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Abstract: This paper presents a computer vision-based standalone decision-aid landing system for
light fixed-wing aircraft, aiming to enhance safety during emergency landings. Current landing
assistance systems in airports, such as Instrument Landing Systems (ILSs) and Precision Approach
Path Indicators (PAPIs), often rely on costly and location-specific ground equipment, limiting their
utility for low-payload light aircraft. Especially in emergency conditions, the pilot may be forced
to land on an arbitrary runway where the road flatness and glide angle cannot be ensured. To
address these issues, a stereo vision-based auxiliary landing system is proposed, which is capable of
estimating an appropriate glide slope based on the terrain, to assist pilots in safe landing decision-
making. Moreover, in real-world scenarios, challenges with visual-based methods arise when
attempting emergency landings on complex terrains with diverse objects, such as roads and buildings.
This study solves this problem by employing the Gaussian Mixture Model (GMM) to segment the
color image and extract ground points, while the iterative weighted plane fitting (IWPF) algorithm
is introduced to mitigate the interference of outlier feature points, reaching a highly robust plane
normal estimation. With the aid of the proposed system, the pilot is able to evaluate the landing glide
angle/speed with respect to the uneven terrain. Simulation results demonstrate that the proposed
system can successfully achieve landing guidance in unknown environments by providing glide
angle estimations with an average error of less than 1 degree.

Keywords: decision-aid landing system; navigation; computer vision; feature extraction; Gaussian
mixture model; outlier removal

1. Introduction
1.1. Research Purpose and Contributions

The process of aircraft landing is inherently complex and high-risk, influenced by
various dynamic factors such as weather conditions, surroundings, pilot experience, and
ground equipment reliability. Statistical data [1] reveal that landing-related accidents
account for up to 56% of all flight accidents. Despite the presence of advanced instruments
in modern airports, landing failures still occur with notable frequency. In addition, owing
to cost constraints and limited flight capacity, some light aircraft operate without the aid of
additional advanced navigation systems, as illustrated in Figure 1a,b. During emergency
situations like engine failure or flight termination, pilots may be required to execute
landings without the aid of third-party ground equipment, thus escalating the risk of
accidents. For instance, Figure 1a,b showcase a light aircraft landing on a highway, where
the pilot heavily relied on vision to perceive the surroundings.
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(a) (b) (c) (d)

Figure 1. Real-world light aircraft emergency landing cases: (a–d) images from [2–5].

In the past, manual landings were commonplace before the advent of modern airport
facilities, leading to accidents resulting from pilot error or misjudgment [6]. Furthermore,
the high pilot workload during landing can lead to distractions and inadequate processing
of visual information, potentially leading to incorrect gliding angles and descending speeds,
with the possibility of severe consequences such as fuselage crashes or wing damage. In
contrast to manual landings, modern airports offer advanced ground equipment, like the
Instrument Landing System (ILS) and Precision Approach Path Indicator (PAPI), to assist
pilots in landing safely, even in challenging conditions [7]. Nevertheless, this equipment
is not available on every runway due to its high costs and maintenance fees [8]. Also, the
installation of the associated instruments required by the ILS may be not applicable to
light aircraft. Consequently, the development of an onboard standalone environmental
perception system becomes a critical challenge.

As a result, the objective of this study is to propose a terrain-awareness landing assis-
tance system for fixed-wing aircraft. The main contributions are summarized as follows:
(1) The proposed system offers 6 degrees of freedom (6DoF) standalone localization and
guidance, enabling safe landings on diverse terrain types. (2) The developed perception
algorithm is able to mitigate the interference of inappropriate glide slope and descending
rates by providing the estimated ground slope and aircraft localization. (3) Additionally,
the system design prioritizes cost-effectiveness and lightweight features to facilitate in-
stallation on small aircraft and UAVs. (4) Moreover, operating as a self-contained system,
the developed system eliminates dependency on third-party equipment, thereby enabling
deployment in light fixed-wing aircraft. (5) Lastly, the developed auxiliary landing assis-
tance system is capable of providing real-time environmental and risk awareness during
landing. To the best of our knowledge, there are few works that focus on developing a
low-cost onboard environmental awareness landing auxiliary system for fixed-wing light
aircraft. Thus, this paper aims to develop an original framework that helps pilots perceive
the landing environment in a more intuitive way. In detail, the proposed system estimates
the current aircraft pose and the local ground normal vector, as illustrated in Figure 2a. By
aligning the z-axis of the aircraft’s body frame with the ground normal, a proper landing
attitude can be guaranteed. Additionally, real-time status showing whether the aircraft is
too high, too low, or not aligned with the center is provided by the system, as shown in
Figure 2b, enabling the pilot to prevent heavy landings.

To realize the aforementioned achievements, Simultaneous Localization and Mapping
(SLAM)-related technology is applied. The stereo vision-based SLAM is independent of
external ground equipment, making it an ideal choice for developing a lightweight and
standalone aircraft landing auxiliary system. The authors of [9] indicated that SLAM has
been the preferred choice in recent years for perceiving the environment and estimating
ego-motion. In addition, the common sensors used in SLAM include monocular cameras,
stereo cameras, RGB-D cameras, and LiDAR. Among these sensors, the stereo camera [10]
stands out for its capability for large-scale usage, lightweight nature, and low-cost features,
which fulfill our system requirements and the properties of the landing scenario. Also,
compared to a monocular camera, it does not suffer from scale ambiguity and can use
disparity to recover the depth information of pixels.
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Figure 2. Schematic of system features: (a) ground normal vector estimation (b) height alarm system.

