the 3b/4b code, as depicted
in Table 2, such that five consecutive bits of the same value are avoided in conjunction with
the preceding 5b/6b code.

A typical communication channel employing 8b/10b encoding is depicted in Figure 1.
The data to be transmitted are supplied to the 8b/10b encoder one byte at a time. The
8b/10b encoder generates the ten-bit symbols; these are then serialized and the resulting
signal is amplified. These constitute the transmitter (TX). At the receiver (RX) side, the
signal is deserialized and passed in units of ten bits to a module that searches for comma
patterns on all possible positions (i.e., 8b/10b Aligner). When this pattern is detected, the
alignment is established and the module begins to supply the ten-bit symbols to the 8b/10b
decoder, which then outputs the corresponding bytes. A phase-locked loop can use the
input serial signal to adjust the clock signal that paces the receiving logic.

Electronics 2024, 13, 1062 5 of 28

Figure 1. A typical communication channel which employs 8b/10b encoding.

2.2. The Proposed 8b/10b Encoders

The top-level block diagram for all of the proposed 8b/10b encoders is represented in
Figure 2. The input and output (IO) signals (not including the clock and reset signals) are
depicted in Table 4. Except for rd_casc_o, all of the output signals are registered; the output
signals represented with dashed lines are optional. A similar block diagram and IO signals
were presented in [16], without the rd_casc_o signal.

Figure 2. The block diagram of the proposed encoder; modified from [16].

Table 4. Inputs and outputs of the proposed 8b/10b encoder, based on [16] plus rd_casc_o.

Name Bits Description

data_i 8 Input data bus representing the byte to be encoded (little-endian, from
index 7 to 0 bits HGFEDCBA).

k_i 1 Input control signal indicating that the byte must be encoded as a
control symbol.

rd_i 1 Input control signal indicating the RD of the 8b/10b stream of bits
right before the current byte is encoded. 1 = negative, 0 = positive.

enable_i 1 Input control signal validating the input values.
data_o 10 Output data bus representing the encoded symbol (big-endian, from

index 9 to 0 bits abcdeifghj).
rd_o 1 Output control signal indicating the RD of the 8b/10b stream of bits

after the current encoded symbol. 1 = negative, 0 = positive.
rd_casc_o 1 Purely combinational output control signal indicating the RD of the

8b/10b stream of bits after the current input byte is encoded. This
signal is used for cascading encoders. The rd_o signal is obtained by
adding a D flip-flop that samples this signal. 1 = negative, 0 = positive.

error_o 1 Output error signal indicating an incorrect input byte value signaled
to be encoded as a control symbol.

valid_o 1 Output control signal validating the output values, except for
rd_casc_o.

As depicted in Figure 3, to maintain DC balance on the output stream, while the data
source provides one byte of data at a time to the encoder, the rd_o output signal must be

Electronics 2024, 13, 1062 6 of 28

connected directly through a wire to the rd_i input while the rd_casc_o remains unused.
Although this could be achieved internally, we chose to supply the initial RD from the
exterior in order to extend the functionality of the encoder. Two or more encoders can be
cascaded to allow the encoding of two or more bytes into ten-bit symbols at a time. In
Figure 4, two instances of the proposed 8b/10b encoder are cascaded. In this case, the data
source provides two bytes of data to the encoder. The rd_casc_o one-bit-wide output control
signal of the first encoder, representing its rd_o value before it is registered, must drive the
rd_i input signal of the secondary 8b/10b encoder. Two cascaded 8b/10b encoders were
used in [17].

Figure 3. The proposed 8b/10b encoder connections when not cascaded.

Figure 4. Two cascaded instances of the proposed 8b/10b encoder.

The general view of the proposed 8b/10b encoder architecture is presented in Figure 5,
with emphasis on the signal dependencies between the 5b/6b and 3b/4b encoding schemes.
A similar architecture was detailed in [16], although without the cascading functional-
ity. The Boolean equations of all signals except the encoding schemes are detailed in
Appendix A.

Bits EDCBA (i.e., the five LSBs) of the byte to be encoded are transformed by the
5b/6b encoding scheme block into bits abcdei (i.e., the six LSBs) of the output symbol,
taking into consideration the input RD and the k_i signal. The 5b/6b code differs between
the K.x and D.x symbols only for x = 28, as depicted in Table 1. The 5b/6b encoding
scheme block additionally determines the intermediary RD (i.e., the RD after 5b/6b code to
be used within the 3b/4b encoding scheme block) as the rd_interm signal. Similarly, the
3b/4b encoding scheme block translates bits HGF (i.e., the three MSBs) of the byte to be
encoded into bits fghj (i.e., the four MSBs) of the output symbol, taking into consideration
the intermediary RD and the k_i signal. To avoid five consecutive bits with identical values
in D.x.7 symbols for certain input RD, the 3b/4b code has alternative values labeled D.x.A7

Electronics 2024, 13, 1062 7 of 28

while the D.x.P7 label is used for the primary encoding, as depicted in Table 2. The D.x.A7
3b/4b codes are identical to the K.x.7 ones. The cases in which the D.x.A7 code is used
are summarized in Equation (4). The alt_enc signal from Figure 5 is high in these cases.
The 3b/4b encoding scheme block additionally determines the RD after the symbol as the
rd_final signal, which directly drives the rd_casc_o output signal and is sampled by the
D flip-flop driving the rd_o output signal. The optional error block raises the error signal
for input byte values that do not correspond to any special symbol if the k_i input signal
is high.

D.x.A7 is used instead of D.x.P7 for

{
x ∈ {11, 13, 14}, when rd_i = 0
x ∈ {17, 18, 20}, when rd_i = 1

(4)

Figure 5. Top-view architecture of the proposed 8b/10b encoder, showing the signal dependencies.
Modified from [16].

2.2.1. BRAM-Based 8b/10b Encoder

We propose BRAM-based organization for the 8b/10b encoder targeted at AMD
FPGAs depicted in Figure 6. With the exception of the clk_i, reset_i and enable_i signals,
the input signals of the 8b/10b encoder shown in Figure 2 and described in Table 4 are
concatenated into a ten-bit-wide bus that represents the input address. The dual-port, dual-
clock domain (i.e., asynchronous) BRAM primitive is configured as a dual-port, single-clock
domain (i.e., synchronous, common) ROM (Read-Only Memory) with an address space
of 210 and a twelve-bit wide output data bus. The BRAM acts as a large single LUT. The
twelve-bit output data represent the concatenated output signals of the 8b/10b encoder
shown in Figure 2 and described in Table 4, excepting the valid_o and rd_casc_o signals.
The valid_o output signal is formed by delaying the enable_i input signal by one clock cycle
using a D flip-flop.

Because the primitive is dual-port and read-only, two independent 8b/10b encoders
can be implemented with the same ROM at the additional cost of a D flip-flop for the
second valid_o signal, as shown in Figure 6. In case of address collision (i.e., the same
value on both address ports in the same clock cycle), both read operations are completed
successfully, as described in [18].

The content of the ROM is specified during the design phase as an array of hexadecimal
values, in this case, 210 = 1024 three-digit (i.e., hexadecimal, each representing a nibble)

Electronics 2024, 13, 1062 8 of 28

values, resulting in 12 Kb of data. A single 18 Kb BRAM configured as 1K × 18 is sufficient.
There is no resource utilization/area benefit in dropping the optional output signal error_o.

In Figure 6, it is considered that the BRAMs have a single clock cycle latency, meaning
that the behavior of the resulting 8b/10b encoder is identical (except for the lack of the
rd_casc_o output signal) to the generic one presented in Figure 5 as well as to the one based
on LUT primitives presented in the next subsection. The optional embedded registers of the
BRAM primitive are not used, nor are the optional configurable logic registers. The optional
rd_casc_o output signal is a purely combinational logic function of the input signals, as
depicted in Figure 5, and as such cannot be implemented using BRAM primitives while
maintaining the requirement of single clock cycle latency.

Figure 6. The organization of the proposed 8b/10b encoder based on a single 18 Kb AMD BRAM.

2.2.2. LUT-Based 8b/10b Encoder

The proposed LUT-based AMD FPGAs-specific 8b/10b encoder organization is de-
tailed in Figure 7. A similar design was briefly presented in [16], though without the
cascading functionality and the LUTs configuration. The logic/Boolean functions imple-
mented by the LUTs are listed in Table 5 as little-endian truth table values expressed in
hexadecimal. The Boolean equations of all signals except the encoding scheme are detailed
in Appendix A and explained in the following paragraphs.

