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Abstract: Numerous studies are based on the correlation among stock factors, which affects the 

measurement value and interpretability of such studies. Research on the causality among stock fac-

tors primarily relies on statistical models and machine learning algorithms, thereby failing to fully 

exploit the formidable computational capabilities of deep learning models. Moreover, the inference 

of causal relationships largely depends on the Granger causality test, which is not suitable for non-

stationary and non-linear stock factors. Also, most existing studies do not consider the impact of 

confounding variables or further validation of causal relationships. In response to the current re-

search deficiencies, this paper introduces a deep learning-based algorithm aimed at inferring causal 

relationships between stock closing prices and relevant factors. To achieve this, causal diagrams 

from the structural causal model (SCM) were integrated into the analysis of stock data. Subse-

quently, a sliding window strategy combined with Gated Recurrent Units (GRUs) was employed to 

predict the potential values of closing prices, and a grouped architecture was constructed inspired 

by the Potential Outcomes Framework (POF) for controlling confounding variables. The architec-

ture was employed to infer causal relationships between closing price and relevant factors through 

the non-linear Granger causality test. Finally, comparative experimental results demonstrate a 

marked enhancement in the accuracy and performance of closing price predictions when causal 

factors were incorporated into the prediction model. This finding not only validates the correctness 

of the causal inference, but also strengthens the reliability and validity of the proposed methodol-

ogy. Consequently, this study has significant practical implications for the analysis of causality in 

financial time series data and the prediction of stock prices. 

Keywords: deep learning; causal inference; causal diagram; granger causality test; potential  

outcome framework 

 

1. Introduction 

As a typical complex system, the stock market exhibits characteristics of non-linear-

ity, non-stationarity, and multi-components [1–3]. In complex real-world scenarios, accu-

rately identifying the specific factors that influence stock market fluctuations becomes 

challenging. Many traditional approaches are no longer applicable for predictive research 

in this domain. Therefore, it is necessary to employ more sophisticated methods to un-

cover the complex features embedded within time series data. 

Currently, methods such as logistic regression, gradient boosting models, and deep 

learning primarily aim to identify correlation information between variables by fitting 

observed data. Subsequently, variables with high correlations to the target variable are 

selected as input variables for prediction [4–7]. However, focusing solely on correlations 

and not considering causality when choosing predictors can affect the accuracy of predic-

tions [8]. Correlations may arise from causal relationships, but it is not equivalent to cau-

sality and is further influenced by confounding variables. Confounding variables affect 
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both the treatment and target variables simultaneously, resulting in correlations between 

them [9]. 

In most cases, the Granger causality test is used to infer causal relationships between 

financial time series [10,11]. Traditional methods for inferring Granger causality mainly 

include Vector Autoregression (VAR) [12], the Vector Error Correction Model (VECM) 

[13], and their respective variants [14,15]. 

Expanding on the ideas discussed above, Xu et al. [16] presented a novel causal de-

composition approach and further applied it to investigate information flow between two 

financial time series on different time scales. The causal decomposition method has three 

main steps: decomposition, reconstruction, and causality testing. By tracking the driving 

factors of causal relationships from the perspective of information frequency, the causal 

decomposition method re-evaluates the causal relationship between stock prices and trad-

ing volume from the time-frequency perspective. 

Although causal inference methods based on statistical modeling have been exten-

sively studied and have yielded fruitful results, these methods mainly focus on evaluating 

the interaction between two variables, overlooking the impact of confounding variables 

[17–24]. Constructing more intricate causal networks, based on the examination and anal-

ysis of pairwise causal relationships, still presents significant challenges. This necessitates 

the exploration of novel methods and theories to tackle issues such as indirect dependence 

resulting from front-door paths and common driving factors caused by backdoor paths. 

Moreover, it has been found that most economic time series are non-stationary ac-

cording to various unit root test methods, such as the Augmented Dickey-Fuller (ADF) 

test [25]. By applying preprocessing techniques, like differencing or logarithmic transfor-

mation, these time series can be transformed into stationary data. VAR and the VECM are 

usually more effective when the input data are stationary [26]. Therefore, for the inference 

of Granger causality in non-stationary time series, the inputs need to be preprocessed to 

obtain a stationary series in order to avoid forecast distortion. Assuming that the time 

series becomes stationary after a difference order of 1 or 2, static causal relationships can 

be inferred. However, economic data often exhibit dynamic properties, and the prepro-

cessing steps may overlook the dynamic causal relationships within the time series. 

Causal relationships may not only exist between the current and previous period of data. 

The oversimplification of preprocessing methods can lead to disregarding dynamic cau-

sality and losing valuable information from the original data. 

Machine learning (ML) models can capture non-linear and complex relationships bet-

ter than traditional statistical models [27]. Research has been conducted on causal infer-

ence utilizing ML models to overcome limitations in conventional approaches. The use of 

ML models offers a more accurate and comprehensive ability to infer causal relationships. 

These models can handle complex datasets that involve a substantial number of variables 

and aim to identify and infer causal relationships within them. This would help to reveal 

potential causal paths in causal networks [28]. 

Leng et al. [29] proposed an independent component analysis (ICA) framework, in-

spired by the decision tree (DT) algorithm in machine learning, for measuring causal re-

lationships by calculating feature importance. The core idea of the framework is to convert 

time series data into a causal network representation and to make causal inferences based 

on feature importance. The ICA framework is designed at the network level, serving as a 

connection and link between traditional mutual causality detection methods and causal 

network reconstruction. 

While the application of machine learning in causal analysis brings forth new per-

spectives and approaches, it also possesses certain shortcomings. These limitations en-

compass sensitivity to data bias and causal confounding, as well as restrictions in han-

dling complex non-linear relationships [30,31]. In comparison, deep learning models ex-

hibit more robust expression and pattern learning capabilities, as they can acquire abstract 

computational methods from intricate and high-dimensional data [32]. For example, 

Chong et al. [33] explored a deep learning-based model to evaluate the efficacy of three 
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unsupervised feature extraction methods to predict future market behavior. Similarly, 

other studies have made significant advancements in the financial domain through the 

utilization of deep learning models. 

Indeed, a dual-stage attention-based recurrent neural network (RNN) model pro-

posed by Qin et al. [34] has shown promising results in predicting stock datasets. By adap-

tively extracting relevant input features for prediction, the model can effectively capture 

important information and make accurate predictions. Zahra et al. [35] combined the con-

volutional neural network (CNN) and long short-term memory (LSTM) with a fundamen-

tal analysis. By extracting and synthesizing features at multiple levels and dimensions, 

the model can capture both local and global patterns and improve prediction accuracy. 

Rahman et al. [36] applied the GRU model to predict stock data of Coca-Cola and reduced 

modeling errors. The GRU model is effective in overcoming the problem of vanishing 

gradients, which can occur in deep learning models and affect their performance. Com-

pared to traditional econometric and ML approaches, the deep learning-based models 

demonstrate better prediction performance. This highlights the efficiency and effective-

ness of deep learning architectures in handling financial time series data. 