Among the state-of-the-art stereo V-SLAM frameworks, comparisons presented in [11,12]
showed that ORB-SLAM2 achieves the best performance. Considering the exceptional
results and its real-time efficiency, ORB-SLAM2 is selected as the base method in our
system. It is responsible for estimating the localization of the aircraft and producing the 3D
feature map.

1.2. Review and Examination of ORB-SLAM2

As illustrated in Figure 3, ORB-SLAM is a renowned SLAM framework compatible
with monocular, stereo, and RGB-D cameras. In the case of a rectified stereo system, the
ORB-SLAM2 pipeline begins by establishing 3D map points from a stereo image pair. To
achieve this, the 256-bit ORB features [13] are extracted and matched [14] between the left
and right images, utilizing either the brute-force method or FLANN [15]. Both stereo and
monocular feature points are then fed into the three main parallel threads of ORB-SLAM2:
tracking, local mapping, and loop-closing.
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Figure 3. Revised ORB-SLAM2 framework for landing scenarios [16]. The blocks inside the red box
would be disabled in this work considering the property of landing.

The tracking thread assumes a constant velocity model and preliminarily calculates
the pose of the current frame. Subsequently, it performs a motion-only bundle adjustment
(BA) to further refine the pose. In case of tracking loss, a relocalization process is carried out.
The optimization problem is divided into steps to ensure improved convergence results.
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Following keyframe selection, the local mapping thread is activated to filter keyframes and
optimize the poses and map points of historical keyframes, which involves creating and
culling map points, as well as local BA. The third thread in ORB-SLAM2 is loop-closing,
which continuously performs place recognition by checking the covisibility graph. Upon
detecting a closed loop, pose graph optimization corrects previously estimated poses,
followed by full BA to ensure global consistency. This approach effectively addresses
accumulated errors in exploration. With well-formulated strategies, ORB-SLAM2 operates
these three threads simultaneously and successfully estimates poses and observed points,
even for relatively large scales.

Most applications of ORB-SLAM2 primarily focus on autonomous vehicles navigating
urban, highway, and indoor environments [11,12]. In these scenarios, the system encounters
complex image features due to the presence of various objects, lighting conditions, and
shadows. However, the landing scenario, crucial for ensuring high flight safety standards,
differs significantly, as it involves a relatively uniform and monotonous visual environment,
with few random objects near the runway.

In such monotonous scenarios, a significant proportion of image features exhibit high
similarity to each other, leading to potential mismatches and reduced localization accuracy.
Moreover, previous research [14] suggested a method of dividing the image into smaller
grids and adjusting the ORB feature threshold until at least five feature points are extracted
from each grid. However, this method may not be suitable for simple landing scenarios
where the runway lacks complex features.

During the landing phase, the pilot aligns the center of the runway with the nose direc-
tion, leading to a fixed glide angle and constrained view from the aircraft. This constraint
can cause the extracted ORB features to remain largely unchanged if there are insufficient
nearby feature points observed, resulting in underestimated forward trajectory estimation.

Meanwhile, since a landing scenario does not involve revisiting previously encoun-
tered scenes, the loop-closing thread in ORB-SLAM2 should not detect loop closures.
However, due to the high similarity among ORB features in this context, there is a risk of
improperly triggering the loop-closing thread if the associated criteria are not well defined.
Consequently, to prevent false detection, the loop-closing thread is disabled in this work,
as highlighted by the red part in Figure 3.

These unique characteristics of the landing scenario, including uniform image features,
limited forward view variation, and the absence of recurring scenes, present specific
challenges for the ORB-SLAM2 framework. Overcoming these challenges is crucial to
ensuring accurate localization and mapping during landing operations.

Additionally, in the landing process, the main focus is on maintaining the correct
glide slope and descent speed to ensure a smooth touchdown and avoid excessive rolling
or heavy landings. Thus, precise measurement of the historical trajectory becomes less
critical. Instead, real-time acquisition of current localization along the vertical (z-axis) and
lateral (y-axis) axes, namely tz and ty in the translation vector t, is much more important.
Additionally, accurately estimating the rotation matrix R is essential for maintaining a
consistent glide slope for the aircraft.

2. GMM-Based Landing Area Extraction

Previous research [17] evaluated the performance of ORB-SLAM2 in scenes with differ-
ent image feature complexities, showing that while ORB-SLAM2 offers 6DoF localization
for aircraft, the feature maps generated under complex scenes include a significant number
of non-ground points, increasing the difficulty of estimating the ground slope. Addition-
ally, the accuracy of localization shows a decline in monotonous scenes, as discussed in
the previous section. These phenomena both present a challenge when calculating the
glide slope. In this section, an optimized Gaussian Mixture Model (GMM)-based ground
extraction algorithm is presented. The concept of image segmentation using the GMM is
first discussed, followed by the methods for enhancing the efficiency and robustness of
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the color image segmentation process. Additionally, the integration issues between our
proposed method and ORB-SLAM2 are addressed, along with corresponding solutions.

The GMM is a widely used data analysis method capable of classifying data points into
different groups based on their distribution. In various research fields, image segmentation
is a crucial step in extracting specific objects of interest from the overall view. For instance,
in autonomous driving, lane line detection is a fundamental problem for guidance design.
Previous research papers, such as [18,19], employed the GMM as the primary technique
for analyzing images and extracting lane curves for car guidance laws. The robustness of
the GMM’s segmentation results can be ensured with a well-designed image-processing
pipeline. Another study [20] provided detailed guidance on formulating the lane line
extraction method based on the GMM and integrated the estimation results with Hough
lines to achieve a high level of robustness in challenging driving scenes. Additionally,
the GMM has shown potential in object tracking, as demonstrated in [21,22]. A 1D GMM
fitting algorithm can be derived through Maximum Likelihood Estimation (MLE), and its
pseudo-code is listed in Algorithm 1.