Our first objective was to minimize the amount resources used, while the second was
to maximize the operating frequency. Depending on the presence of the error logic, the
proposed 8b/10b encoder uses either seventeen LUTs and thirteen flip-flops or fifteen
LUTs and twelve flip-flops. The second objective translates into minimizing the longest
intra-clock propagation path. The LUTs from Figure 7 are organized by columns from left
to right depending on their place in the logic chain from input to output. Regardless of the
presence of the error logic, our proposed organization has at most three LUTs from input
to output. We expected the routing resources between the used CLBs to have the most
influence on the maximum frequency.

The true (i.e., implemented in the FPGA fabric with fully independent inputs) AMD
six-input LUTs have two outputs: O6, which spans the entire address space (i.e., all
64 addresses), and O5, which covers only the lower half of the address space (i.e., addresses
from 0 to 31). The LUT6, LUT4, and LUT3 instances from Figure 7 use solely the O6 output,
marked as O. The LUTs having fewer than six inputs are implemented in the FPGA fabric
as partially-driven six-input LUTs. The instances marked as LUT6_2 are the six-input LUTs
that use both of the output signals and implement two Boolean functions with common

Electronics 2024, 13, 1062 9 of 28

inputs. The Boolean function associated with the O5 output can have up to five inputs,
while the one associated with the O6 output has the same five inputs plus an additional
one and shares the lower half of its truth table with the O5 function. Alternatively, the
LUT6_2 can implement two five-input Boolean functions with common inputs and separate
output values by driving the 6th input (i.e., I5) to logic 1. The latter configuration is solely
used for all LUT6_2 instances depicted in Figure 7. An alternative use of a LUT6_2 is for
implementing two Boolean functions with separate inputs, outputs, and values, one with
up to two inputs and the other with up to three inputs. In this case, the sixth input is also
tied to logic 1. In the proposed 8b/10b encoder organization Figure 7, there is no two-input
Boolean function that could be paired with the next_rd_5b_6b function (i.e., the disparity
after the 5b/6b encoding) in such a configuration.

Figure 7. The proposed 8b/10b encoder organization based on AMD LUT primitives. Table 5 presents
the logic function of each LUT. Modified from [16].

All of the outputs except for rd_casc_o are registered in D Flip-flops with Clock Enable
(FDCEs) from within the CLBs. The Clock Enable (CE) input ports of all the FDCEs are

Electronics 2024, 13, 1062 10 of 28

driven by the enable_i input signal, except for the Valid_reg instance, which samples this
signal in each clock cycle, i.e., its CE port is tied to logic 1.

Each of the three LUT6_2 instances from the top of the leftmost column from Figure 7
determines two bits of the 5b/6b code considering negative input RD (rd_i = 1). This means
that the 5b/6b code formed by concatenating the bit_a_neg_rd, bit_b_neg_rd, bit_c_neg_rd,
bit_d_neg_rd, bit_e_neg_rd, and bit_i_neg_rd wires has positive or null disparity. The special
5b/6b code corresponding to the eight K.28.y symbols is not considered, as this would
require an additional input (i.e., for k_i) to the Bits_e_i_neg_rd LUT6_2 instance, which
would transform it into two LUT6 instances. The single (i.e., without complement) 5b/6b
code for D.28.y is abcdei = 001110, and differs from the 5b/6b code of K.28.y with positive
disparity (i.e., abcdei = 001111) only by bit i.

Table 5. The configurations of all encoder LUTs from Figure 7.

Instance Hex. Config. Value

1 Bits_a_b_neg_rd 0x4DCDCDDAABAA2BBD
2 Bits_c_d_neg_rd 0x7E00FE17F0F171E6
3 Bits_e_i_neg_rd 0x8117977FFFFF8001
4 D7_error_stage_1_2 0x877FFFFF00000080
5 K28 0x1000000000000000
6 Diff_enc_5b_6b 0xF9818197E9818197
7 Error_stage_1_1 0x0880800080000000
8 Alternative_encoding 0x0016000000006800
9 Bits_a_b 0xC3CCC3CCA5AAA5AA
10 Bits_c_d 0xC3CCC3CCA5AAA5AA
11 Bits_e_i 0x3C3CC3CCA5AAA5AA
12 Next_rd_5b_6b 0xA6
13 Error_stage_2 0xAAAAAAAA08888888
14 Final_rd 0x6E91
15 Bits_g_h 0x8778E178BA45DC45
16 Bits_f 0x5DA23BA25DA2BB22
17 Bits_j 0xF10E970EF10E178E

The 5b/6b codes with complementary variants as well as the separate K.28.y 5b/6b
code are signaled directly from the inputs by the Diff_enc_5b_6b and K.28 LUT6 instances,
respectively. The three LUT6_2 instances from the top of the middle column determine
the output 5b/6b code from its positive or null disparity form by complementing its bits
as follows: for bits a, b, c, d, and e if the input value has two complementary 5b/6b codes
(diff_enc_5b_6b = 1) and the input RD is positive (rd_i = 0), and for bit i if the input RD is
positive (rd_i = 0) and the 5b/6b has two complementary 5b/6b codes (diff_enc_5b_6b = 1)
and is not K.28.y (k28 = 0) or if the input RD is negative (rd_i = 1) and k28 = 1.

The RD after the 5b/6b encoding and before the 3b/4b encoding (i.e., the rd_interm
signal in Figure 5 and next_rd_5b_6b signal in Figure 7) is a function of the input disparity,
the existence of complementary 5b/6b codes, and the nature of the disparity of these codes
(non-null or otherwise). Except for D.7.y, all 5b/6b codes with complementary variants
have a non-null disparity. The d7 signal differentiates this special case, and is included in
the determination of the next_rd_5b_6b signal. The final RD (i.e., after the current input
byte is encoded, the rd_final signal in Figure 5 and rd_o_w signal in Figure 7) is determined
by the Final_rd LUT4 as a function of the next_rd_5b_6b signal and the three MSBs of the
input byte. The rd_final signal is the complement of the next_rd_5b_6b signal for the values
of the F, G, and H bits, which have 3b/4b codes with non-null disparities (i.e., FGH = 000,
100 or 111). In all other cases, it copies the value of the next_rd_5b_6b signal.

The 3b/4b encoding is determined by one LUT6_2 and three LUT6 instances. Bits g
and h are determined directly from the inputs using the Bits_g_h LUT6_2 instance. Bits
f and j might require an alternative encoding, a situation signaled by the alternative_enc

Electronics 2024, 13, 1062 11 of 28

LUT6 instance. These two bits are supplied by the Bit_f and Bit_j LUT6 instances. Bits g
and h of the 3b/4b encoding are not affected by the alterantive_enc signal.

The error signal is determined in two stages by three LUT instances: (i) Error_stage_1_1
and Error_stage_1_2 in parallel, and (ii) Error_stage_2 as the final step. The error_stage_1_2
and d7 signals are generated by an LUT6_2, as they depend on the same five inputs.

2.3. The Proposed 8b/10b Decoders

The top-level block diagram for all of the proposed 8b/10b decoders is depicted in
Figure 8. All its input and output signals are described in Table 6 except for the clock and
reset signals. All the output signals are registered except for rd_casc_o. The output signals
represented with dashed lines are optional, and consist of error signals used for debugging
and signals used for cascading decoders.

Figure 8. The block diagram of the proposed 8b/10b decoder.

Table 6. Inputs and outputs of the proposed 8b/10b decoder.

Name Bits Description

data_i 10 Input data bus representing the symbol to be decoded (LSB to MSB,
bits abcdeifghj).

rd_i 1 Input control signal indicating the RD of the 8b/10b stream of bits
right before the current symbol. 1 = negative, 0 = positive.

enable_i 1 Input control signal validating the input values.
data_o 8 Output data bus representing the decoded symbol (MSB to LSB, bits

HGFEDCBA).
rd_o 1 Output control signal indicating the RD of the 8b/10b stream of bits

after the current symbol. 1 = negative, 0 = positive.
rd_casc_o 1 Purely combinational output control signal indicating the RD of the

8b/10b stream of bits after the current symbol present on data_i. This
signal is used for cascading decoders. The rd_o signal is obtained by
adding a D flip-flop that samples this signal.

k_o 1 Output signal indicating a decoded control symbol.
alt_err_o 1 Output error signal indicating a decoded D.x.7 symbol with

incorrect 3b/4b encoding (i.e., alternative instead of primary or vice
versa) resulting in five consecutive identical bits in conjunction with
the previous 5b/6b code.

Electronics 2024, 13, 1062 12 of 28

Table 6. Cont.

Name Bits Description

d_err_o 1 Output error signal indicating input values outside the 5b/6b or 3b/4b
encoding schemes.

k_err_o 1 Output error signal indicating a 5b/6b code corresponding to a normal
symbol in conjunction with a 3b/4b code of a special code or a 5b/6b code
corresponding to a K.28.x control symbol in conjunction with a 3b/4b code
of a normal symbol.

rd_err_o 1 Output error signal high when the RD exceeds the [−2, +2] interval.
valid_o 1 Output control signal validating the other outputs, except rd_casc_o.