Wei [37] proposed an interpretable deep learning architecture, known as deep learn-

ing inference (DLI), to investigate Granger causality. The main contribution of DLI is to 

uncover the Granger causality between Bitcoin price and the S&P index, enabling more 

accurate prediction of Bitcoin prices in relation to the S&P index. However, this method 

only provides a visual representation of the predicted results for Bitcoin prices and lacks 

evaluation metrics to quantify the results. Its inference of a Granger causality between the 

two variables is solely based on the enhanced prediction performance of Bitcoin prices 

after incorporating historical data from the S&P index. Studies inferring the causal rela-

tionship of individual stock-related factors based on deep learning models are gradually 

stimulating the interest of researchers. 

Tank et al. [38] introduced the neural Granger test, enhancing the detection of 

Granger causality by incorporating non-linear interactions. The researchers proposed a 

suite of non-linear architectures, wherein each time series is modeled using either Multi-

Layer Perceptron (MLP) or RNN. Inputs to this non-linear framework consist of past lags 

from all series, while the outputs predict the future values of each series. Additionally, a 

group lasso penalty is applied to effectively reduce the input weights to zero, refining the 

predictive accuracy of the model. 

In order to better comprehend and explicate causal relationships in data, Donald Ru-

bin put forward the POF. The POF seeks to reveal dynamic causal relationships through 

randomized trials and natural experiments [39,40]. Additionally, Judea Pearl introduced 

the causal diagrams model as a formalized approach for researchers to describe and infer 

causal relationships. Combining the potential outcomes framework and causal diagrams 

can lead to a better understanding and explanation of causal relationships in observed 

data for causal inference. 

Although there has been significant progress in the investigation of causality within 

stock data, the Granger causality test, designed for linear and stable data, exhibits biases 

when applied to non-linear and unstable stock data. Moreover, the majority of causal in-

ference methodologies neglect the issue of interference caused by confounding variables, 

as well as the lack of further validation of the results. To address the aforementioned issue, 

in this paper, a deep learning-based causal inference architecture and algorithm inspired 

by the POF, which also integrates causal diagrams and the non-linear Granger test, is pro-

posed. This framework and algorithm are specifically designed to infer the causal rela-

tionships between individual stock closing prices and their relevant factors. 

The innovation of this paper lies in the utilization of causal diagrams and the estab-

lishment of a grouped architecture through deep learning networks. The primary contri-

butions of the proposed methods are summarized as follows: 

1. To better understand the impact of confounding variables on causal relationships, 

causal diagrams are employed in the stock data analysis to explore the relationships 
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among confounding variables, treatment variables, and target variables. The appli-

cation of front-door and backdoor adjustments allows for the control of confounding 

variables and the accurate inference of the relationship between closing prices and 

relevant factors. 

2. To leverage the computational power of deep learning networks and address the de-

ficiencies of the Granger test, a sliding window strategy is incorporated into the GRU 

model to achieve precise estimation of closing prices. The enhanced capability of 

GTU serves to expand the applicability of the Granger test beyond the realm of linear 

stationary data, facilitating the direct assessment of causal linkages within non-linear 

time series data. 

3. To control for confounding variables, a grouped architecture structure is built using 

GRUs combined with a sliding window strategy, inspired by the POF. Additionally, 

the non-linear Granger test is utilized to infer the causal relationships between indi-

vidual stock closing prices and relevant factors, thus implementing a deep learning-

based causal inference framework and algorithm. 

4. To further validate the accuracy of the inferred causal relationships, different sets of 

input variables, such as individual closing prices, all related factors, and causal fac-

tors, are used when predicting stock closing prices. The results show that including 

causal factors as input variables significantly enhances prediction accuracy. These 

findings provide additional validation of the effectiveness and reliability of the pro-

posed algorithm. 

The remainder of the paper is organized as follows: In Section 2, we introduce causal 

diagrams and the Granger test as well as presents a deep learning-based architecture and 

algorithm for causal inference between stock closing prices and relevant factors. The da-

taset used as well as the evaluation metrics are also presented in Section 2. The experi-

mental results are presented in Section 3. Section 4 discusses the experimental results to 

validate the effectiveness of the algorithm. Some conclusions are provided in Section 5. 

2. Materials and Methods 

2.1. Causal Diagrams 

Causal diagrams, which utilize directed acyclic graphs (DAGs), were introduced by 

Judea Pearl to describe the causal relationships between variables. Causal diagrams are 

helpful in eliminating estimation bias through conditional distributions [41]. The funda-

mental idea behind this approach is to estimate and test distributions while minimizing 

bias introduced by other variables. Due to the presence of confounding variables, three 

distinct paths arise in causal inference: causal paths, backdoor paths, and front-door paths. 

Figure 1 illustrates these three paths. Here, Z refers to confounding variable, X represents 

the treatment variable, and Y represents the target variable. 

  

 

(a) (b) (c) 

Figure 1. Paths in a causal diagram. (a) Causal path: there is a direct causal relationship between the 

treatment variable X and the target variable Y, and there may be a confounding variable Z. (b) Back-

door path: the confounding variable Z affects both the treatment variable X and the target variable 

Y (not between X → Y, but both). (c) Front-door path: the confounding variable Z affects the path 

from X to Y (directly affects X → Y). 

The set of variable Z in backdoor path satisfies the backdoor criterion: 

1. Z does not contain any descendant nodes of X. 
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2. Z blocks every path from Y to X that contains a connection to X. 

The variable Z set in the front-door path satisfies the front-door criterion: 

1. Z cuts off all directed paths from X to Y. 

2. There is no backdoor path from X to Z. 

3. X blocks all backdoor paths from Z to Y. 

The significance of the backdoor criterion and the front-door criterion lies in their 

ability to estimate certain causal effects using observed data, even when some variables 

are unobservable. These two criteria are helpful in identifying confounding variables and 

in designing experimental studies. 

The forthcoming experimental design will employ backdoor adjustment and front-

door adjustment to truncate the backdoor paths and front-door paths, respectively, based 

on the backdoor criterion and the front-door criterion. The influence of confounding var-

iables on the causal paths will be eliminated by doing so, allowing the model to correctly 

identify and assess the causal relationships and effects among stock-related factors. 

2.2. Granger Causality Test 

The Granger causality test uses statistical techniques to analyze the causality of eco-

nomic variables [42]. The existence and direction of causal relationships between variables 

are determined through the assessment of the significance of respective prior period indi-

cators, as reflected by the lagged variables of the economic variables. This assessment 

helps to explain and influence indicators of each other, leading to conclusive results. The 

Granger causality test commonly employs a distributional lag model to infer whether the 

previous level of variable 𝑋 impacts the subsequent level of variable 𝑌, which is typically 

represented as follows: 

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + ⋯ +𝛼𝑝𝑌𝑡−𝑝 + 𝛽1𝑋𝑡−1 + ⋯ + 𝛽𝑝𝑋𝑡−𝑝 + 𝜀𝑡 (1) 

where 𝑋𝑡−𝑖  represents the distributed lag term of 𝑋, examining whether 𝑋 has an impact 

on the current level of 𝑌. The coefficient 𝛽𝑖 reflects the magnitude of this impact, indicat-

ing the existence of causality. 𝑌𝑡−𝑖 is the distributed lag term of 𝑌, and the coefficient 𝛼𝑖 

represents its impact. 𝜀𝑡 denotes the error term. To infer the causality of 𝑋 on 𝑌 is to 

examine the following hypotheses: 

𝐻0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 (2) 

This hypothesis is generally tested by constructing the F-test statistic Equation (3), 

which is defined as 

𝐹 =
(𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑝

𝑅𝑆𝑆1/(𝑇 − 2𝑝 − 1)
 (3) 

where 𝑅𝑆𝑆0 represents the sum of squared errors under the null hypothesis 𝐻0, 𝑅𝑆𝑆1 is 

the sum of squared errors under the alternative hypothesis 𝐻1 in Equation (4), 𝑝 denotes 

the lag length, and 𝑇 is the sample size. This statistic satisfies the F-distribution, when the 

null hypothesis is that 𝑋 is not the cause of 𝑌. By referring to the F-distribution table, one 

can determine the statistical significance of the test at a specific confidence level. If the 

original hypothesis is rejected, this indicates that there is a causal relationship from vari-

able 𝑋 to variable 𝑌. 