Algorithm 1 The 1D GMM fitting algorithm.

Input: (winit, µinit, σinit): initial guess of GMM parameters; K: total number of clusters

tol: tolerance for iteration; iter_max: maximum iteration times;

Output: (w, µ, σ)

1: while Iteration time < iter_max do

2: update zk
i ←

wkGk(xi |µk ,σk)
K
∑

k=1
wkGk(xi |µk ,σk)

3: update µk ← 1
N
∑

i=1
zk

i

·
N
∑

i=1
(zk

i xi)

4: update σ2
k ← 1

N
∑

i=1
zk

i

·
N
∑

i=1
(zk

i (xi − µk)
2)

5: update wk ← 1
N ×

N
∑

i=1
zk

i

6: if the update amount < tol then

7: break

8: end if

9: end while

2.1. Image Segmentation in CIE-Lab Color Space

CIE-Lab represents colors by combining lightness (L*) with two color component
axes, a* and b*, which correspond to the red-green and blue-yellow color dimensions,
respectively. To segment color images, the two channels describing color information are
used to perform GMM fitting.

Algorithm 1 summarizes the input for the GMM, which includes the data, initial
guesses of the Gaussian parameters (w, µ, σ), and desired total number of clusters, K.
These parameters play a crucial role in the convergence speed and accuracy of data fitting,
similar to other fitting algorithms. Therefore, GMM color image segmentation can be
optimized through three aspects: (1) reducing data size, (2) determining the best input
parameters for the GMM, and (3) self-adjusting the GMM cluster number K by considering
the mission properties. To demonstrate the effectiveness of these methods, the finalized
pipeline and example results using both simple and complex landing scenes are presented.

First, to simplify the evaluation of the GMM’s time cost, a 1D data sequence is used
to simulate a landing procedure, originally sized at 720 × 1280 pixels. It is then resized
to 360 × 640 pixels, and GMM segmentation is performed again. The results in Figure 4
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show a significant reduction in the average operation time of the GMM from 5.40 s to
0.78 s after resizing the image to half its original size. This demonstrates the necessity of
adjusting the image resolution to a smaller size to meet the efficiency requirements of the
system. Additionally, during the landing procedure, the runway is expected to appear
in the lower part of the image, forming a trapezoid-like shape. To eliminate unnecessary
regions, a quarter-triangle mask is designed, as illustrated in Figure 5, which rotates around
the center of the image (green point) based on the current estimated roll angle (ϕ). This
mask effectively reduces the data size by about 25%. Examples of cropped images are
shown in Figure 6. In summary, by compressing the image to half its size and cropping it
using the designed mask, the data size is reduced to almost one-sixteenth of the original.
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Figure 4. Operation time of the GMM for different sizes of data: (a) 720× 1280 (original size) and
(b) 360× 640.

 0 0  0

 

Figure 5. Designed mask in the shape of a quarter-triangle.

(a) (b) (c) (d)

Figure 6. Examples of cropped images: (a) zero ϕ, original image (b) zero ϕ, cropped image (c) slight
ϕ, original image (d) slight ϕ, cropped image.

Next, the choices of the initial guesses are analyzed. In the following simple experi-
ment, manually generated data sized 307,200 are used. With different sets of (µinit, σinit),
the results vary, as shown in Table 1. Note that the weights of each Gaussian function
are fixed to be winit =

[
1/K · · · 1/K

]
1×K. The findings indicate that when the initial

guesses are closer to the ground-truth value, the convergence is faster. On the other hand,
if the initial guesses are too poor and far from the ground-truth value, the GMM might
fail to converge to the global optimum. As mentioned earlier, it is crucial to assign an
appropriate set of initial guesses when using the GMM. Additionally, the choice of the
number of clusters (K) affects the computational time; larger K values result in higher
computational costs. Thus, selecting an adequate number of clusters to divide the data
properly and avoid excessive time consumption is essential.

To address this issue, an algorithm that automatically determines the initial guesses
has been developed, which is only required in the first frame of the entire landing process,
ensuring higher efficiency. Since the view of the camera does not change drastically
within a short period, the variation between image histograms can be considered smooth.
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Consequently, the locations of peaks on the histogram move slowly, allowing one to reuse
the estimated GMM results of the current frame as the initial guesses for the next frame.

Table 1. The elapsed times, convergence results, and total iterations of the GMM under different
initial guesses.

(µinit, σinit) Time Convergence Iterations

0.3× (µtrue, σtrue) 4.8903 Yes 92

0.95× (µtrue, σtrue) 0.1238 Yes 2

random 0.1439 No 2

As shown in Figure 7, the locations of the peaks in the pixel histogram play a significant
role in selecting the initial guess, µinit. The convergence points closely align with these
peaks, as indicated by the red and black lines. The number of peaks corresponds to the
number of clusters required to adequately divide the data, represented by K. Algorithm 2
outlines the procedure for initializing the parameters for the GMM. Figure 8 illustrates the
histograms of the a* and b* channels, along with the estimated peaks using this algorithm.
To implement the process of finding peaks, the function provided by MATLAB [23] is
directly used. However, there are still some user-defined parameters for this function,
which significantly impact the results. These parameters are set as listed in Algorithm 2.
To balance efficiency and accuracy, the maximum number of clusters is set to six, and the
minimum is set to three for the first frame in the entire landing procedure. If the total
number of clusters falls outside this range, the threshold will be adjusted accordingly.
Additionally, after clustering the pixels in the a* and b* channels, pixels belonging to the
same group in both channels are considered as a single cluster. For example, if the GMM
result indicates two clusters in the a* channel and three clusters in the b* channel, this
implies a total of six image segments with indices (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), and (2, 3).
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Figure 7. Example of using peaks to determine the best initial guess of µ, with real-world image data.