When the data source (typically a module that finds the alignment of the deserialized
8b/10b stream of bits) provides one symbol at a time to the decoder, a single decoder
instance is sufficient for decoding the data stream. In this case, the rd_o output signal must
be connected directly through a wire to the rd_i input while the rd_casc_o signal remains
unused, as depicted in Figure 9, in order to verify the DC balance of the incoming 8b/10b
stream. While this could be achieved internally, we chose to supply the initial RD from
the exterior to extend the functionality of the decoder. As such, two or more decoders can
be cascaded to allow the simultaneous (i.e., in the same clock cycle) decoding of two or
more 8b/10b symbols into the same amount of bytes. In Figure 10, two instances of the
proposed 8b/10b decoder are cascaded; in this case, the data source provides two symbols
per clock cycle, as in [17]. The rd_casc_o one-bit-wide output control signal of the first
decoder, representing its rd_o value before it is registered, must drive the rd_i input signal
of the secondary/lower 8b/10b decoder. All of the output signals are doubled except for
valid_o, rd_o, and rd_casc_o, which are driven solely by the secondary decoder.

Figure 9. The proposed 8b/10b decoder connections when not cascaded.

The top-view architecture of the proposed 8b/10b decoder is presented in Figure 11.
The decoder can be divided into five blocks of logic, each one with its own distinct functions:
(i) the 5b/6b decoding block; (ii) the 3b/4b decoding block; (iii) the block that determines
whether or not the symbol is special (i.e., K logic); (iv) the block that checks the RD (i.e.,
RD logic); and (v) the block that checks the usage of the correct D.x.7 3b/4b code (i.e., the
logic computing the alt_err_out signal. The first four blocks are depicted in Figure 11 as
rectangles, while the last one is represented by the remaining logic gates. All of these blocks
are detailed in the following paragraphs.

Electronics 2024, 13, 1062 13 of 28

Figure 10. Two cascaded instances of the proposed 8b/10b decoder.

Figure 11. Top-view architecture of the proposed 8b/10b decoder with all of the dependencies.

The six LSBs of data_i (i.e., bits abcdei) are fed to the 5b/6b decoding scheme block,
which compares their value with valid 5b/6b codes. If the six-bit input value is a valid
5b/6b code, then the block outputs the corresponding five-bit value representing the LSBs
of data_o (i.e., bits EDCBA). For invalid input values, the output data bits are all 0. The
data_5b6b signal is high when the input code may correspond to a D.x.y symbol, while
the k_5b6b signal is high when the input code may correspond to a K.x.y symbol. The
two possible codes of K.28.y are the only codes that will produce a high k_5b6b and a low
data_5b6b. Because the complementary 5b/6b codes of D.23.y, D.27.y, D.29.y, and D.30.y
are also used for K.23.y, K.27.y, K.29.y, and K.30.y, respectively (see Table 1 from Section 2),
they are marked with high k_5b6b and data_5b6b signals. The rest of the valid codes produce

Electronics 2024, 13, 1062 14 of 28

a high data_5b6b and a low k_5b6b. Invalid codes result in both the k_5b6b and data_5b6b
signals being low.

The pos_5b6b signal is high when the input code has positive or neutral disparity,
while neg_5b6b is high for an input code with negative or neutral disparity. Similar to the
k_5b6b and data_5b6b pair, the pos_5b6b and neg_5b6b signals are both low for invalid 5b/6b
values. The d7 signal is high for the two complementary codes of D.7.y, which have neutral
disparity (see Table 1 from Section 2) but must be selected depending on the input RD
to ensure that they do not form five consecutive bits of the same value with the previous
3b/4b code. Even if these two codes have neutral disparity, they are marked as having
either a positive or negative disparity through the pos_5b6b and neg_5b6b signals to enable
the signaling of incorrect uses as disparity errors (i.e., the rd_err_o output signal) within
the RD logic block. The d7 signal is used to separate this exception when computing the
output RD. The k28_neg signal is high only for the K.28.y code with negative disparity (i.e.,
the abcdei binary value is 110000).

The four MSBs of data_i (i.e., bits fghj) are fed to the 3b/4b decoding scheme block
alongside the k28_neg signal. The block compares their value with valid 3b/4b codes. If
the four-bit input value is a valid 3b/4b code, then the block outputs the corresponding
three-bit value representing the MSBs of data_o (i.e., bits HGF). For invalid input values,
the output data bits are all 0. The k28_neg signal is required in the 3b/4b decoding scheme
block because for certain K.28.y symbols the y value depends not only on the 3b/4b code
but on the intermediate RD (i.e., after the 5b/6b encoding; see Table 2 from Section 2). For
instance, if the input fghj bits are 1001 in binary, they correspond to either D.x.1, K.28.1 or
K.28.6; if the 5b/6b decoding block indicates a K.28 symbol with negative disparity, then
bits HGF are 110 (K.28.6), or 001 otherwise (either K.28.1 or D.x.1).

The data_3b4b signal is high when the input 3b/4b code may correspond to a D.x.y
symbol, while the k_3b4b signal is high when the input 3b/4b code may correspond to a
K.x.y symbol. Only the two codes for D.x.P7 (i.e., D.x.7 with primary encoding) produce
a high data_3b4b and a low k_3b4b. Invalid 3b/4b codes result in both the k_3b4b and
data_3b4b signals being low. A high k_3b4b signal in conjunction with a low data_3b4b signal
is produced only when the k28_neg signal is high and the valid 3b/4b code has one of
the following binary values: 0101, 0110, 1001, 1010. The rest of the valid 3b/4b codes are
characterized by both the data_3b4b and k_3b4b signals being high.

The pos_3b4b signal is high when the input code has positive or neutral disparity,
while neg_3b4b is high for an input code with negative or neutral disparity. Similar to the
k_3b4b and data_3b4b pair, the pos_3b4b and neg_3b4b signals are both low for invalid 3b/4b
values. The d.x.3 signal is high only for the two complementary codes of D.x.3 or K.28.3
symbols, which have neutral disparity but must be selected depending on the intermediate
RD during the encoding to ensure that they do not form five consecutive bits of the same
value with the previous 5b/6b code. Similar to the d7 case of the 5b/6b decoding scheme
block, the two complementary 3b/4b codes for D.x.3 or K.28.3 are marked as having either
positive or negative disparity through the pos_3b4b and neg_3b4b signals, even though they
have neutral disparity. This allows for the detection of incorrect usage, which is signaled
through the rd_err_o output signal. The d.x.7 signal is high for the two complementary
codes of D.x.P7 (i.e., D.x.7 with primary encoding), D.x.A7 (i.e., D.x.7 with alternative
encoding), or K.x.7 symbols (solely using the alternative encoding).

The Boolean functions implemented in the K logic and Disp logic blocks and for the
alt_err_out output error signal are detailed in Appendix B and explained next.

The K logic block determines whether the decoded symbol is a control (k_out high)
or normal (k_out low) symbol using the data and k tags from the two decoding blocks
(i.e., the data_5b6b, data_3b4b, k_5b6b, and k_3b4b signals). The k_out signal is high in two
cases: (i) the 5b/6b decoding block indicates a valid K.28.y symbol and the 3b/4b decoding
block indicates any valid code except D.x.P7; and (ii) the 5b/6b decoding block indicates a
possible K.23.7, K.27.7, K.29.7, or K.30.7 symbol and the 3b/4b decoding block indicates
a valid D.x.A7 or K.x.7 symbol. The output of the D flip-flop sampling of the k_out signal

Electronics 2024, 13, 1062 15 of 28

represents the k_o output signal. In addition, the K logic block computes the k_err_out signal,
which after registration becomes the k_err_o output error signal. The k_err_out signal is
high if the valid 5b/6b code corresponds solely to a normal symbol, while the valid 3b/4b
code indicates with certainty a valid special symbol or vice versa.

The Disp logic block determines three signals: (i) the RD of the incoming 8b/10b stream
of bits after the current symbol is decoded as the rd_out signal; (ii) situations when the
RD goes out of bounds (i.e., outside the [−2, +2] interval) as the rd_err_out signal; and (iii)
situations when either the 5b/6b or the 3b/4b code is not valid as the d_err_out. The rd_out
signal directly drives the rd_casc_o output signal; it is sampled by a D flip-flop, the output
of which represents the rd_o signal.

The intermediate RD (i.e., right after the 5b/6b code is decoded), named next_rd_5b6b,
is an internal signal of the Disp logic block, and is useful for determining the values of
both the rd_out and rd_err_out signals. Though not depicted in Figure 11, it is used in the
LUT-based decoder implementation presented in Section 2.3.2. It maintains the meaning of
the logic levels; 1 means negative RD, while 0 means positive RD. The intermediate RD
equals the input RD when either the 5b/6b code is invalid, the 5b/6b code is valid and
has neutral disparity (indicated by both the pos_5b6b and neg_5b6b signals being high), or
there is a special situation characterized by a high d7 signal (also a 5b/6b code with neutral
disparity). In all other situations, the intermediate RD is the complement of the pos_5b6b
signal (i.e., it is equivalent to the neg_5b6b signal).