The alternative hypothesis 𝐻1 is denoted as 

𝐻1 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 1 (4) 

2.3. Temporal Causal Network 

The stock closing price and its relevant factors are time-series data. Figure 2 depicts the 

causal relationships among these temporal data. In this figure, 𝑋𝑖 refers to the treatment 
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variable, 𝑍𝑖 represents the potential confounding variable, and Y denotes the target varia-

ble. The arrows in the figure indicate the direction of influence between the variables. 

 

Figure 2. Temporal dynamics of the treatment variable, confounding variable, and target variable 

in a causal network. 

Specific techniques must be employed for these confounding variables that vary over 

time. Before using these methods, certain generalized premise assumptions must be ful-

filled: [43] 

1. Sequential Ignorability Assumption: the assumption is that for each time point, if af-

ter controlling for a series of values of the confounding factors, the outcome of the 

treatment at each time point is only affected by its own treatment status and not by 

the treatment status of other time points, i.e., the effect of accepting the treatment on 

a single individual is independent of whether other individuals accept the treatment 

or not. The Assumption can be expressed as 

𝑌𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙|𝑋𝑡−1, 𝑇0, 𝑍𝑡 = 𝑌𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙|𝑋𝑡−1, 𝑇1, 𝑍𝑡  (5) 

here, for time point 𝑡, the values of various confounding variables at each time point 

prior to the time point, which includes time point t, can be denoted as 𝑍𝑡. The string 

of historical values of the treatment variable prior to t, excluding t, is written as Xt−1. 

The various potential values of Y are represented as 𝑌𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 . T0 indicates that Y does 

not accept the treatment and T1 indicates that Y accepts the treatment. If this assump-

tion is not satisfied, there is in fact a confounding of causal relationships at each time 

point. And it is impossible to accurately estimate the causal effect at each time point. 

2. Consistency Assumption: this assumption requires that the observed value of Y un-

der a specific sequence of treatment variable values is equal to its potential value. 

3. Positive Value Assumption: this assumption refers to the probability of an individual 

receiving a treatment intervention at time point t being between 0 and 1, but not equal to 

either 0 or 1, after controlling for a series of confounding variables 𝑍𝑡 up to and including 

time point t, and the sequence of treatment variable values 𝑋𝑡−1 before time point t. 

Introducing a time dimension in deep learning models allows for the creation of temporal 

structures to better handle time-related confounding variables. For instance, models such as 

RNN or LSTM are used to capture temporal dependencies. The prediction of stock closing 

prices using deep learning models can be obtained for the values in potential states, satisfying 

the consistency assumption. In addition, neural networks can satisfy the positivity assumption 

with activation functions, such as the Sigmoid function, Tanh function, ReLu function, etc. 

However, experimental design is still required to satisfy the sequential ignorability 

assumption. After fulfilling the three main assumptions, the temporal causal network can 

be abstracted as a neural network, where the arrows in the neural network are determined 

by their corresponding weights. If the weight is zero, it implies that the corresponding 

path does not exist. 

2.4. Deep Learning-Based Causal Inference Network Architecture and Algorithms 

The causal inference architecture based on deep learning is illustrated in Figure 3. 

This architecture employs GRU networks to capture temporal dependencies in sequence 
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data and extract feature representations. Both LSTM and GRUs address the issues of gra-

dient vanishing, gradient explosion, and long-term dependencies in a traditional RNN. 

However, compared to LSTM, GRUs possess a more concise structure, which makes them 

computationally faster and suitable for handling large-scale datasets. Meanwhile, GRUs 

exhibit higher efficiency in memory utilization, reducing the burden of storage and com-

putation. 

 

Figure 3. Causal inference network architecture based on deep learning. 

A sliding window strategy with a window size of 5 is used in GRUs. This strategy 

allows the segmentation and processing of time series data in fixed window lengths. By 

sliding the window, continuous subsequences can be obtained and utilized for further 

analysis and modeling. This approach proves to be highly effective in capturing local pat-

terns and dynamic features within sequences, thereby enhancing the performance and 

effectiveness of the model. 

The fully connected layer converts the feature extraction and representation from the 

previous layer into the final output result. By learning the weights of each connection, the 

fully connected layer can adjust these weights during training to minimize the loss func-

tion, allowing the model to make accurate predictions. 

To satisfy the assumption of sequential ignorability and eliminate the interference 

brought by confounding variables in analyzing causal relationships, backdoor adjustment 

and front-door adjustment were conducted. The input data were divided into two groups: 

an experimental group and a control group. When one test factor is selected as the treat-

ment variable, the other test factors are the confounding variables, and the stock closing 

price serves as the target variable. 

Control group: the historical information of confounding variables Z and the target 

variable Y is utilized to predict the target variable Y. 

Experimental group: The historical information of the treatment variable X, con-

founding variables Z, and the target variable Y is utilized to predict the target variable Y. 

The distribution of confounding variables Z remains unchanged between the control 

group and the experimental group, with the target variable consistently being the closing 

price. According to the backdoor criterion and the front-door criterion, it can be inferred 

that all the backdoor paths and front-door paths between X and Y are cut off. This exper-

imental design also satisfies the MB-by-MB (Markov Blanket by Markov Blanket) algo-

rithm in the local learning of causal networks [44], and the optimal stepwise intervention 

design in the active learning of causal networks [45]. 
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The corresponding network model for causal inference architecture is shown in Fig-

ure 4. The innovation of this model is to build a grouped architecture using two GRU 

networks, which achieves the control of confounding variables and the accurate predic-

tion of the closing price of the target variable under different circumstances. It is coupled 

with a sliding window strategy, so that it satisfies the assumption of sequential ignorability. 

 

Figure 4. Causal inference network model based on deep learning. 

Specifically, when a factor is selected as a treatment variable, other factors are poten-

tial confounding variables, and the closing price of an individual stock is the target varia-

ble. The data underwent initial processing and grouping to obtain the experimental and 

control groups. Then the two groups of data were used as inputs, and the potential values 

of closing prices in different situations were obtained by sliding window and GRU calcu-

lations, respectively, and then the causal relationship between the closing prices of indi-

vidual stocks and the relevant factors was inferred by the non-linear Granger test. 