Lastly, as pilots perform the landing, the complexity of the view reduces, as evidenced
in Figures 9 and 10. Note that the images in these figures were processed using the resizing
and cropping methods introduced earlier in this section. Considering the histograms, it
is shown that the number of required clusters decreases during landing. Throughout the
entire landing process, if the value of K is fixed, which was determined from the first
frame, some Gaussian function weights may decrease to zero, leading to a divergence in
the GMM. To address this issue, a mechanism is designed to check the estimated weights
(w) after each GMM calculation for a frame. If the system finds any weight less than 0.1,
the corresponding Gaussian function with w < 0.1 is removed, and K is adjusted to K− 1
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accordingly. This ensures the stability and accuracy of GMM-based image segmentation
during the landing process.
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6: Find peaks using the 4 parameters:

7: K = the number of peaks of Da∗ ×Db∗
8: while K is less than 3 or more than 6 do

9: if K < 3 then

10: TS = TS/2

11: else if K > 6 then

12: TS = TS*2

13: end if

14: Find peaks using the 4 parameters

15: end while

16: K = peaks of Da∗ ×Db∗
17: µinit = locations of the peaks

18: σinit = 5

19: winit = 1/K
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is shown that the number of required clusters decreases during landing. Throughout the
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Algorithm 2 Initialization of GMM parameters for color images in the CIE-Lab color space.

Input: Da∗ Db∗ data in channels a* and b*

Output: (K, winit, µinit, σinit): GMM initial guesses

1: Initialize parameters for finding peaks:

2: MIN_PEAK_DIST_A = (max(Da∗)−min(Da∗))/6

3: MIN_PEAK_DIST_B = (max(Db∗)−min(Db∗))/6

4: MIN_PEAK_HEIGHT = 0.02

5: TS = 0.0001

6: Find peaks using the 4 parameters:

7: K = the number of peaks of Da∗ ×Db∗
8: while K is less than 3 or more than 6 do

9: if K < 3 then

10: TS = TS/2

11: else if K > 6 then

12: TS = TS*2

13: end if

14: Find peaks using the 4 parameters

15: end while

16: K = peaks of Da∗ ×Db∗
17: µinit = locations of the peaks

18: σinit = 5

19: winit = 1/K

To validate the developed method and evaluate the image segmentation performance,
two landing simulation image sequences are used: one with a simple scene and another
with a complex scene, as shown in Figure 11. The corresponding segmentation outcomes
are illustrated in Figures 12 and 13, while the computational time results are recorded in
Tables 2 and 3. Note that the maximum and minimum data are invalid for the phase of
finding peaks since it is only performed once.
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To validate the developed method and evaluate the image segmentation performance,
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are illustrated in Figures 12 and 13, while the computational time results are recorded in
Tables 2 and 3. Note that the maximum and minimum data are invalid for the phase of
finding peaks since it is only performed once.
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Figure 11. Landing simulation image sequences: (a) simple scene and (b) complex scene.

Figure 10. Image histograms of the late landing stage: (a) processed view, (b) histogram of a* channel
and (c) histogram of b* channel.

(a) (b)

Figure 11. Landing simulation image sequences: (a) simple scene and (b) complex scene.

(a) (b)

Figure 12. Segmentation results of the simple scene image sequence: (a) early stage of landing and
(b) late stage of landing.

These results demonstrate that the method successfully extracted the runway almost
exclusively, and the reduction mechanism of K worked as expected. Note that in Figure 13b,
the segment on the right-hand side appears fragmented. However, it actually contains
the complete runway, which is obscured by a very dark shadow. Also, the segment in the
complex scene contains some non-ground objects, as shown in Figure 13a, because these
objects have a similar color to the runway, making it impossible to separate them through
color-based clustering techniques.



Electronics 2024, 13, 1946 10 of 22

(a) (b)

Figure 13. Segmentation results of the complex scene image sequence: (a) early stage of landing and
(b) late stage of landing.

Table 2. The elapsed time of each phase in the simple scene.

Find Peaks Resize + Crop GMM

Max. - 0.0872 0.1629

Min. - 0.0549 0.0027

Avg. 0.0330 0.0599 0.035

Table 3. The elapsed time of each phase in the complex scene.

Find Peaks Resize + Crop GMM

Max. - 0.1341 0.0871

Min. - 0.0539 0.0014

Avg. 0.0330 0.0609 0.0103

Additionally, through the strategic removal of unnecessary regions and resizing the
resolution, the computational demands were significantly reduced while maintaining an
acceptable level of segmentation accuracy. This ensures that our proposed method can
efficiently handle real-time image segmentation tasks during the landing process.

To conclude this section, an adaptive pipeline is developed to automatically determine
the GMM initial guess, µinit, and K for the first frame in the landing procedure. Then, the
GMM results, including (w, µ, σ), can be fed to the GMM algorithm as the initial guesses
for the next frame, as shown in Figure 14. Also, efficiency has been increased by using
image pre-processing techniques, and GMM convergence for each frame has been ensured
by automatically culling the redundant Gaussian functions.
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Figure 14. Finalized pipeline for optimized color image segmentation.

