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Abstract: This paper works on detecting a person in bed for sleep routine and sleep pattern monitoring
based on the Micro-Electro-Mechanical Systems (MEMS) accelerometer and Internet of Things (IoT)
embedded system board. This work provides sleep information, patient assessment, and elderly care
for patients who live alone via tele-distance to doctors or family members. About 216,000 pieces of
acceleration data were collected, including three classes: no person in bed, a static laying position,
and a moving state for Artificial Intelligence (AI) application. Six well-known Machine-Learning
(ML) algorithms were evaluated with precision, recall, F1-score, and accuracy in the workstation
before implementing in the STM32-microcontroller for real-time state classification. The four best
algorithms were selected to be programmed into the IoT board and applied for real-time testing. The
results demonstrate the high accuracy of the ML performance, more than 99%, and the Classification
and Regression Tree algorithm is among the best models with a light code size of 1583 bytes. The
smart bed information is sent to the IoT dashboard of Node-RED via a Message Queuing Telemetry
broker (MQTT).

Keywords: person on bed detection; sleep pattern; machine learning; artificial intelligence; accelerom-
eter; smart bed

1. Introduction

The incorporation of cutting-edge technologies such as Micro-Electro-Mechanical
Systems (MEMS) accelerometers [1–3], Internet of Things (IoT) frameworks [4–7], and
Machine-Learning (ML) [8–10] algorithms has significantly transformed healthcare mon-
itoring, specifically in the field of sleep pattern analysis. Sleeping on time and a deep
sleep are key to health maintenance [11]. For restless sleep, like insomnia [12], examples
of symptoms shown would be tossing and turning, and trying to get settled and comfort-
able [13]. The capacity to autonomously identify the existence of an individual on a bed and
differentiate between their stationary rest and restless movements carries great importance
in diverse healthcare settings. The significance of adequately classifying sleep conditions,
such as stationary lying positions or frequent motion, cannot be underestimated. Detecting
variations from typical sleep patterns can assist in the early identification of sleep disorders,
assess the efficacy of therapies, and reduce potential health hazards linked to inadequate
sleep quality. Moreover, for persons with persistent ailments or elderly individuals who are
susceptible to falls or disruptions while sleeping, prompt intervention with live monitoring
can significantly improve their quality of life and autonomy.

In the article [14], movement activity was extracted from the multichannel ballistocar-
diography measurements based on Emfit sensor foils placed in the bed mattress, which
has a total accuracy of 83%. However, the BCG data’s noise, artifacts, or signal distortions
can complicate the signal processing algorithms and reduce their accuracy in detecting
movement events. Maintaining and calibrating Emfit sensor foils regularly is necessary
to ensure their optimal performance over time. Not properly maintaining or calibrating
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the sensors may result in sensor readings drifting or a decrease in measurement precision,
which can affect the reliability of detecting movement activity. This paper discusses the
crucial role of technological improvements in enabling patient assessment and aged care,
particularly for persons who live alone. It focuses on using remote sleep pattern monitoring
to provide valuable information and actionable insights for healthcare professionals and
family members.

Another work of research with bed sensors [15] uses eight pressure sensor signals
for movement on bed detection by calculating the respiration amplitude using the Hilbert
transform, and then identifying events based on a 20% amplitude reduction from the
baseline signal. On the other hand, pressure sensor signals can be susceptible to noise and
artifacts from various sources, such as movement unrelated to respiration, environmental
vibrations, or sensor malfunctions. These noise sources can affect the accuracy of respiration
amplitude calculations and event detection, leading to false positives or false negatives in
identifying respiration events.

Therefore, we use the MEMS accelerometer, which has a high sensitivity and accuracy
in detecting even subtle movements, allowing for the precise monitoring of movements
on the bed, including behaviours during sleep. In addition, the MEMS accelerometer is
capable of measuring acceleration in multiple axes, providing comprehensive movement
data that can capture movements in different directions and orientations on the bed. The
ML implementation based on MEMS accelerometers with IoT systems provides a non-
invasive and economical method of collecting uninterrupted sleep-related data in real time.
The utilization of ML algorithms for classification tasks is crucial in this context because of
their ability to identify complicated structures with a high precision.

Various papers apply ML into accelerations for sleep assessment [16]. In [17], a random
forest algorithm is used to classify sleep using wrist-worn accelerometer data. Another arti-
cle [18] uses ActiGraph wGT3X-BT accelerometers on the user’s hip for sleep classification
with ML. Work [19] creates a device that monitors the sleep stages with a pulse oximeter
and accelerometer placed on the wrist, and then applies ML for sleep monitoring. Another
work of research [20] develops deep learning for sleep–wake classification with three types
of wearable sensors: Faros sensors, a motion watch, and a head watch. Although these
approaches reach a certain accuracy, the wearable accelerometers still cause discomfort to
the user during long usage.