Closing prices were predicted using data from the experimental group and control 

group. Since the computational process of the GRU network is non-linear, the formula of 

the lagged distribution model under the 𝐻1 assumption is rewritten as 

𝑌𝑡
′ = 𝛼0 + 𝑓(∑ 𝛽𝑖𝑋𝑡−𝑖

𝑝
𝑖=1 , ∑ ∑ 𝛾𝑖

𝑑𝑍𝑡−𝑖
𝑑𝑝

𝑖=1
𝑚
𝑑=1 , ∑ 𝛼𝑖𝑌𝑡−𝑖

𝑝
𝑖=1 ) + 𝜀𝑡  (6) 

where 𝛼0  represents the baseline value; 𝑓(⋅) denotes the composite function; 𝑝 indi-

cates the lag length; 𝛼𝑖 , 𝛽𝑖,  and 𝛾𝑖
𝑑  are the coefficients of the corresponding distribu-

tional lag terms; 𝑋𝑡−𝑖, 𝑍𝑡−𝑖
𝑑 , and 𝑌𝑡−𝑖 are distributional lags of 𝑋, 𝑍, and 𝑌, respectively; 

and 𝜀𝑡 stands for the error term. The output under the 𝐻0 assumption is obtained as: 

�̃�𝑡 = 𝛼0 + 𝑓(∑ ∑ 𝛾𝑖
𝑑𝑍𝑡−𝑖

𝑑𝑝
𝑖=1

𝑚
𝑑=1 , ∑ 𝛼𝑖𝑌𝑡−𝑖

𝑝
𝑖=1 )  (7) 

Subsequently, a Granger causality test is conducted by calculating the F-value. The 

formula is as follows: 

𝐹 =
∑ ((�̃�𝑡−𝑌𝑡)2−(�̃�𝑡−𝑌𝑡)2)∕𝑝𝑇

𝑡=1

∑ (𝑌𝑡
′−𝑌𝑡)

2
∕(𝑇−2𝑝−1)𝑇

𝑡=1

  (8) 

where 𝑌𝑡 is the true value of the closing price. If 𝐹 >  𝐹𝑎 (where 𝐹𝑎 is obtained by que-

rying the F-distribution table using 𝑇 and 𝑝 values), the null hypothesis 𝐻0 is rejected. 

Thus, it is inferred that there is a causal relationship between the treatment variable and 

the target variable, i.e., the treatment variable is the cause of the target variable. 

Algorithm 1 shows the algorithm for the causal inference network architecture based 

on deep learning. 
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Algorithm 1. Causal Inference Algorithm Based on Deep Learning. 

Input: The experimental dataset contains T samples, N features 𝐷𝐼 = {(𝑊𝑡 , 𝑌𝑡

′
)}; the con-

trol group dataset contains T samples and M features 𝐷𝐼𝐼 = {(𝐻𝑡 , �̃�𝑡)} , 𝑊𝑡 =

(𝑋𝑡
𝑖, 𝑍𝑡

𝑑 , 𝑌𝑡−1, 𝐶𝑡

′
) ,𝐻𝑡 = (𝑍𝑡

𝑑 , 𝑌𝑡−1, �̃�𝑡),𝑌𝑡

′
= 𝑐𝑡+1

′
,�̃�𝑡 = �̃�𝑡 ,𝑋𝑡

𝑖 = [𝑥𝑡−𝑝+1
𝑖 , 𝑥𝑡−𝑝+2

𝑖 , … , 𝑥𝑡
𝑖]

𝑖=1

𝑁
,𝑍𝑡

𝑑 =

[𝑧𝑡−𝑝+1
𝑑 , 𝑧𝑡−𝑝+2

𝑑 , … , 𝑧𝑡
𝑑]

𝑑=1

𝑀
,𝑌𝑡−1 = [𝑦𝑡−𝑝+1, 𝑦𝑡−𝑝+2, … , 𝑦𝑡−1] ,  𝐶𝑡

′
= [𝑐𝑡−𝑝+1

′
, 𝑐𝑡−𝑝+2

′
, … , 𝑐𝑡

′
] ,�̃�𝑡 =

[�̃�𝑡−𝑝+1, �̃�𝑡−𝑝+2, … , �̃�𝑡], the lag length 𝑝, the number of training cycles 𝐸 

Output: Granger causality of closing price 

1 Initialize the parameters of the GRU model; 

2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑙𝑖𝑠𝑡 =   []  # Storage for the results of each iteration. 

3 for  𝑒 ∈ (1, 𝐸) do 

4      for  𝑖 ∈ (1, 𝑁) do 

5          𝑌𝑡

′
_list =   []  # Storage for the results y1 of each iteration. 

6          �̃�𝑡_list =   []  # Storage for the results y2 of each iteration. 

7          for 𝑡 ∈ (1, 𝑇) do 

8               𝑌𝑡

′
= GRU (𝑋𝑡

𝑖 , 𝑍𝑡
𝑑 , 𝑌𝑡−1, 𝐶𝑡

′
) ; 

9               �̃�𝑡 = GRU(𝑍𝑡
𝑑 , 𝑌𝑡−1, �̃�𝑡); 

10               𝑌𝑡

′
. append (𝑌𝑡

′
) ; 

11               �̃�𝑡 . append(�̃�𝑡); 

12          end for 

13      𝐹𝑣𝑎𝑙𝑢𝑒 = F_calculate(𝑦𝑡1, 𝑦𝑡2) 

14      𝐹𝑎 = F_find(𝑇, 𝑝) 

15      𝑐𝑎𝑢𝑠𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 = Granger_test(𝐹𝑣𝑎𝑙𝑢𝑒 , 𝐹𝑎) 

16      𝑟𝑒𝑠𝑢𝑙𝑡_𝑙𝑖𝑠𝑡. append(𝑐𝑎𝑢𝑠𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟) 

17      end for 

18 end for 

19 return 𝑐𝑎𝑢𝑠𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 

2.5. Dataset 

Using BaoStock to obtain the time series data of a stock, there are 12 factors to consider 

for evaluating the causal relationship of closing prices of the stock. These factors include 

opening price, highest price, lowest price, trading volume, trading amount, turnover rate, 

percentage change, price-earnings (P/E) ratio, price-to-book (P/B) ratio, price-to-sales (P/S) 

ratio, price-to-cash flow (P/CF) ratio, and the Shanghai Stock Exchange (SSE) Index. 

The SHCOMP is a comprehensive stock index that reflects the performance of the over-

all A-share market. If the SHCOMP undergoes significant fluctuations, the majority of stock 

prices will be affected. Based on historical data and market performance, certain industries 

are more affected to changes in the SHCOMP, including the following industries: 

• Financial industry: Due to the significant impact of government policies and regula-

tions on the financial market, the volatility of financial stocks is more pronounced 

relative to other industries. China Taibao (sh.601601) was chosen as a representative. 

It is a Chinese insurance company with a substantial market capitalization and a par-

ticular degree of influence. 