2.2. Integrating the Proposed Method with ORB-SLAM2

This section focuses on extracting the ground information from all the clusters gener-
ated through the GMM, which is crucial for landing attitude guidance. Additionally, the
cascading effects between the input images and ORB-SLAM2 are discussed in detail.

To begin, the process of extracting the landing area is first explained. The sample
inputs (Figure 15) include two test images, and the segmentation results are presented in
Figure 16a,b. These results highlight the cluster containing the runway with a red rectangle.
It can be observed that paved areas, like runways, have a darker appearance compared to
their surroundings. Hence, the cluster with the lowest average gray value is considered a
potential landing area candidate.

Sometimes, insignificant fragments may also have a very low average gray value,
which leads to an unsuccessful selection. As shown in Figure 16b, the average gray value
of Segment 1 is 49.19, slightly lower than that of Segment 4, which is the correct desired
segment. To address this, an iterative process is introduced to ensure a sufficient number of
pixels in the selected cluster, avoiding selecting the wrong fragment with a low average
gray value. If the criteria for the number of pixels are not met, the algorithm will select the
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cluster with the next lowest average gray value until it finds a suitable candidate. Finally,
this extracted landing area serves as input for ORB-SLAM2.

(a) (b)

Figure 15. Sample images for GMM segmentation: (a) simple scene and (b) dark scene.

(a) (b)

Figure 16. Segmentation results of Figure 15: (a) simple scene and (b) dark scene. Red box represents
the correct desired segment.

However, feeding the image segment into ORB-SLAM2 may decrease the feature
robustness and the accuracy of SLAM. First, since the feature points are restricted to a
smaller region, ORB-SLAM2 lacks a sufficient number of feature points to estimate the
current pose in some frames, leading to tracking loss (Figure 17a). Second, the pixels on the
hard edges may be detected as FAST keypoints, as shown in Figure 17b. These keypoints
have a very low reference value since they are not actual edge points in physics, which
leads to a decline in feature-matching accuracy.

(a) (b)

Figure 17. Inappropriate selection of feature points: (a) feature loss and (b) features with low reference
value. (The pentagrams represent the ORB feature points.)

To solve these issues, some image-processing steps are integrated after GMM segmen-
tation. Figure 18a shows the segmented runway generated by the GMM in the form of a
binary mask. The lines on the runway are culled, leaving pixel holes in this segment. As
the first step, image dilation is applied using a structural element to enlarge the informative
region (Figure 18b), which allows FAST to select more feature points beside the runway.
Next, a Gaussian kernel is used to smooth the edges of the image segment, preventing
incorrect keypoint selection on hard edges (Figure 18c), thus reducing the possibility of
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feature mismatches. After these additional steps, the binary mask is used to perform the
pixel dot product, resulting in the filtered image (Figure 19b).

As presented in the figure, the processed image is horizontally enlarged, including the
region with strong texture, implying that FAST could select more keypoints, thus increasing
the accuracy of feature matching. Also, the edges of the segment are smoothed, addressing
the issue of low-reference-value feature points. The adjusted results of Figure 17 are shown
in Figure 20, indicating that the two problems have been solved through these additional
image-processing steps.

(a) (b) (c)

Figure 18. The effect of image dilation and Gaussian smoothing: (a) binary mask generated from the
GMM (b) after dilation (c) after Gaussian smoothing.

(a) (b)

Figure 19. The processed image that is fed into ORB-SLAM2: (a) original image (b) processed image.

(a) (b)

Figure 20. The feature points after applying additional image-processing methods: (a) adjusted result
of Figure 17a. (b) adjusted result of Figure 17b. (The pentagrams represent the ORB feature points.)

3. Robust Plane Fitting

As discussed previously, a safe landing relies on the proper glide slope and descending
speed, which can be estimated through aircraft localization and the 3D ground map. The
GMM-based method introduced in the previous chapter helps extract the ground pixels
and forms the map of the landing area. Using the feature points around the current aircraft
location, plane fitting methods can be introduced to calculate the plane equation and
provide an appropriate glide slope. In more detail, once the aircraft succeeds in aligning its
z-axis (body frame) with the normal vector of the ground, a safe glide slope can be ensured.
Nonetheless, as shown in Figure 21, since the GMM-based method segments the regions
according to their colors, there might still be some objects with a similar color to the ground
that could not be separated, resulting in outliers during the plane fitting steps.
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Figure 21. Noisy outliers included in a 3D sparse map during a landing frame (unit: meters): (a) 3D
view and (b) front view.

3.1. Outlier Removal

To address the issue of outliers, various algorithms have been developed, such as
RANSAC (Random Sample Consensus) [24], MSAC (M-estimator Sample Consensus), and
MLESAC (Maximum Likelihood Estimate Sample Consensus) [25]. These algorithms aim
to estimate the best model from measurement data in the presence of outliers and have
found widespread applications in data analysis. Compared to traditional least square
methods, they do not require numerical optimization to solve nonlinear minimization
problems, making them efficient, memory-saving, and suitable for real-time systems.