Similarly, the rd_out signal equals the intermediate RD in situations when either the
3b/4b code is invalid, the 3b/4b code is valid and has neutral disparity as indicated by
both the pos_3b4b and neg_3b4b signals being high, or there is a special case indicated by a
high d.x.3 signal (also a 3b/4b code with neutral disparity). In all the other situations, the
rd_out signal equals the complement of next_rd_5b6b.

The rd_err_out signal is high if either of the following situations is true: (i) the input
RD has the same polarity as the non-neutral disparity of the valid 5b/6b code or (ii) the
intermediate RD has the same polarity as the non-neutral disparity of the valid 3b/4b code.

Invalid 5b/6b codes are signaled through both the pos_5b6b and neg_5b6b signals being
low, while invalid 3b/4b codes are signaled through both the pos_3b4b and neg_3b4b signals
being low. If either case is true, then the d_err_out is high. The data_5b6b, k_5b6b, data_3b4b,
and k_3b4b signals can be used for the same purpose.

As shown in Figure 11, the signal alt_err_out is high for D.x.7 symbols with bits i and f
having the same value. The K.x.7 symbols should always use the alternative 3b/4b code
instead of the primary one. If the decoder receives a K.28.7 symbol with the primary 3b/4b
code as input, it will produce a high k_err_o signal. The other potential K.x.7 symbols
(i.e., x ∈ {23, 27, 29, 30}) that use the primary 3b/4b code will be interpreted as D.x.7
symbols. When the alternative 3b/4b code for D.x.7 is used in conjunction with 5b/6b
codes that can be used in both normal and special 8b/10b symbols, the resulting symbol is
considered special. The alt_err_out signal is high when a clear D.x.7 symbol mistakenly uses
the primary 3b/4b code instead of the alternative (or vice versa), and consequently forms
five consecutive bits with the same value. The alternative 3b/4b code for 7 is used for the
D.17.7, D.18.7 and D.20.7 symbols when the rd_i signal is 1 (i.e., negative input RD) and for
the D.11.7, D.13.7, and D.14.7 symbols when the rd_i signal is 0 (i.e., positive input RD).

2.3.1. BRAM-Based 8b/10b Decoder

We propose the BRAM-based organization for the 8b/10b decoder targeted at AMD
FPGAs depicted in Figure 12. The rationale is similar to the one for the BRAM-based 8b/10b
encoder from Section 2.2.1. Except for the clk_i, reset_i, and enable_i signals, the input signals
of the 8b/10b decoder shown in Figure 8 and described in Table 6 are concatenated into an
eleven-bit-wide bus that represents the input address. The dual-port, dual-clock domain
(i.e., asynchronous) BRAM primitive is configured as a dual-port, single-clock domain (i.e.,
synchronous, common) ROM with a 211 address space and a fourteen-bit-wide output data
bus. The BRAM acts as a large single LUT, while the fourteen-bit output data represents

Electronics 2024, 13, 1062 16 of 28

the concatenated output signals of the 8b/10b decoder shown in Figure 8 and described in
Table 6, excepting the valid_o and rd_casc_o signals. The valid_o output signal is formed by
delaying the enable_i input signal with one clock cycle using a D flip-flop.

Because the primitive is dual-port and read-only, two independent 8b/10b decoders
can be implemented with the same ROM at the additional cost of a D flip-flop for the second
valid_o signal, as shown in Figure 12. Address collision is not an issue for ROMs [18].

The content of the ROM is specified during the design phase as an array of hexadecimal
values, in this case 211 = 2048 four-digit values (i.e., hexadecimal, each representing a
nibble except for the most significant one, which represents only the two MSBs of the output
bus), resulting in 28 Kb of data. Thus, a single 18 Kb BRAM is not enough, while a 36 Kb
BRAM configured as 2K × 18 is sufficient. There is no resource utilization/area benefit in
dropping all four optional output error signals, as in this case the required memory will be
20 Kb, which would still require a 36 Kb BRAM.

In Figure 12, it is considered that the BRAMs have a single clock cycle latency, meaning
that (with the exception of the lack of the rd_casc_o output signal) the behavior of the
resulting 8b/10b decoder is identical to that of the generic one presented in Figure 11
and the one based on LUT primitives presented in Section 2.3.2. The optional embedded
registers of the BRAM primitive are not used, nor are the optional configurable logic
registers. The optional rd_casc_o output signal is a purely combinational logic function
of the input signals, as depicted in Figure 11, and as such cannot be implemented using
BRAM primitives while maintaining the requirement of a single clock cycle latency.

Figure 12. The organization of the proposed 8b/10b decoder based on a single 36 Kb AMD BRAM.

2.3.2. LUT-Based 8b/10b Decoder

We propose the LUT-based organization for the 8b/10b decoder targeted at AMD
FPGAs depicted in Figure 13. The signals can be found in Figure 11, and their functions
are described in Section 2.3. The Boolean functions implemented by the LUTs are listed in
Table 7 as little-endian truth table values expressed in hexadecimal.

Table 7. Configurations of all the decoder LUTs from Figure 13.

Instance Hex. Config. Value

1 Bit_A 0x05565F6C209202A0
2 Bit_B 0x0556290256FC02A0
3 Bit_C 0x05215F025692ECA0
4 Bit_D 0x0259596250F2F240

Electronics 2024, 13, 1062 17 of 28

Table 7. Cont.

Instance Hex. Config. Value

5 Bit_E 0x044D4C5A4C5ADA20
6 K28_neg_disp 0x0001000000000000
7 Data_5b6b 0x077E7FFE7FFE7EE0
8 K_5b6b 0x0441400240028220
9 Neg_5b6b 0x077E7EE87EE8E800
10 Pos_5b6b 0x0017177E177E7EE0
11 Bits_F_G 0x3317E8CC332BD4CC
12 D7 0x0100000000000080
13 Data_3b4b_K_3b4b 0x799E7FFE3FFC3FFC
14 Pos_3b4b_Neg_3b4b 0x077E077E7EE07EE0
15 Bit_H_D.x.7 0x63A665C641824182
16 K_out_K_err_out 0xCC00440002400240
17 D_err_out 0x111F
18 Rd_err_out 0x22F244F42F224F44
19 Toggle_5b6b_disp_bit_i_xnor_bit_f 0x96699669FF0000FF
20 Alt_err_out 0x2000
21 Rd_out_Next_rd_5b6b_out 0xF0B20F4DF0B2F0B2

Figure 13. The proposed 8b/10b decoder organization based on AMD LUT primitives. Table 7
presents the logic function of each LUT.

Electronics 2024, 13, 1062 18 of 28

3. Results

All the proposed structural 8b/10b codecs were described in Verilog HDL as intercon-
nected instances of LUT, register, and BRAM primitives exactly as presented in the previous
section. The truth table of each LUT instance was specified through the INIT parameter
value, as described in [19]. The content of each ROM was specified as a list of hexadecimal
values in a memory coefficient file, as described in [20].

For simulation, synthesis, and implementation on AMD FPGAs, we used the AMD
Vivado Design Suite version 2023.1. Our previous work regarding an LUT-based 8b/10b
encoder similar to the one presented in Section 2.2.2, presented in [16], was achieved using
version 2022.1 of the same tool.

Validated behavioral descriptions of 8b/10b codecs that have been successfully em-
ployed in the Application Specific Integrated Circuit (ASIC) from [14,15] and its test setup
from [21] were used as references for verification of the proposed designs. From now on,
these are referred to as golden models. They are described in Verilog HDL, are based on
designs from [22], and have similar interfaces to the proposed structural designs. These
models were previously exhaustively debugged and verified by referencing the state-of-
the-art solutions specific to Intel FPGAs from [23]. Labeled waveforms captured using an
FPGA Integrated Logic Analyzer depicting the use of the golden model 8b/10b decoder
for processing encoded data arriving at 640 Mbps are presented in Figure 14. Due to the
overhead introduced by the encoding, the effective throughput is 512 Mbps (i.e., 80% of
640 Mbps). A waveform captured using a digital oscilloscope depicting serialized back-
to-back K.28.5 comma symbols produced by a golden model 8b/10b encoder used in the
ASIC from [14,15] are presented in Figure 15. The two complementary encodings (i.e.,
abcdei fghj = 001111 1010 and 110000 0101) alternate at 8 MHz, resulting in a bitrate of 80
Mbps. The golden models used in this research were validated in both ASIC and FPGA
implementations [21], and are compatible with each other as well as with other validated
ASIC and FPGA implementations of 8b/10b codecs.