• Real estate industry: The real estate market has a large contribution, weighting ratio 

to the Shanghai stock market. The relaxation or tightening of property market poli-

cies has a considerable impact on the volatility of stock prices. Poly Real Estate 

(sh.600048), a renowned real estate developer in China, involved in diverse sectors, 

such as residential, commercial real estate, and office buildings, has been selected as 

a representative. 
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• Energy and raw materials industry: The profitability of these industries is affected by 

factors such as changes in the global supply and the demand of raw materials, inter-

national oil prices, policy environment, among others. China Petroleum & Chemical 

Corporation (sh.601857) has been selected. It is one of largest oil and gas producers 

in China, with abundant energy resources and a significant market share. 

There are also some industry stocks that are relatively less affected. Based on histori-

cal data and market performance, the following are some of the industries that are less 

affected by the volatility of the SHCOMP: 

• Public utility companies: Public utility companies typically exhibit a relatively stable 

earnings model and decent cash flow. As a result, they may be relatively less affected 

by the volatility of the SHCOMP. China Guodian (sh.601985) is chosen because it is 

one of the largest power companies in China. 

• Food & beverage industry: As a general trend, food and beverage enterprises tend to 

have a stable income and profit model, with a relatively stable market and less vola-

tility in comparison to other industries. Yingjia Gongjiu (sh.603198), a well-known 

Chinese Baijiu brand, was chosen as a representative. 

• Banking industry: Although the financial industry as a whole tends to be volatile, the 

stock prices of the banking industry are relatively less affected by the SHCOMP be-

cause it has substantial cash flows and asset-liability structure. Shanghai Pudong De-

velopment Bank (sh.600000) was chosen due to a relatively stable business model and 

income. 

To ensure sufficient data support and incorporate diverse market conditions, the date 

range of the selected stocks is from 1 July 2017 to 1 July 2022. This approach also aims to 

minimize the disturbance of structural changes, allowing for a comprehensive observa-

tion and analysis of long-term trends and cyclical fluctuations in the stock market, ulti-

mately enhancing the reliability and generalization of the findings. 

2.6. Evaluation Parameter 

(1) Root mean square error (RMSE) 

The RMSE is the square root of the sum of squared differences between predicted 

values and true values, which is defined as 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖

′)
2𝑁

𝑖=1   (9) 

where 𝑦𝑖  denotes the predicted value, 𝑦𝑖
′ represents the true value, and 𝑁 is the number 

of observations. The sum of squared deviations is highly sensitive to errors that are either 

significantly larger or smaller. Consequently, the resulting error measure provides a reli-

able assessment of the predictive performance. A smaller RMSE value denotes superior 

prediction performance, while a larger RMSE value indicates a greater divergence from 

the true results. 

(2) Mean absolute error (MAE) 

The MAE is the average of absolute differences between predicted values and true 

values of the model. As a result, it intuitively captures the discrepancy between predicted 

and true values. The MAE is determined by 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖

′|𝑁
𝑖=1   (10) 

A smaller MAE value indicates a smaller difference between predicted values and true 

values, suggesting that the prediction results are closer to true values. 

(3) Mean absolute percentage error (MAPE) 

The MAPE diminishes the influence of magnitude in comparison to the previous two 

metrics, making it well-suited for assessing the efficacy of a model in predicting various 

stocks, which is formulated as follows: 
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 𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑦𝑖−𝑦𝑖
′

𝑦𝑖
|𝑁

𝑖=1   (11) 

The MAPE is also an error metric, with smaller values indicating a better performance of 

the predictive model. 

(4) The R2 coefficient of determination 

The R2 coefficient of determination is utilized to evaluate the fitting degree of a net-

work model, which can be expressed as 

 𝑅2 =
∑ (𝑦𝑖−𝑦𝑖

′̅̅ ̅
)

2
𝑁
𝑖=1

∑ (𝑦𝑖
′−𝑦𝑖

′̅̅ ̅
)

2
𝑁
𝑖=1

  (12) 

where �̅�𝑖
′ is the average of the real values. The R2 coefficient of determination serves as a 

measure to evaluate the fitting and predictive capabilities of the model. A higher value 

signifies a greater predictive ability and improved accuracy. 

3. Results 

3.1. Experimental Hardware and Software Environment 

The experiment was conducted using the Python-based TensorFlow framework to 

build a deep learning network. The central processor used was an Intel® Core™ i7-9750H, 

and the graphics card was Nvidia GeForce GTX1650 with 4 GB of memory. The learning 

rate of optimizer Adam was set to 0.001, batch training size was 64, and the total training 

epochs were set to 80. To accurately examine causality, the causal inference experiments 

used a fixed seed to initialize weights. The software used for data analysis was Pycharm 

version 2022.3.2. 

3.2. Data Preprocessing and Normalization 

After getting the stock data through BaoStock, we checked if there were any missing 

values in the stock data and, if there were, we filled them with the data of the previous 

day. After the missing values were processed, the data format was standardized by Equa-

tion (13), defined as follows: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (13) 

where 𝑥 is the value to be normalized, and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are the minimum and maxi-

mum values in the feature 𝑋, respectively. The output of the function 𝑥𝑛𝑜𝑟𝑚 is the result 

of the maximum and minimum normalization of 𝑥. This formula scales each value in the 

data to between [0, 1], eliminating the order of magnitude effect between features while 

preserving the relative size relationship between the data. The sample size for each statis-

tical analysis was 1215. 

3.3. Causal Inference Experiment 

The length of the dataset is 1215, denoted as sample size T. The GRU model adopts a 

sliding window strategy with a window size of 5, represented by the lag length p as 5. By 

referring to the F distribution table, the critical value 𝐹𝑎 corresponding to the values T = 

1215 and p = 5 was determined to be 3.501. If the calculated F value surpassed 3.501, it 

means that the factor passed the Granger test. To enhance the reliability of the results, the 

average of the results from ten experiments were calculated, shown in Table 1, with a 95% 

confidence interval. 
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Table 1. F-test values for each factor in Shanghai Stock Exchange datasets (bolded values are those 

that pass the Granger test). 

 sh.601601 sh.600048 sh.601857 sh.601985 sh.603198 sh.600000 

Opening Price 9.752 −0.228 −8.304 −31.640 37.710 16.920 

Highest Price 9.046 0.837 0.215 −32.979 20.381 −19.716 

Lowest Price −4.792 12.579 −20.316 −30.295 −6.734 6.556 

Trading Volume −2.404 8.502 −26.561 3.524 −32.866 −0.444 

Trading Amount −3.935 −3.709 16.142 17.580 35.538 4.309 

Turnover Rate 5.042 −0.577 −3.418 6.490 40.980 8.669 

Percentage Change 6.792 −3.110 −8.044 −53.835 −2.449 2.660 

P/E Ratio −0.894 7.611 −32.997 9.709 31.841 −20.402 

P/B ratio 8.782 8.408 13.859 68.545 −55.818 −22.093 

P/S ratio −19.365 6.201 14.168 14.391 35.568 −41.630 

P/CF ratio 10.574 8.397 −8.795 3.898 16.867 −32.186 

SHCOMP 14.464 13.915 25.187 9.314 4.797 8.986 

3.4. Prediction Comparison Experiment 

(1) Comparison of different input variables 

The baseline RNN, LSTM, and GRU models, which integrated all potentially relevant 

factors, were compared with the RNN, LSTM, and GRU models that incorporated causal 

factors in the different datasets. Furthermore, the analysis included comparisons with a 

GRU model that exclusively utilized closing price data. This GRU model, which focused 

solely on closing price data, was also part of the comparative evaluation. Figures 5 and 6 

illustrate the prediction results of the experiments for China Taibao and Shanghai Pudong 

Development Bank (SPDB), respectively. Figures 7 and 8 show scatter plots for the exper-

iments conducted on China Taibao and SPDB, respectively. Visual presentations of the 

remaining datasets, as well as scatterplots, can be viewed in the Supplementary Materials. 