MSAC and MLESAC have higher accuracy compared to RANSAC [26], which can be
attributed to the design of their loss functions, as shown in Equations (1)–(3):

LRANSAC =
n

∑
i=1

L, L =

{
0 |ei| < c
1 otherwise

(1)

LMSAC =
n

∑
i=1

L, L =

{
e2

i |ei| < c
c2 otherwise

(2)

LMLESAC = −
n

∑
i=1

log

(
γ exp

(
− e2

i
2σ2

)
√

2πσ2
+

(1− γ)

v

)
(3)

where ei is the error value of each data point (indexed from 1 to n), c is the user-defined
threshold for dividing inliers and outliers, γ is the inlier ratio, σ is the magnitude of inlier
noise, and v is the possible range of outliers. The algorithm iterates N times, selecting the
best estimated model based on the loss value. The suggested number of N is given by:

N =
log α

log(1− γm)
(4)

where α is the probability of a failed estimation, usually set as a small number (for example,
0.001), and m is the number of data required to generate a hypothesis. Finally, γ is the inlier
ratio, which stands for the probability of picking up an inlier from the whole dataset. In
practice, the inlier ratio γ is usually unknown and is also a user-defined parameter. It is
worth noting that the value of N relies heavily on the selection of m, and if the calculated N
is too small to obtain an acceptable result in practice, N may need to be adjusted manually.
These algorithms require several user-defined parameter selections, which may become the
primary challenge when it comes to real-time applications.
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MLESAC models inliers with a Gaussian distribution, while outliers follow a uniform
distribution, resulting in high accuracy in practical problems. Therefore, in the following,
MLESAC serves as the benchmark for the performance evaluation.

3.2. Iterative Weighted Plane Fitting (IWPF)

In this section, a newly designed robust plane fitting method is introduced, named
iterative weighted plane fitting (IWPF). This algorithm incorporates the concept of weights
to estimate the normal vector of a plane using Principal Component Analysis (PCA) and
employs an iterative approach to remove outliers. IWPF aims to enhance insensitivity to
user-defined parameters, improving robustness in practice.

The procedure of IWPF is listed in Algorithm 3. Using three-dimensional data as
an example, it starts by initializing the weights of all data points to 1 and finding their
weighted centroid. Subsequently, the weighted centroid PC is established as the origin,
and Principal Component Analysis (PCA) is employed to identify the three principal axes
of the point cloud, forming the estimated plane. Once the plane is estimated using the
PCA approach, the distance of each point to the plane is computed and represented as
r = [r1, r2, · · · , ri]. IWPF characterizes the noise using a zero-mean Gaussian function
based on ri, where larger values of ri indicate a higher likelihood of being an outlier. This
function can be expressed as:

G(ri|µ, σ) = exp(− r2
i

2σ2 ) (5)

where
µ = 0

σ = std(r)
(6)

By setting the threshold c, the points can be classified as either inliers or outliers, as
shown in Equation (7). This physically implies that points too far from the current estimated
plane are considered outliers, whereas points within the range of noise are considered
inliers. Once the data points are classified, IWPF proceeds by assigning a weight of 0 to the
outliers and initiates the next iteration. This entails performing PCA once again, excluding
the previously identified outliers. The iteration continues until the termination condition
is met, either when the maximum iteration count (N) is reached or when the change in
the current estimation is less than a predefined tolerance (tol). Regarding the iteration
tolerance, denoted as tol, the recommended value is 1 × 10−3, and it is not the primary
factor influencing the performance.{

Gi < c⇒ outlier
Gi ≥ c⇒ inlier

(7)

Algorithm 3 Iterative Weighted Plane Fitting (IWPF).

Input: Pn×3: A set of 3D point clouds, c: Threshold for inlier probability, tol: Tolerance

for iteration (suggested 1e− 3), N: Maximum iteration time

Output: VN : Normal vector of the fitting plane

1: Initialization.

2: n← number of points

3: W ←
[

1 ... 1
]T

1×n weights for each point

4: VN ←
[

0 0 0
]T

1×3

5: VN,temp = VN

6: Indices of outliers = ∅
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Algorithm 3 Cont.

7: Start Estimation.
8: while Iteration time < N do
9: PW = P ·W =

[
PW1 PW2 PW3

]
10: Update number of inliers ninlier
11: Weighted centroid

PC =
[

∑ PW1 ∑ PW2 ∑ PW3
]
/ninlier

12: Weighted covariance matrix
A← (P− PC)

T ⊗WT × (P− PC)
13: SVD. Find the right singular matrix of A

which is V =
[

V1 V2 V3
]

14: Update VN ← V3
15: Find projection points on the plane

Pproj = P− ( (P−PC)×VN
||VN ||2 )×VT

N

16: Define residual r = ||P− Pproj||
17: σ← std(r)
18: µ← mean(r)
19: Create a Gaussian function

G(ri|µ, σ) = exp(−r2
i /2σ2)

20: For G(ri|µ, σ) < c
consider the point as an outlier

21: Update indices of outliers← Pi,outlier
22: Update weights of the outliers Wo ← 0
23: if ||(VN −VN,temp)|| < tol then
24: break
25: end if
26: Update VN,temp ← VN
27: end while

3.3. Comparison between IWPF and MLESAC

In this section, the Unreal Engine dataset [17] is utilized to evaluate the performance
of MLESAC and IWPF. The dataset is created from two scenes with different complexities
(referred to as simple and complex) and three aircraft landing paths (referred to as Ref.,
A, and B), resulting in a total of six scenarios. For the evaluation, two of these scenarios
are used, as depicted in Figure 22, which shows that the number of feature points in the
simple scene is relatively lower compared to that in the complex scene. However, the inlier
ratio is notably higher. The ground in these scenes is designed to be horizontal, which
means that the ground truth of the plane’s normal vector is perpendicular to the world
coordinate system.