Figure 14. Waveforms captured using an FPGA Integrated Logic Analyzer, depicting the use of the
golden model behavioral 8b/10b decoder for processing encoded data arriving at 640 Mbps. The
error signals are not included.

Electronics 2024, 13, 1062 19 of 28

Figure 15. Waveforms captured using a digital oscilloscope, depicting serialized back-to-back K.28.5
comma symbols produced by a golden model behavioral 8b/10b encoder used in the ASIC from [14,15].
The two complementary encodings (i.e., abcdei fghj = 001111 1010 and 110000 0101) alternate at 8 MHz
(i.e., the bitrate is 80 Mbps).

Two additional distinct behavioral descriptions of an 8b/10b encoder were imple-
mented on FPGA. These are referred to as Beh. 1 and Beh. 2 and were added for comparison.
The former is a cleaner and easier to understand code of the golden model, e.g., state-
ments in the form assign var = condition ? 1’b0 : 1’b1; from the golden model (i.e.,
conditional operator) are simplified to assign var= ~condition;. The Beh. 2 encoder
contains a single case ... endcase statement that lists all the combinations of values
that the concatenated input signals can take and assigns the appropriate value in each
case to the output signals. For the 8b/10b decoder, no additional behavioral descriptions
were implemented.

The proposed structural codecs and additional behavioral descriptions were validated
in exhaustive simulations in which their output values were compared to the golden
model’s responses to the same input stimuli. These exhaustive simulations consisted of
the following three tests: (i) the rd_i input signal was kept at 0 while all possible values
for the other input signals were fed in ascending order to the Device Under Verification
(DUV) at half the clock frequency rate (i.e., once every two clock cycles); (ii) the same as
the previous test, except that this time the rd_i input signal was set to 1; and (iii) 1,000,000
pseudo-random input data fed back-to-back. Waveforms depicting the beginning of the
first test for the 8b/10b structural decoder are depicted in Figure 16. These resulted from
post-implementation timing simulations using a 250 MHz ideal clock signal, ideal input
stimuli (from the timing perspective), and maximum values for the back-annotated delays.
The first non-zero output data, marked by the vertical cursor, were produced 100 ps after
the positive edge of the clock signal, representing the setup time of the output data registers.
No timing violations were reported for adequate clock frequencies. Because the first input
data values are invalid 8b/10b symbols, the d_err_out signal is raised. These simulations
were additionally used to generate switching data for the power consumption estimations
in the switching activity interchange file format (SAIF).

The AMD IP catalog associated with the Vivado 2023.1 tool is a library of AMD IP
cores [24]; however, it does not include any standalone 8b/10b encoder or decoder IPs.
In [25,26], a parametrizable standalone 8b/10b encoder/decoder with similar interfaces
and functionality to our proposed designs was presented. These AMD 8b/10b codecs were
targeted at older AMD FPGA devices, being designed before the Vivado tool and the IP
Catalog were available; thhus, they are not included in these tools [27]. Two hardware
implementations are available for the AMD 8b/10b encoder and decoder, one based
on LUTs and one based on BRAM; however, both implementations described in VHDL
are behavioral, not structural. In the case of the BRAM-based implementations, two
independent codecs can use the same ROM, similar to our designs. While the AMD codecs

Electronics 2024, 13, 1062 20 of 28

can be configured to the same functionality as our implementations, the decoders lack any
signals or logic corresponding to k_err_o and alt_err_o regardless of their parameter values.
We successfully simulated, synthesized, and implemented these codecs in Vivado 2023.1
and included them in the comparisons.

Figure 16. Waveforms depicting the beginning of the first test for the 8b/10b structural decoder are
depicted in Figure 16.

In [28], we found the only 8b/10b encoder FPGA implementations from the literature
that were well-documented in terms of resource utilization, power draw, and maximum
operating frequency or longest propagation time. These implementations targeted the
AMD Kintex-7 KC705 evaluation board [13] with the XC7K325T-2FFG900C FPGA device,
and have a similar interface and functionality to our encoders. For a fair comparison, we
targeted the same board and the AMD 8b/10b codecs for all our implementations. Similar
to our structural models, one implementation is based on LUTs (further referred to as
Impl. 1) while the other employs BRAMs (further referred to as Impl. 2). We did not find
any well-documented FPGA implementations for 8b/10b decoders in the literature.

Our behavioral and structural designs, the golden models, and the AMD 8b/10b
codecs from [25,26] were synthesized and then implemented. We used the default tool
settings with the incremental optimizations turned off. In all cases, the input signals were
driven by registers external to the codecs. For our BRAM-based structural implementations,
the output signals were captured by external registers. We constrained our designs to be
paced by a 250 MHz clock signal with a 100 ps input jitter. The same clock frequency as
in [28] was used for Impl. 1 and Impl. 2. For the power draw comparisons, we used the
same default tool parameters as in [28]: no output load (i.e., 0 pF), typical process, nominal
power supply voltages, an input toggle rate of 12.5%, and a static probability of 50%, along
with the same 250 MHz clock signal and a 25 ◦C environment temperature. For all the
decoders, we estimated the power draw using the SAIF files resulting from the verification
simulations. The results were under 1% above the estimations with the default parameters;
thus, we did not apply the same analysis for the encoders. For the resource utilization
comparisons, we used the area-optimized high synthesis strategy which applies additional
optimizations to reduce resource utilization.

The resource utilization of the encoders and decoders are detailed in Tables 8 and 9,
respectively. Our structural codecs are emphasized. After synthesis and implementation,
the resulting netlists for our structural codecs were functionally identical to the initial
designs, indicating that they are optimal and pass all design rules checks. Our LUT-based
structural codecs have the lowest resource utilization among the designs that do not use
any BRAM (the decoder is on par with the golden model). They use no architecture-specific
multiplexers to combine LUTs. Our BRAM-based structural encoder has the lowest re-
source utilization of the designs that contain BRAM. However, our BRAM-based structural
decoder uses an entire 36 Kb BRAM and two registers, while the AMD standalone BRAM-
based decoder from [26] uses an 18 Kb BRAM, four registers, and two LUTs but does not

Electronics 2024, 13, 1062 21 of 28

implement the logic associated with the k_err_o and alt_err_o output signals. If we remove
these signals from our BRAM-based decoder, the resource usage does not change. Both our
BRAM-based codec implementations and AMD’s contain two independent codec instances.

Table 8. Resource utilization for all encoder implementations.

Implementation LUTs REGs Muxes BRAMs

Impl. 1 [28] 18 21 6 0
Impl. 2 [28] 27 27 0 1.5
Golden (default) 22 13 0 0
Golden (area) 20 13 0 0
Beh. 1. (default) 22 13 7 0
Beh. 1. (area) 21 13 6 0
Beh. 2. (default) 12 2 1 1
Beh. 2. (area) 11 2 1 1
LUT-based [25] (default) 20 13 0 0
LUT-based [25] (area) 21 13 0 0
BRAM-based [25] (default) 74 26 12 0
BRAM-based [25] (area) 0 2 0 0.5
Prop. LUT (default) 17 13 0 0
Prop. LUT (area) 17 13 0 0
Prop. BRAM (default) 0 2 0 0.5
Prop. BRAM (area) 0 2 0 0.5

Table 9. Resource utilization for all decoder implementations.

Implementation LUTs REGs Muxes BRAMs

Golden (default) 21 15 0 0
Golden (area) 22 15 0 0
LUT-based [26] (default) 28 13 1 0
LUT-based [26] (area) 27 13 1 0
BRAM-based [26] (default) 4 4 0 0.5
BRAM-based [26] (area) 2 4 0 0.5
Prop. LUT (default) 21 15 0 0
Prop. LUT (area) 21 15 0 0
Prop. BRAM (default) 0 2 0 1
Prop. BRAM (area) 0 2 0 1

The area-optimized high synthesis strategy has a generally positive influence, with two
exceptions: (i) for the AMD standalone LUT-based encoder from [25] and (ii) for the golden
model decoder. It has no benefit for our structural codecs. Another interesting effect of
this strategy is for the AMD standalone BRAM-based encoder from [25]; by default, the
behavioral ROM description translates into 74 LUTs, 12 multiplexers and 26 registers,
however, when the resource utilization optimizations are applied, the same description
translates into a design similar to our BRAM-based structural encoder. This does not
happen for our ROM-like encoder behavioral description (i.e., Beh. 2), which results in
high usage of both LUT and BRAM regardless of the synthesis strategy.

In contrast with the results presented in [16], the optimized Beh. 1 encoder implemen-
tation obtains slightly worse results relative to the golden model. The only changes are the
addition of the rd_casc_o signal, which comes with no additional logic, and the tool version
(2023.1 versus 2022.1). Thus, we consider this difference to be caused by the tool.