Table 2 presents the RMSE, MAE, MAPE, and R2 for the seven kinds of models. To 

account for the varying scale ranges of the target variables in different datasets, the evalua-

tion metrics are calculated using standardized data. This standardization process eliminates 

scale differences, allowing for more intuitive comparisons of errors. We compared the per-

formance of the RNN, LSTM, and GRU models in the stock price prediction task with the 

same input variables, and provided support for the algorithm to apply the GRU model to 

calculate the potential value of the target variable. In the case of the same network structure, 

we compared the performance of models with different input variables to verify the validity 

and accuracy of the experimental results of causal inference. 

 

Figure 5. Visualization of prediction results for different models on the China Taibao (sh.601601) 

dataset. 
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Figure 6. Visualization of prediction results for different models on the SPDB (sh. 600000) dataset. 

 

Figure 7. Scatter plot of prediction results for different models on the China Taibao (sh.601601) da-

taset. 

 

Figure 8. Scatter plot of prediction results for different models on the China SPDB (sh.600000) da-

taset. 
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Table 2. Comparison of evaluation metrics for different models in Shanghai Stock Exchange da-

tasets (↑ indicates that larger values are better, ↓ indicates that smaller values are better, the best 

result among comparative experiments is in bold). 

Model Stock RMSE↓ MAE↓ MAPE↓ R2↑ 

Close Price + GRU 

sh.601601 0.0596 0.0453 14.96 0.9544 

sh.600048 0.0514 0.0392 41.43 0.9493 

sh.601857 0.1033 0.0773 21.96 0.7554 

sh.601985 0.0648 0.0488 12.27 0.9356 

sh.603198 0.0522 0.0381 18.69 0.9599 

sh.600000 0.0503 0.0400 17.50 0.9561 

Potential Factors + RNN 

sh.601601 0.0720 0.0551 17.65 0.9324 

sh.600048 0.0660 0.0510 44.65 0.9349 

sh.601857 0.1133 0.0856 23.63 0.7301 

sh.601985 0.0782 0.0593 15.48 0.9181 

sh.603198 0.0631 0.0468 21.57 0.9453 

sh.600000 0.0572 0.0452 18.99 0.9357 

Potential Factors + LSTM 

sh.601601 0.0607 0.0485 14.89 0.9476 

sh.600048 0.0534 0.0425 42.78 0.9483 

sh.601857 0.0839 0.0673 19.36 0.8552 

sh.601985 0.0659 0.0504 11.98 0.9361 

sh.603198 0.0548 0.0419 19.91 0.9591 

sh.600000 0.0492 0.0377 16.53 0.9628 

Potential Factors + GRU 

sh.601601 0.0599 0.0472 14.02 0.9497 

sh.600048 0.0522 0.0412 41.96 0.9501 

sh.601857 0.0806 0.0640 18.91 0.8617 

sh.601985 0.0633 0.0481 11.54 0.9402 

sh.603198 0.0530 0.0412 19.47 0.9610 

sh.600000 0.0475 0.0361 16.21 0.9651 

Causal Factors + RNN 

sh.601601 0.0628 0.0479 16.74 0.9488 

sh.600048 0.0568 0.0437 43.47 0.9437 

sh.601857 0.1100 0.0830 22.82 0.7431 

sh.601985 0.0714 0.0537 14.19 0.9273 

sh.603198 0.0589 0.0431 20.36 0.9554 

sh.600000 0.0542 0.0425 17.67 0.9449 

Causal Factors + LSTM 

sh.601601 0.0516 0.0403 14.53 0.9574 

sh.600048 0.0504 0.0395 41.57 0.9518 

sh.601857 0.0758 0.0613 17.42 0.8713 

sh.601985 0.0601 0.0461 11.16 0.9436 

sh.603198 0.0495 0.0371 18.39 0.9649 

sh.600000 0.0417 0.0328 13.47 0.9699 

Causal Factors + GRU 

sh.601601 0.0493 0.0387 12.67 0.9608 

sh.600048 0.0487 0.0377 34.60 0.9544 

sh.601857 0.0667 0.0510 14.92 0.8980 

sh.601985 0.0597 0.0445 10.64 0.9452 

sh.603198 0.0470 0.0354 18.07 0.9674 

sh.600000 0.0383 0.0283 11.60 0.9746 

Figure 9 visualizes the comparative analysis of the GRU model experiment results 

across different input variables in different datasets. 
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Figure 9. Visualization of comparative experimental results of GRU models with different input 

variables in different datasets. (a) RMSE metric results of various methods. (b) MAE metric results 

of various methods. (c) MAPE metric results of various methods. (d) R2 metric results of various 

methods. 

In order to further verify the generality of the model, the data of certain stocks in the 

Shenzhen Stock Exchange Composite Index (SZCI) from 1 July 2017 to July 2022 were 

selected; details and the experimental results are in Appendix A. 

4. Discussion 

The causal inference experiment employs the Granger causality test to determine the 

causality of factors in industries that are highly and moderately influenced by the 

SHCOMP. The results show that, in highly influenced industries, causal factors included 

the open price, high price, low price, trading volume, trading amount, turnover rate, per-

centage change, P/E ratio, P/B ratio, and the related index itself. In contrast, in less influ-

ential industries, the causal relationship between the remaining factors and the closing 

price is more significant, except for the related index. These findings suggest that, in 

highly influential industries, individual stock closing prices are more significantly af-

fected by index factors. Meanwhile, the causal relationship between individual stock fac-

tors is more pronounced in less influential industries. 

The performance of various models was compared using identical input variables, 

and Table 3 illustrates the percentage improvement in performance of the optimal model 

compared to other models. From the data presented in the table, it is evident that the GRU 

model outperformed the RNN and LSTM models in predictive accuracy. This outcome 

proves that the decision of the proposed algorithm and framework to use GRUs to com-

pute the potential value of the target variable is a reasonable and appropriate choice. 

Table 4 shows the percentage improvement in predictive performance of the model, 

with input causal factors compared to the baseline model with input from all potential 

factors. The results show that the enhanced model with causal factors input outperformed 

the corresponding benchmark model with all potential factor input in terms of predictive 
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performance. For example, in the dataset of stock sh.601601, the inclusion of causal factors 

resulted in performance improvements for the RNN, LSTM, and GRU models compared 

to their corresponding baseline models. For the RNN model, there was an enhancement 

of 12.78% in RMSE, 13.07% in MAE, 5.15% in MAPE, and 1.76% in R2. Regarding the 

LSTM model, RMSE saw a 14.99% enhancement, MAE improved by 16.91%, MAPE by 

2.42%, and R2 by 1.03%. For the GRU model, the RMSE was enhanced by 17.70%, MAE 

by 18.01%, MAPE by 15.65%, and R2 by 1.16%. 