As mentioned earlier, achieving accurate landing attitude guidance involves estimat-
ing the ground slope based on the feature points situated close to and ahead of the aircraft.
Hence, it becomes essential to define a bounding box that will aid in filtering the region of
interest (ROI) before initiating the plane fitting process. The dimensions of the bounding
box are depicted in Figure 23. As illustrated, the feature points located within the bounding
box are used to perform plane fitting. Given the possibility of uneven landing terrains, it is
crucial to focus exclusively on the local feature points in proximity to the aircraft rather
than the global feature points. The vertical height of the bounding box is established as the
maximum distance between a feature point and the camera in the vertical direction. The
longitudinal length of the bounding box is set at 100 m from the camera, while the width is
defined as 60 m.
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Figure 22. Example map using Unreal Engine dataset A. (a) simple scene and (b) complex scene.

 max C
zP

100 m

60 m

Figure 23. Schematic of the bounding box.

First, the error of the estimated normal vector for MLESAC is shown in Table 4. Overall,
the performance varies significantly under different σ values, showing that MLESAC is
sensitive to user-defined parameters. On the other hand, inappropriate selection of the
inlier noise level (σ) could be fatal to the system. However, during an emergency landing,
it is impossible to obtain information about noise in advance, which implies that it is not
suitable to use MLESAC in the landing assistance system. Second, the error of the estimated
normal vector for the proposed algorithm, IWPF, under different user-defined parameters c
is listed in Table 5. The average error is within 1.21 degrees, and the performance is stable
and not affected by the selection of c.

Table 4. Error (degrees) for MLESAC in the simple scene (S) and the complex scene (C).

σ 0.5 (S) 0.5 (C) 2 (S) 2 (C) 5 (S) 5 (C)

Max. 19.01 15.02 9.62 7.57 39.43 12.29

Min. 0.07 0.04 0.08 0.37 0.64 0.29

Avg. 1.64 2.08 1.14 1.63 6.79 2.26
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Table 5. Error (degrees) for IWPF in the simple scene (S) and the complex scene (C).

c 0.5 (S) 0.5 (C) 0.8 (S) 0.8 (C) 0.95 (S) 0.95 (C)

Max. 5.34 4.73 4.58 6.55 5.63 7.12

Min. 0.36 0.39 0.50 0.36 0.23 0.09

Avg. 1.15 1.14 1.11 1.06 1.21 1.18

In conclusion, the robustness of IWPF has been substantiated through these tests, with
its performance remaining resilient to the choice of the threshold parameter, c. Figure 24
summarizes the methodologies from Sections 2 and 3, comprising three main blocks. Firstly,
the GMM ground extraction block aims to extract the ground image from the stereo camera
input. Second, ORB-SLAM2 produces the aircraft’s pose and a 3D ground map, which can
be used by the third block to calculate a suitable relative glide slope through the robust
IWPF algorithm, aiding the pilot in a safe landing.

Figure 24. Full flowchart of the system.

4. Results and Discussion

In this section, the developed algorithms are validated on all six Unreal Engine datasets:
Ref., A, B, Ref_city, A_city, and B_city.

First, for the 6DoF localization, the RMSE is shown in Table 6. As previously discussed,
since the number of feature points is fewer in the simple scene, the overall performance
of ORB-SLAM2 declined slightly compared to the complex scene. Second, for the ground
slope estimation, the error values of IWPF are shown in Table 7 and Figure 25, showing that
the proposed algorithms successfully provided the glide angle. In addition, the maximum
error only occurred in the first few frames after the system initialized, where the inlier
ratio of feature points was significantly lower, leading to the failed estimations of IWPF.
Considering the presented simulation results, it can be concluded that the system should
accumulate at least 500 feature points to ensure an accurate glide slope estimation. With
this additional step, the results show an average error of approximately 1 degree. Note that
for Path B, which simulates heavy landings (datasets B and B_city), the results during the
last part are invalid since the camera was too close to the ground and could not capture
any image features.



Electronics 2024, 13, 1946 19 of 22

0 50 100 150 200 250 300

Frame Number

0

5

10

15

E
rr

o
r 

(d
e

g
.)

0

1000

2000

3000

4000

5000

N
u

m
b

e
r 

o
f 

lo
c
a

l 
fe

a
tu

re
 p

o
in

ts

(a)

0 50 100 150 200 250 300

Frame Number

0

2

4

6

8

10

12

E
rr

o
r 

(d
e

g
.)

0

2000

4000

6000

8000

N
u

m
b

e
r 

o
f 

lo
c
a

l 
fe

a
tu

re
 p

o
in

ts

(b)

0 50 100 150 200 250 300

Frame Number

0

1

2

3

4

5

E
rr

o
r 

(d
e
g
.)

0

1000

2000

3000

4000

N
u
m

b
e
r 

o
f 
lo

c
a
l 
fe

a
tu

re
 p

o
in

ts
(c)

0 50 100 150 200 250 300

Frame Number

0

1

2

3

4

5

6

E
rr

o
r 

(d
e
g
.)

0

2000

4000

6000

8000

N
u
m

b
e
r 

o
f 
lo

c
a
l 
fe

a
tu

re
 p

o
in

ts

(d)

0 20 40 60 80 100 120 140 160 180 200

Frame Number

0

5

10

15

E
rr

o
r 

(d
e

g
.)

0

1000

2000

3000

4000

N
u

m
b

e
r 

o
f 

lo
c
a

l 
fe

a
tu

re
 p

o
in

ts

(e)

0 20 40 60 80 100 120 140 160 180 200

Frame Number

0

1

2

3

4
E

rr
o
r 

(d
e
g
.)