The maximum operating frequencies can be deduced from the longest paths, which are
presented in Tables 10 and 11 for the encoders and the decoders, respectively. In almost all
cases, the net delays corresponding to the FPGA routing resources are higher than the logic
delays (i.e., propagation through LUTs, multiplexers or BRAMs). Beh. 1 and Beh. 2 obtain

Electronics 2024, 13, 1062 22 of 28

the lowest two propagation delays from all the encoder designs. The resource utilization of
almost all behavioral encoder descriptions increased (the exception being Beh. 2), while
the structural designs maintained their area; the golden model encoder uses 31 LUTs and
13 registers, Beh. 1 uses 23 LUTs, 13 registers, and 7 multiplexers, the LUT-based AMD
encoder from [25] uses 27 LUTs and 13 registers, and its BRAM-based variant uses 78 LUTs,
26 registers, and 12 multiplexers.

Table 10. Longest path for all encoder implementations.

Implementation Logic [ns] Net [ns] Total [ns]

Impl. 1 [28] 0.309 1.059 1.368
Impl. 2 [28] 1.929 1.346 3.275
Golden 0.395 1.124 1.519
Beh. 1 0.498 0.586 1.084
Beh. 2 0.388 0.866 1.254
LUT-based [25] 0.352 1.004 1.356
BRAM-based [25] 0.352 1.198 1.55
Proposed LUT 0.453 0.904 1.357
Proposed BRAM 1.8 0.478 2.278

Table 11. Longest path delay for all decoder implementations.

Implementation Logic [ns] Net [ns] Total [ns]

Golden 0.395 1.031 1.426
LUT-based [26] 0.417 0.939 1.356
BRAM-based [26] 0.474 0.943 1.417
Proposed LUT 0.457 1.031 1.488
Proposed BRAM 1.8 0.494 2.294

The lowest propagation delays among the decoder designs were achieved by the LUT-
based AMD implementation. The resource utilization of all behavioral decoder descriptions
increased, while the structural designs maintained their area; the golden model decoder
uses 26 LUTs and 15 registers, the LUT-based AMD decoder from [26] uses 32 LUTs,
13 registers, and 1 multiplexer, and its BRAM-based variant switches from using a 18 Kb
BRAM to using 78 LUTs, 89 registers, and 12 multiplexers.

The number of chained LUTs of a Boolean function, with or without multiplexers, is
not as important for the maximum frequency as the placement and routing congestion,
e.g., the proposed structural LUT-based decoder has a chain of at most three LUTs. This is
similar to the golden model, but achieves a slightly larger propagation delay; nevertheless,
our proposed structural codecs maintain their low resource usage along with comparable
frequency performance to the other designs.

The power draw estimates are detailed in Tables 12 and 13 for the encoders and
decoders, respectively, and use the previously presented default tool parameters. The
static power draw is the same for all designs, while the structural codecs are on par with
the others. The designs which use BRAM have an increased dynamic power draw. The
dynamic power draw of the encoders from [28] is ten times higher than the rest of the
encoders, which might be due to the different tool versions (unspecified in [28]).

The power draw estimates resulting from the verification simulations are detailed in
Table 14 for all the decoders considering the signal toggling activity. With the exception
of the BRAM-based implementation of the AMD decoder, it can be seen that the dynamic
power consumption of all models increases with 0.001 W compared to that obtained with
the default tool parameters. This represents less than 1% of their total power draw. The
static power draws are identical. While the dynamic power draw of the BRAM-based

Electronics 2024, 13, 1062 23 of 28

implementation of the AMD decoder increases with 0.003 W, its total power consumption
is still less than that corresponding to our structural BRAM-based model.

Table 12. Power consumption for all encoder implementations with the default tool parameters.

Implementation Dynamic [W] Static [W] Total [W]

Impl. 1 [28] 0.019 0.158 0.177
Impl. 2 [28] 0.027 0.158 0.186
Golden 0.002 0.156 0.158
Beh. 1 0.001 0.156 0.157
Beh. 2 0.003 0.156 0.159
LUT-based [25] 0.002 0.156 0.158
BRAM-based [25] 0.004 0.156 0.16
Proposed LUT 0.002 0.156 0.158
Proposed BRAM 0.007 0.156 0.163

Table 13. Power consumption for all decoder implementations with the default tool parameters.

Implementation Dynamic [W] Static [W] Total [W]

Golden 0.002 0.156 0.158
LUT-based [26] 0.002 0.156 0.158
BRAM-based [26] 0.004 0.156 0.16
Proposed LUT 0.002 0.156 0.158
Proposed BRAM 0.013 0.156 0.169

Table 14. Power consumption for all decoder implementations considering the switching activity
resulting from the verification simulations.

Implementation Dynamic [W] Static [W] Total [W]

Golden 0.003 0.156 0.159
LUT-based [26] 0.003 0.156 0.159
BRAM-based [26] 0.007 0.156 0.163
Proposed LUT 0.003 0.156 0.159
Proposed BRAM 0.014 0.156 0.17

4. Discussion

Optimality has different meanings in different contexts; it can refer to a short de-
velopment stage that reaches a functionally validated model quickly, to a functionally
validated model characterized by lower power consumption, lower footprint (i.e., area or
resource utilization), and higher performance (e.g., throughput, operating frequencies), or
to a combination of these.

One of the goals of this research was to test the hypothesis that a structural design can
be better in one or more ways compared to one resulting from a behavioral description.
We chose to implement IBM 8b/10b codecs, which are relatively small circuits, though not
straightforward. This encoding is used in a plethora of communication standards, and we
previously employed it in custom communication protocols [14]. We hypothesized that
more LUT6_2 instances can be inferred than in the synthesis and implementation tools,
allowing us to reduce resource usage. A more compact design translates into a lower power
draw. We further hypothesized that a logic path containing fewer LUTs would translate into
a lower propagation time, and in turn a higher maximum operating frequency. Following
Virtex-5, the different AMD FPGA architectures have varied mostly in terms of how the
LUTs are grouped in CLBs, the routing resources, the implemented hard-blocks, and the
used semiconductor technology. We considered that our structural designs should not
employ architecture-specific resources (e.g., multiplexers for combining LUTs, dedicated

Electronics 2024, 13, 1062 24 of 28

carry logic); thus we set four objectives: (i) to minimize the number of LUTs, without
(ii) compromising functional features, while (iii) using as few chained LUTs between any
two sequential elements as possible and (iv) not employing specific resources that change
from one FPGA generation to another.

A simple case ... endcase statement in Verilog (or an equivalent statement in other
HDLs) that lists all the correspondence between the input and output values for combina-
tional logic most likely will not have the best results in terms of resource utilization, timing,
and power consumption; however, it can be developed quickly and has good portability
(ASIC and FPGA regardless of its architecture). Depending on its complexity, it might
additionally imply increased processing time and memory requirements on the part of syn-
thesis and implementation tools. This led to the idea of using BRAMs as larger LUTs. While
less portable, such solutions are likely to result in better implementations. A behavioral
HDL description optimized by the designer is characterized by good portability (ASIC and
FPGA regardless of its architecture), most likely better implementation results than the
case ... endcase model, faster processing time, and lower memory requirements in the
synthesis and implementation tools; however, it implies the need for in-depth knowledge
and an increased development duration. Although synthesis and implementation tools
are getting better at optimizing circuits, we consider that a good HDL model should not
need to rely on the capabilities of these tools to achieve optimal results. While a model
directly designed as a structure implies additional in-depth knowledge of the targeted
technology (in the case of an ASIC implementation) or architecture (in the case of an FPGA
implementation), and is the least portable (being very specific), it can potentially obtain
even better results than an optimized behavioral one.

All of our codecs, both behavioral and structural, implement the entire 8b/10b IBM
encoding scheme without compromising functional features and can be used in a complete
communications channel employing this encoding regardless of the higher-level protocol
used. They have been exhaustively validated within simulations and on actual hardware
(i.e., FPGA and in some cases even ASIC). Their error signals proved to be crucial in
debugging interfacing issues both in the ASIC test setup presented in [21] and while
integrating the ASIC into its operating environment.

Several AMD IPs employ the 8b/10b encoding, e.g., the 1G/2.5G Ethernet Physical
Coding Sublayer/Physical Medium Attachment (PCS/PMA), and the Serial Gigabit Media
Independent Interface (SGMII) core [29] implements the 8b/10b encoding as part of the
PCS functionality. For this, it uses either device-specific transceiver logic or includes the
AMD codecs from [25,26], which are mentioned and used in our comparison in Section 3.