In addition to this, the table also compares the performance between GRU models, 

predicted using data of closing prices and data predicted using causal factors. The results 

show that the model using causal factors as input variables performed the best. For exam-

ple, in the dataset of stock sh.600000, the GRU model using causal factors showed a sig-

nificant performance improvement compared to the GRU model using only closing price: 

23.86% on RMSE, 29.25% on MAE, 33.71% on MAPE, and R2 1.93%. Furthermore, relative 

to the GRU model using all latent factors, the causal factor model improved by 15.08% on 

RMSE, 20.06% on MAE, 26.95% on MAPE, and 1.03% on R2. 

The utilization of causal factors not only reduces the amount of noisy information 

that the model has to deal with, but also focuses on the most relevant information, thus 

improving the predictive performance of the model. The causal factors inferred by the 

method proposed in this paper as inputs to the closing price prediction GRU model out-

performed the models using closing price as inputs in terms of prediction accuracy and 

prediction performance, while the prediction performance of the benchmark model with 

all potential factors input was inferior to that of the model with causal factors inputs. 

These results further test the causal inference of correctness and enhance the reliability 

and validity of the method proposed in this paper. 

Table 3. Percentage performance improvement in the optimal model over other models. 

Input Variables Optimal Model Comparative Model Stock 
Percentage/% 

RMSE MAE MAPE R2 

Potential Factors GRU 

RNN 

sh.601601 16.81 14.34 14.9 1.86 

sh.600048 20.91 19.22 6.02 1.63 

sh.601857 28.86 25.23 19.97 18.02 

sh.601985 19.05 18.89 22.22 2.41 

sh.603198 16.01 11.97 9.74 1.66 

sh.600000 16.96 20.13 14.64 3.14 

LSTM 

sh.601601 1.32 2.68 5.84 0.22 

sh.600048 2.25 3.06 1.92 0.19 

sh.601857 3.93 4.90 2.32 0.76 

sh.601985 3.95 4.56 3.67 0.44 

sh.603198 3.28 1.67 2.21 0.20 

sh.600000 3.46 4.24 1.94 0.24 

Causal Factors GRU 

RNN 

sh.601601 21.50 19.21 24.31 1.26 

sh.600048 14.26 13.73 20.40 1.13 

sh.601857 39.36 38.55 34.62 20.85 

sh.601985 16.39 17.13 25.02 1.93 

sh.603198 20.20 17.87 11.25 1.26 

sh.600000 29.34 33.41 34.35 3.14 

LSTM 

sh.601601 4.46 3.97 12.80 0.36 

sh.600048 3.37 4.56 16.77 0.27 

sh.601857 12.01 16.80 14.35 3.06 

sh.601985 0.67 3.47 4.66 0.17 

sh.603198 5.05 4.58 1.74 0.26 

sh.600000 8.15 13.72 13.88 0.48 
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Table 4. Percentage increase in model performance for inputting causal variables versus inputting 

other variables. 

Optimal Model Comparative Model Stock 
Percentage/% 

RMSE MAE MAPE R2 

Causal Factors + RNN Potential Factors + RNN 

sh.601601 12.78 13.07 5.16 1.76 

sh.600048 13.94 14.31 2.64 0.94 

sh.601857 2.91 3.04 3.43 1.78 

sh.601985 8.70 9.44 8.33 1.00 

sh.603198 6.66 7.91 5.61 1.07 

sh.600000 5.24 5.97 6.95 0.98 

Causal Factors + LSTM Potential Factors + LSTM 

sh.601601 14.99 16.91 2.42 1.03 

sh.600048 5.62 7.06 2.83 0.37 

sh.601857 9.65 8.92 10.02 1.88 

sh.601985 8.80 8.53 6.84 0.80 

sh.603198 9.67 11.46 7.63 0.60 

sh.600000 15.24 13.00 18.51 0.74 

Causal Factors + GRU 

Close Price + GRU 

sh.601601 17.28 14.57 15.31 0.67 

sh.600048 5.25 3.83 16.49 0.54 

sh.601857 35.43 34.02 32.06 18.88 

sh.601985 7.87 8.87 13.28 1.03 

sh.603198 9.96 7.09 3.32 0.78 

sh.600000 23.86 29.25 33.71 1.93 

Potential Factors + GRU 

sh.601601 17.70 18.01 9.63 1.17 

sh.600048 6.70 8.50 17.54 0.45 

sh.601857 17.25 20.31 21.10 4.21 

sh.601985 5.69 7.48 7.80 0.53 

sh.603198 11.32 14.08 7.19 0.67 

sh.600000 19.37 21.61 28.44 0.98 

5. Conclusions 

In this study, a causal inference method was applied, combining the GRU model and 

the Granger causality test, to realize the causality analysis based on stock data. By intro-

ducing Granger causality tests, we could identify important factors and determine the 

degree of influence of index factors on individual stock closing prices. Additionally, the 

experimental results of incorporating causal factors into the prediction model further val-

idated the correctness of causal inference. 

In summary, the deep learning-based causal inference architecture and algorithms 

proposed in this paper show promising results in analyzing causal relationships in stock 

data. Future research can further explore the application of causal inference methods in 

the analysis of other financial time series data. Future research can further explore the 

application of causal inference methods in the analysis in other financial time series data. 

In addition, further optimization of the model performance and extension of the applica-

tion scope can be carried out. 

Supplementary Materials: The following supporting information can be downloaded at 

https://www.mdpi.com/article/10.3390/electronics13112056/s1. Figures S1, S3, S5 and S7 illustrate 

the prediction results of the three experiments in different datasets. Figures S2, S4, S6 and S8 show 

scatter plots for the three experiments conducted in different datasets. 
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Appendix A 

The SZCI impacts industries and stock prices similarly to the SHCOMP. Historical 

data show specific industries more influenced by the SZCI: 

• Technology industry: Zhong Xing Telecommunication Equipment Corporation 

(ZTE) (sz.000063) is a leading communications equipment and solutions provider in 

China, and its position and influence in the technology sector is such that its share 

price is usually more significantly affected by changes in the SZCI Index. 

• Pharmaceutical industry: Aier Ophthalmology (sz.300015) is one of well-known eye 

medical enterprises of China; its investment and business in the pharmaceutical in-

dustry covers a variety of areas, such as ophthalmology diagnosis and treatment, eye 

surgery, etc. 

• New energy industry: BYD (sz.002594) is one of the leading new energy vehicle man-

ufacturers of China, which has strong technical strength and market share in the field 

of electric vehicles, and its share price is often affected by changes in the Shenzhen 

Composite Index. 

There are some industries whose stock prices are relatively less affected by changes 

in the SZCI. Listed below are a few industries that may be less affected by the volatility of 

the SZCI: 

• Public service industry: Such as urban infrastructure and domestic waste treatment, 

etc. These companies are more controlled by the government, and their business is 

stable and relatively unaffected by industry cyclical factors. China General Nuclear 

(CGN) Power Corporation (sz.000881) is highly influenced by government policy 

support and the stability of market demand, and its share price is relatively stable 

and less affected by fluctuations in the Shenzhen Composite Index. 