0

1000

2000

3000

4000

5000

N
u
m

b
e
r 

o
f 
lo

c
a
l 
fe

a
tu

re
 p

o
in

ts

(f)

Figure 25. The number of feature points used for plane fitting and the corresponding error: (a) UE_Ref,
(b) UE_Ref_city, (c) UE_A, (d) UE_A_city, (e) UE_B and (f) UE_B_city (UE_B and UE_B_city encoun-
tered tracking loss in the last part as the camera was too close to the ground).

Table 6. RMSE of 6DoF localization. Translations x, y, and z are in meters, while rotations ϕ, θ, and ψ

are in degrees.

Ref. A B Ref_City A_City B_City

x 1.76 1.51 1.60 0.98 1.28 0.75

y 0.16 1.33 0.21 0.21 0.59 0.12

z 0.41 0.80 0.32 0.21 0.24 0.09

ϕ 0.10 0.57 0.61 0.15 0.12 0.43

θ 0.24 1.65 0.85 0.42 0.32 0.61

ψ 0.22 2.03 0.25 0.52 0.55 0.10

Table 7. Error (degrees) of IWPF. Avg.* = the average after accumulating 500 feature points.

Ref. A B Ref_City A_City B_City

Max. 14.20 4.58 14.88 10.67 6.31 4.02

Min. 0.12 0.50 0.03 0.72 0.36 0.54

Avg. 0.96 1.11 1.37 1.38 1.05 1.69

Avg.* 0.40 1.08 0.93 1.07 0.89 1.67

Next, we further used a reference path designed in [17] as a benchmark to judge
whether the aircraft’s height was safe and aligned with the center of the runway, such
that the pilot would receive an alarm when the aircraft’s status was at risk. As illustrated
in Figure 2b, once the aircraft started to descend, a virtual landing tunnel popped up,
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representing the aforementioned reference path. Additionally, we used Paths A and B to
demonstrate the capability of the proposed alarm system, as shown in Figures 26 and 27, re-
spectively. The simulation results show that the system successfully indicated the aircraft’s
position status using real-time localization data. Also, it should be noted that in Figure 27,
the alarm flag in the last part was invalid due to vision failure, as mentioned previously.

Combining this alarm system with the landing attitude guidance feature introduced
previously, the system was able to provide the pilot with an intuitive decision-making inter-
face, ensuring safety on unknown uneven runways. For real-time systems, a high update
rate is also required. These simulations were performed using MATLAB, as mentioned
in [17], and the system’s operation time per frame is summarized in Table 8.

Table 8. System’s operation time per frame.

Ref. A B Ref_City A_City B_City

Max. 1.06 0.96 0.86 1.39 1.19 1.03

Min. 0.43 0.45 0.30 0.52 0.45 0.28

Avg. 0.52 0.57 0.52 0.69 0.58 0.57
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Next, we further used a reference path designed in [17] as a benchmark to judge
whether the aircraft’s height was safe and aligned with the center of the runway, such
that the pilot would receive an alarm when the aircraft’s status was at risk. As illustrated
in Figure 2b, once the aircraft started to descend, a virtual landing tunnel popped up,
representing the aforementioned reference path. Additionally, we used Paths A and B
to demonstrate the capability of the proposed alarm system, as shown in Figures 26
and 27, respectively. The simulation results show that the system successfully indicated the
aircraft’s position status using real-time localization data. Also, it should be noted that in
Figure 27, the alarm flag in the last part was invalid due to vision failure, as mentioned
previously.

Combining this alarm system with the landing attitude guidance feature introduced
previously, the system was able to provide the pilot with an intuitive decision-making inter-
face, ensuring safety on unknown uneven runways. For real-time systems, a high update
rate is also required. These simulations were performed using MATLAB, as mentioned in
[17], and the system’s operation time per frame is summarized in Table 8.

Table 8. System’s operation time per frame.

Ref. A B Ref_city A_city B_city

Max. 1.06 0.96 0.86 1.39 1.19 1.03

Min. 0.43 0.45 0.30 0.52 0.45 0.28

Avg. 0.52 0.57 0.52 0.69 0.58 0.57
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Figure 26. Center–alignment alarm test: (a) UE_A (b) UE_A_city.Figure 26. Center–alignment alarm test: (a) UE_A (b) UE_A_city.

Figure 27. Height alarm test: (a) UE_B (b) UE_B_city (encountered tracking loss in the last part as the
camera was too close to the ground).
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5. Conclusions and Future Work

In this paper, the critical need for an onboard standalone decision-aid landing assist
system is addressed, particularly for fixed-wing aircraft emergency landings in the absence
of additional external navigation systems. Drawing inspiration from naked-eye landings,
a stereo vision-assisted landing system is developed, which is capable of guiding pilots
to safely land on diverse runways and highways. This system adapts the ORB-SLAM2
technique as the fundamental framework for environmental perception and overcomes the
challenge of extracting the desired ground points, which traditional SLAM frameworks
struggle with. This work also designs a GMM-based color image segmentation method
for land extraction, and the segmented land image is used as input for ORB-SLAM2. The
proposed method effectively extracts the ground region, and the corresponding normal
vector can be calculated precisely using the proposed IWPF. With the robust normal vector
estimation, pilots can evaluate whether the aircraft’s landing direction is aligned with the
surface and, therefore, unexpected landing accidents can be avoided. Finally, different
flight scenarios are considered to evaluate the effectiveness and feasibility of the proposed
decision-aid landing system.

For future work, considering the implementation in the real world, one potential
method to enhance the system’s performance is to utilize an Inertial Measurement Unit
(IMU) capable of providing a high update rate for Euler angle estimation. The fusion of
sensor data using an Extended Kalman Filter (EKF) becomes a significant consideration for
achieving optimal results.
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