The Aurora 8B/10B protocol [8] is an open standard for point-to-point user data
transfer that uses the IBM 8b/10b encoding scheme and defines the physical layer interface,
initialization and error handling, data marking and mapping, and link layer flow control
mechanism. The AMD Aurora 8B/10B IP core [30] implements the link layer protocol for
the AMD 7 Series, UltraScale, and UltraScale+ FPGA families. According to [31], when
targeting the AMD Kintex-7 KC705 evaluation board [13] an Aurora 8B10B transmitter
with a single simplex line and minimal functionality uses 343 flip-flops and 184 LUTs.
While this IP core implements more functional features than just 8b/10b encoding, it might
benefit from the proposed structural 8b/10b codecs. We compared Impl. 1 and Impl. 2
from [28] to the Aurora 8B/10B core in terms of power consumption, propagation delay,
and resource utilization.

5. Conclusions

In this paper, we detail four structural primitive-based 8b/10b codecs (two encoders
and two decoders) targeted at modern AMD FPGAs. These models can be used on all
architectures since Virtex-5. The proposed designs are compared with state-of-the-art codecs
and behavioral validated descriptions. It is proven that they achieve the lowest resource
utilization while reaching comparable maximum frequencies and power consumption.
They do not rely on special synthesis and implementation tool strategies or architecture-

Electronics 2024, 13, 1062 25 of 28

specific transciever, carry, and multiplexing logic to achieve this performance. The proposed
implementations are suitable for a complete communication channel employing the IBM
8b/10b encoding.

Author Contributions: Conceptualization, S.P., M.I., and R.-M.C.; methodology, S.P. and R.-M.C.; soft-
ware, S.P.; validation, S.P.; formal analysis, S.P. and R.-M.C.; investigation, S.P.; resources, M.I. and R.-
M.C.; data curation, S.P.; writing—original draft preparation, S.P., M.I., and R.-M.C.; writing—review
and editing, S.P., M.I., and R.-M.C.; visualization, S.P., M.I., and R.-M.C.; supervision, M.I. and
R.-M.C.; project administration, M.I. and R.-M.C.; funding acquisition, M.I. and R.-M.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Romanian Ministry of Research, Innovation, and Digitization,
RO-CERN collaboration, project “ATLAS experiment at LHC”, contract no. 10/2022.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACAP Adaptive Compute Acceleration Platform
ASIC Application-Specific Integrated Circuit
ATA Advanced Technology Attachment
BRAM Block of static RAM
CE Clock Enable
CLB Configurable Logic Block
DC Direct Current
DUV Device Under Verification
FDCE Flip-flop D with Clock Enable
FPGA Field-Programmable Gate Array
HDL Hardware Description Language
IBM International Business Machines Corporation
IO Input–Output
LSB Least Significant Bit
LUT Look-Up Table
MSB Most Significant Bit
PCS Physical Coding Sublayer
PMA Physical Medium Attachment
RAM Random Access Memory
ROM Read-Only Memory
RD Running Disparity
RTL Register Transfer Level
RX Receiver
SAIF Switching Activity Interchange Format
SGMII Serial Gigabit Media-Independent Interface
SOP Start Of Packet
TX Transmitter
USB Universal Serial Bus

Appendix A. Useful Encoder Boolean Functions
The following Boolean functions correlate with the descriptions of the proposed

8b/10b encoder from Section 2.2 (pot_k, the potential K symbol, is an auxiliary product
asserted when the value present on data_i corresponds to one of the twelve possible
special symbols).

Electronics 2024, 13, 1062 26 of 28

bit_a = bit_a_neg_rd ⊕ (diff_enc_5b_6b · rd_i)

bit_b = bit_b_neg_rd ⊕ (diff_enc_5b_6b · rd_i)

bit_c = bit_c_neg_rd ⊕ (diff_enc_5b_6b · rd_i)

bit_d = bit_d_neg_rd ⊕ (diff_enc_5b_6b · rd_i)

bit_e = bit_e_neg_rd ⊕ (diff_enc_5b_6b · rd_i)

bit_i = bit_a_neg_rd ⊕ (rd_i · k28 + diff_enc_5b_6b · rd_i · k28)

error = error_o_w = k_i · pot_k

rd_interm = next_rd_5b_6b = diff_enc_5b_6b · rd_i + d7 · rd_i + d7 · diff_enc_5b_6b · rd_i

rd_final = rd_o_w = next_rd_5b_6b ⊕ (bit_G · bit_H + bit_F · bit_G · bit_H)

pot_k = (data_i == K.28.0) + (data_i == K.28.1) + (data_i == K.28.2)+

(data_i == K.28.3) + (data_i == K.28.4) + (data_i == K.28.5)+

(data_i == K.28.6) + (data_i == K.28.7) + (data_i == K.23.7)+

(data_i == K.27.7) + (data_i == K.29.7) + (data_i == K.30.7)

= bit_E · bit_D · bit_C · bit_B · bit_A + bit_H · bit_G · bit_F · bit_E·
(bit_D · bit_C · bit_B · bit_A + bit_D · bit_C · bit_B · bit_A+

bit_D · bit_C · bit_B · bit_A + bit_D · bit_C · bit_B · bit_A)

alt_enc = rd_i · ((data_i[4:0] == D.17) + (data_i[4:0] == D.18) + (data_i[4:0] == D.20))+

rd_i · ((data_i[4:0] == D.11) + (data_i[4:0] == D.13) + (data_i[4:0] == D.14))

= rd_i · bit_E · bit_D · (bit_C · bit_B · bit_A + bit_C · bit_B · bit_A+

bit_C · bit_B · bit_A) + rd_i · bit_E · bit_D · (bit_C · bit_B · bit_A+

bit_C · bit_B · bit_A + bit_C · bit_B · bit_A)

Appendix B. Useful Decoder Boolean Functions

The following Boolean functions correlate with the descriptions of the proposed
8b/10b decoder from Section 2.3.

k_out = k_5b6b · data_5b6b · k_3b4b + k_5b6b · data_5b6b · k_3b4b · d.x.7

k_err_out = k_5b6b · data_5b6b · k_3b4b · data_3b4b+

k_5b6b · data_5b6b · k_3b4b · data_3b4b

d_err_out = pos_5b6b + neg_5b6b + pos_3b4b + neg_3b4b

alt_err_out = data_5b6b · k_5b6b · d.x.7 · data_i[4] ⊕ data_i[3]

neutral_5b6b = pos_5b6b · neg_5b6b + pos_5b6b · neg_5b6b + d7

= pos_5b6b ⊕ neg_5b6b + d7

neutral_3b4b = pos_3b4b · neg_3b4b + pos_3b4b · neg_3b4b + d.x.3

= pos_3b4b ⊕ neg_3b4b + d.x.3

next_rd_5b6b = neutral_5b6b · rd_i + neutral_5b6b · pos_5b6b

= neutral_5b6b · rd_i + neutral_5b6b · neg_5b6b

rd_out = neutral_3b4b · next_rd_5b6b + neutral_3b4b · next_rd_5b6b

= neutral_3b4b ⊕ next_rd_5b6b

rd_err_out = pos_5b6b · neg_5b6b · rd_i + pos_5b6b · neg_5b6b · rd_i+

pos_3b4b · neg_3b4b · next_rd_5b6b + pos_3b4b · neg_3b4b · next_rd_5b6b

Electronics 2024, 13, 1062 27 of 28

References
1. Xilinx. 7 Series FPGAs Configurable Logic Block User Guide UG474 (V1.8). 2016. Available online: https://docs.xilinx.com/v/

u/en-US/ug474_7Series_CLB (accessed on 12 July 2023).
2. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx Adaptive Compute Acceleration Platform: VersalTM Architecture.

In PGA’19 Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26
February 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 84–93. [CrossRef]

3. Xilinx. Versal Adaptive SoC Design Guide, UG1273 (v2023.2). 2023. Available online: https://docs.xilinx.com/r/en-US/ug1273-
versal-acap-design (accessed on 12 December 2023).

4. Siast, J.; Łuczak, A.; Domański, M. RingNet: A Memory-Oriented Network-On-Chip Designed for FPGA. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2019, 27, 1284–1297. [CrossRef]

5. Widmer, A.X.; Franaszek, P.A. A DC-Balanced, Partitioned-Block, 8B/10B Transmission Code. IBM J. Res. Dev. 1983, 27, 440–451.
[CrossRef]

6. Schouhamer Immink, K. Construction of binary DC-constrained codes. Philips J. Res. 1985, 40, 22–39.
7. Fukuda, S.; Kojima, Y.; Shimpuku, Y.; Odaka, K. 8/10 modulation codes for digital magnetic recording. IEEE Trans. Magn. 1986,

22, 1194–1196. [CrossRef]
8. Xilinx. Aurora 8B/10B Protocol Specification SP002 (v2.3). 2014. Available online: https://docs.xilinx.com/v/u/en-US/aurora_

8b10b_protocol_spec_sp002 (accessed on 12 July 2022).
9. IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015); IEEE Standard for Ethernet. IEEE: Piscataway, NJ, USA, 2018; pp. 1–5600.