• Traditional manufacturing industry: Such as machinery, petrochemicals, iron and 

steel, and other industries related to enterprise. These companies’ operating business 

is relatively stable, profit cycle is more obvious, and they are not affected by fluctua-

tions of the Shenzhen Composite Index too much. The Gree Electric Appliances 

(sz.000651) sector has a strong market share and brand influence in the traditional 

manufacturing. 

• FMCG industry: Wuliangye (sz.000858) is one of the leading liquor producers, with 

a stable market share and brand influence in the FMCG industry, and its share price 

is relatively stable. 

Table A1 shows the results of the proposed causal inference method for inferring the 

causal relationship between correlation factors and stock prices in different datasets. 
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Table A1. F-test values for each factor in the Shenzhen Stock Exchange datasets (bolded values are 

those that pass the Granger test). 

 sz.000063 sz.300015 sz.002594 sz.000881 sz.000651 sz.000858 

Opening Price −2.015 −5.897 −36.804 7.329 11.129 −1.516 

Highest Price −7.171 −8.988 −34.948 17.960 34.905 12.911 

Lowest Price −15.864 5.957 −17.460 10.573 −65.159 −0.072 

Trading Volume −1.259 −5.498 −17.341 11.056 −39.112 1.412 

Trading Amount −9.922 8.055 27.314 −5.350 5.500 2.697 

Turnover Rate −8.442 4.091 −24.906 −15.264 −24.564 −7.416 

Percentage Change −39.072 −53.889 −24.057 −46.024 18.947 −76.086 

P/E Ratio −15.240 −11.801 −3.728 −2.322 −20.583 6.873 

P/B ratio −21.259 −3.086 −54.369 3.817 −14.869 6.517 

P/S ratio −30.907 0.966 0.392 4.395 47.681 12.986 

P/CF ratio 10.837 4.083 −8.094 −49.676 −35.685 10.580 

SHCOMP 11.328 3.911 34.236 −4.662 −37.955 −1.149 

Table A2 shows the results of the experiments comparing different prediction models 

in different datasets. 

Table A2. Comparison of evaluation metrics for different models in Shenzhen Stock Exchange da-

tasets (↑ indicates that larger values are better, ↓ indicates that smaller values are better, the best 

result among comparative experiments is in bold). 

Model Stock RMSE↓ MAE↓ MAPE↓ R2↑ 

Close Price + GRUs 

sz.000063 0.0463 0.0365 31.1451 0.9661 

sz.300015 0.0426 0.0321 13.3153 0.9670 

sz.002594 0.0900 0.0759 22.9663 0.8705 

sz.000881 0.0775 0.0562 12.9659 0.8366 

sz.000651 0.0672 0.0584 21.5701 0.9292 

sz.000858 0.0661 0.0530 21.3026 0.9261 

Potential Factors + RNN 

sz.000063 0.0565 0.0462 35.5297 0.9497 

sz.300015 0.0455 0.0430 15.1571 0.9672 

sz.002594 0.1086 0.0887 32.3819 0.7870 

sz.000881 0.0964 0.0705 16.7319 0.7473 

sz.000651 0.0654 0.0559 29.6114 0.9347 

sz.000858 0.0734 0.0582 19.4550 0.9088 

Potential Factors + LSTM 

sz.000063 0.0538 0.0431 35.0179 0.9543 

sz.300015 0.0429 0.0329 13.7151 0.9666 

sz.002594 0.0861 0.0701 27.8958 0.8661 

sz.000881 0.0756 0.0578 13.5359 0.8443 

sz.000651 0.0369 0.0287 14.5130 0.9792 

sz.000858 0.0572 0.0450 16.3179 0.9446 

Potential Factors + GRU 

sz.000063 0.0420 0.0302 18.8082 0.9722 

sz.300015 0.0411 0.0311 11.8589 0.9712 

sz.002594 0.0719 0.0583 22.5159 0.9065 

sz.000881 0.0747 0.0542 11.7194 0.8480 

sz.000651 0.0344 0.0264 14.0027 0.9819 

sz.000858 0.0547 0.0431 15.8308 0.9494 

Causal Factors + RNN 

sz.000063 0.0480 0.0367 21.2982 0.9637 

sz.300015 0.0396 0.0352 13.3126 0.9715 

sz.002594 0.0822 0.0633 25.4203 0.8780 

sz.000881 0.0900 0.0670 14.7805 0.7794 
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sz.000651 0.0386 0.0306 16.1498 0.9773 

sz.000858 0.0666 0.0525 19.8041 0.9250 

Causal Factors + LSTM 

sz.000063 0.0381 0.0279 18.3914 0.9771 

sz.300015 0.0410 0.0311 11.2038 0.9695 

sz.002594 0.0754 0.0615 23.0459 0.8972 

sz.000881 0.0749 0.0558 13.1500 0.8474 

sz.000651 0.0347 0.0255 11.7519 0.9816 

sz.000858 0.0543 0.0418 15.7239 0.9501 

Causal Factors + GRU 

sz.000063 0.0369 0.0266 17.8913 0.9785 

sz.300015 0.0379 0.0310 11.1971 0.9794 

sz.002594 0.0680 0.0526 21.9571 0.9163 

sz.000881 0.0495 0.0393 11.0762 0.9442 

sz.000651 0.0321 0.0235 11.2748 0.9843 

sz.000858 0.0538 0.0419 16.4409 0.9509 

Figure A1, Figure A3, Figure A5, Figure A7, Figure A9, and Figure A11 illustrate the 

experimental predictions in different data sets, respectively. Figure A2, Figure A4, Figure 

A6, Figure A8, Figure A10, and Figure A12 show scatter plots for the experimental pre-

dictions in different data sets, respectively. 

 

Figure A1. Visualization of prediction results for different models in the ZTE (sz.000063) dataset. 

 

Figure A2. Scatter plot of prediction results for different models in the ZTE (sz.000063) (sz.300676) 

dataset. 
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Figure A3. Visualization of prediction results for different models in the Aier Ophthalmology 

(sz.300015) dataset. 

 

Figure A4. Scatter plot of prediction results for different models in the Aier Ophthalmology 

(sz.300015) dataset. 

 

Figure A5. Visualization of prediction results for different models in the BYD (sz.002594) dataset. 
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Figure A6. Scatter plot of prediction results for different models in the BYD (sz.002594) dataset. 

 

Figure A7. Visualization of prediction results for different models in the CGN Power Corporation 

(sz.000881) dataset. 

 

Figure A8. Scatter plot of prediction results for different models in the CGN Power Corporation 

(sz.000881) dataset. 
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Figure A9. Visualization of prediction results for different models In the Gree Electric Appliances 

(sz.000651) dataset. 

 

Figure A10. Scatter plot of prediction results for different models in the Gree Electric Appliances 

(sz.000651) dataset. 

 

Figure A11. Visualization of prediction results for different models in the Wuliangye (sz.000858) 

dataset. 
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Figure A12. Scatter plot of prediction results for different models in the Wuliangye (sz.000858) da-

taset. 
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