[CrossRef]
10. Guha, S.; Wang, W.; Ibraheem, S.; Balakrishnan, M.; Szefer, J. Design and implementation of open-source SATA III core for Stratix

V FPGAs. In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT), Xi’an, China, 7–9
December 2016; pp. 237–240.

11. Universal Serial Bus 3.2 Specification. 2022. Available online: https://www.usb.org/document-library/usb-32-revision-11-june-
2022 (accessed on 12 July 2023).

12. Ryu, S.; on behalf of the ATLAS TDAQ Collaboration. FELIX: The new detector readout system for the ATLAS experiment. J.
Phys. Conf. Ser. 2017, 898, 032057. [CrossRef]

13. Xilinx. Kintex-7 FPGA KC705 Evaluation Kit Getting Started Guide UG883 (V6.0). 2014. Available online: https://docs.xilinx.
com/v/u/en-US/ug883_K7_KC705_Eval_Kit (accessed on 12 July 2023).

14. Popa, S. The Read-Out Controller ASIC for the ATLAS Experiment at LHC; Springer: Cham, Switzerland, 2022.
15. Coliban, R.M.; Popa, S.; Tulbure, T.; Nicula, D.; Ivanovici, M.; Martoiu, S.; Levinson, L.; Vermeulen, J. The Read Out Controller for

the ATLAS New Small Wheel. J. Instrum. 2016, 11, C02069. [CrossRef]
16. Popa, S.; Coliban, R.M.; Ivanovici, M. An Optimal Implementation of an 8b/10b Encoder for Xilinx FPGAs. In Proceedings of the

2022 International Symposium on Electronics and Telecommunications (ISETC), Timis, oara, Romania, 10–11 November 2022;
pp. 1–4. [CrossRef]

17. Audzevich, Y.; Watts, P.M.; West, A.; Mujumdar, A.; Moore, S.W.; Moore, A.W. Power Optimized Transceivers for Future Switched
Networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2081–2092. [CrossRef]

18. Xilinx. 7 Series FPGAs Memory Resources User Guide UG473 (V1.14). 2019. Available online: https://docs.xilinx.com/v/u/en-
US/ug473_7Series_Memory_Resources (accessed on 12 July 2023).

19. Xilinx. Vivado Design Suite 7 Series FPGA and Zynq 7000 SoC Libraries Guide UG953 (V2022.1). 2022. Available online:
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries (accessed on 12 July 2023).

20. Xilinx. Block Memory Generator v8.4 LogiCORE IP Product Guide PG058. 2021. Available online: https://docs.xilinx.com/v/u/
en-US/pg058-blk-mem-gen (accessed on 12 July 2023).

21. Popa, S.; Mărtoiu, S.; Ivanovici, M. The quality-control test of the digital logic for the ATLAS new small wheel read-out controller
ASIC. J. Instrum. 2020, 15, P04023. [CrossRef]

22. Lieu, J. 8b10b Encoder Decoder written in Verilog. Available online: https://github.com/jefflieu/fpga.git (accessed on 23 May 2023).
23. Altera. 8b10b Encoder/Decoder MegaCore Function (ED8B10B) ver. 1.02. 2001. Available online: https://www.intel.com/

programmable/technical-pdfs/654541.pdf (accessed on 12 July 2023).
24. Xilinx. UltraFast Design Methodology Guide for FPGAs and SoCs UG949 (V2023.1). 2023. Available online: https://docs.xilinx.

com/r/en-US/ug949-vivado-design-methodology (accessed on 28 June 2023).
25. Paula Vo, X. Parameterizable 8b/10b Encoder XAPP1122 (v1.1). 2008. Available online: https://docs.xilinx.com/v/u/en-US/

xapp1122 (accessed on 28 June 2023).
26. Paula Vo, X. Parameterizable 8b/10b Decoder XAPP1112 (v1.1). 2008. Available online: https://docs.xilinx.com/v/u/en-US/

xapp1112 (accessed on 28 June 2023).
27. Parameterizable 8b/10b Encoder/Decoder (XAPP1122 (v1.1), XAPP1112 (v1.1)) in Vivado/Gen 7 Chips. Available on-

line: https://support.xilinx.com/s/question/0D52E00006iHm6OSAS/parameterizable-8b10b-encoderdecoder-xapp1122-v11-
xapp1112-v11-in-vivadogen-7-chips?language=en_US (accessed on 28 June 2023).

28. Quesada-Martínez, A.; et al. Evaluation of 8b/10b FPGA Encoder Implementations for SerDes Links. In Proceedings of the 2020
IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), San Jose, Costa Rica, 25–28 February 2020; pp. 1–4.
[CrossRef]

https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
http://doi.org/10.1145/3289602.3293906
https://docs.xilinx.com/r/en-US/ug1273-versal-acap-design
https://docs.xilinx.com/r/en-US/ug1273-versal-acap-design
http://dx.doi.org/10.1109/TVLSI.2019.2899575
http://dx.doi.org/10.1147/rd.275.0440
http://dx.doi.org/10.1109/TMAG.1986.1064445
https://docs.xilinx.com/v/u/en-US/aurora_8b10b_protocol_spec_sp002
https://docs.xilinx.com/v/u/en-US/aurora_8b10b_protocol_spec_sp002
http://dx.doi.org/10.1109/IEEESTD.2018.8457469
https://www.usb.org/document-library/usb-32-revision-11-june-2022
https://www.usb.org/document-library/usb-32-revision-11-june-2022
http://dx.doi.org/10.1088/1742-6596/898/3/032057
https://docs.xilinx.com/v/u/en-US/ug883_K7_KC705_Eval_Kit
https://docs.xilinx.com/v/u/en-US/ug883_K7_KC705_Eval_Kit
http://dx.doi.org/10.1088/1748-0221/11/02/C02069
http://dx.doi.org/10.1109/ISETC56213.2022.10010077
http://dx.doi.org/10.1109/TVLSI.2013.2283300
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries
https://docs.xilinx.com/v/u/en-US/pg058-blk-mem-gen
https://docs.xilinx.com/v/u/en-US/pg058-blk-mem-gen
http://dx.doi.org/10.1088/1748-0221/15/04/P04023
https://github.com/jefflieu/fpga.git
https://www.intel.com/programmable/technical-pdfs/654541.pdf
https://www.intel.com/programmable/technical-pdfs/654541.pdf
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology
https://docs.xilinx.com/v/u/en-US/xapp1122
https://docs.xilinx.com/v/u/en-US/xapp1122
https://docs.xilinx.com/v/u/en-US/xapp1112
https://docs.xilinx.com/v/u/en-US/xapp1112
https://support.xilinx.com/s/question/0D52E00006iHm6OSAS/parameterizable-8b10b-encoderdecoder-xapp1122-v11-xapp1112-v11-in-vivadogen-7-chips?language=en_US
https://support.xilinx.com/s/question/0D52E00006iHm6OSAS/parameterizable-8b10b-encoderdecoder-xapp1122-v11-xapp1112-v11-in-vivadogen-7-chips?language=en_US
http://dx.doi.org/10.1109/LASCAS45839.2020.9069001

Electronics 2024, 13, 1062 28 of 28

29. Xilinx. 1G/2.5G Ethernet PCS/PMA or SGMII v16.2 LogiCORE IP Product Guide. 2023. Available online: https://docs.xilinx.
com/r/en-US/pg047-gig-eth-pcs-pma (accessed on 28 June 2023).

30. Xilinx. Aurora 8B/10B v11.1 LogiCORE IP Product Guide. 2022. Available online: https://docs.xilinx.com/r/en-US/pg046
-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide (accessed on 12 July 2022).

31. Xilinx. Available online: Resource Utilization for Aurora 8B10B v11.1. 2022. Available online: https://www.xilinx.com/
htmldocs/ip_docs/pru_files/aurora-8b10b.html (accessed on 12 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://docs.xilinx.com/r/en-US/pg047-gig-eth-pcs-pma
https://docs.xilinx.com/r/en-US/pg047-gig-eth-pcs-pma
https://docs.xilinx.com/r/en-US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide
https://www.xilinx.com/htmldocs/ip_docs/pru_files/aurora-8b10b.html
https://www.xilinx.com/htmldocs/ip_docs/pru_files/aurora-8b10b.html

	Introduction
	Materials and Methods
	The IBM 8b/10b Code
	The Proposed 8b/10b Encoders
	BRAM-Based 8b/10b Encoder
	LUT-Based 8b/10b Encoder

	The Proposed 8b/10b Decoders
	BRAM-Based 8b/10b Decoder
	LUT-Based 8b/10b Decoder

	Results
	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