The smartwatch is also a popular device for health monitoring. Article [21] states
that it is safe to wear a smartwatch, but it needs to be removed for several hours to allow
the skin to breathe and prevent the accumulation of bacteria beneath the watch. The
illumination emanating from the watch or its strap can occasionally disrupt the natural
rhythm of sleep. The smartwatch strap can cause skin irritation and inflammation for some
people when tightly wrapped around the wrist or when exposed to residual water or sweat.
The notifications from the smartwatch can also disturb sleep. It is difficult for many people,
especially older people, to wear a device frequently due to annoyance.

Beside the ML algorithms, Deep-Learning (DL) [22] models also have a good command
of classifying the signals, such as the Deep Neural Network (DNN) [23], Long Short-Term
Memory (LSTM) [24], Bidirectional LSTM [25], etc. Nevertheless, ML has advantages
with a simpler implementation, and ML algorithms typically require less computational
resources compared to DL algorithms. This point is especially important in microcontroller
applications where resources like memory and processing power are limited. In this case,
the dataset is not extremely complicated and ML algorithms perform well with certain
datasets. Additionally, pre-trained DL models require more time consumption due to
their architecture. Thus, the ML approach is selected to minimize the complexity of the
whole system.

This study aims to develop a nonwearable platform which is able to monitor the sleep
state without physical contact with the users. In this way, comfort is guaranteed for the
users, especially for old people who can forget to equip the wearable device frequently.
Furthermore, this work identifies the most efficient models for real-time sleep state classifi-



Electronics 2024, 13, 2210 3 of 15

cation by evaluating various ML algorithms, including the Extra Tree Classifier (ET) [26–29],
Logistic Regression (LR) [30–32], Linear Discriminant Analysis (LDA) [33,34], Classifica-
tion and Regression Trees (CART) [35–40], Support Vector Machines (SVMs) [41,42], and
Random Forest (RF) [43–45]. Afterward, the chosen algorithms are implemented in the
STM32 embedded system [46] within the IoT framework, allowing a smooth integration
into the current healthcare infrastructure for widespread adoption. This research adds to
the advancement of sleep pattern monitoring and remote healthcare management by com-
bining MEMS accelerometers, IoT frameworks, and ML algorithms with a microcontroller
(MCU) platform. The impacts of our research’s results spread throughout the field of sleep
research, providing promising possibilities for individualized healthcare interventions and
proactive wellness management.

The paper is organized as follows: First, the setup and devices will be depicted,
together with the system working principle. In the next section, the ML algorithms will be
described briefly; then, it will be their cross-validation and test part. The subsequent content
is about the real-time test with the MCU operation and sleep state on the IoT dashboard
demonstration. Finally, the conclusion and future work are at the end of the paper.

2. Materials and Methods

In this section, the system architecture and working principle will be shown, together
with brief descriptions of the applied ML algorithms.

2.1. Setup and Devices

Figure 1 shows the data acquisition diagram from MCU and MEMS Accelerometer
under the IoT bed to the workstation. The STM32 B-L475-IOT01A microcontroller board [47]
from the IoT kit has acquired acceleration data using Serial Peripheral Interface (SPI)
communication. The data collected by the accelerometer were sent to a workstation for
immediate storage in text files. STM32 B-L475-IOT01A was made by STMicroelectronics
company which is headquartered in Plan-les-Ouates, Switzerland.
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For ML model evaluation, these files were trained using Python programming [48],
with the packages Scikit-learn [49]. Then, the best models are chosen to implement into
MCU via C programming language [50,51] to communicate with the IoT dashboard wire-
lessly as shown in Figure 2.
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The MEMS accelerometer ADXL355 [52] is concealed within a protective enclosure
and positioned accurately beneath the bed frame, as shown in Figure 3, and it is connected
to the embedded system platform appropriately. The ADXL355 offers high-resolution
measurement capabilities, allowing it to detect even subtle movements during sleep accu-
rately. Its high sensitivity level can provide comprehensive insights into sleep quality and
duration. Additionally, for applications like sleep monitoring where the device needs to
operate continuously for extended periods, low power consumption is essential to prolong
battery life and minimize the need for frequent recharging or replacement. The ADXL355’s
low power consumption ensures that it can monitor sleep patterns throughout the night
without draining the device’s battery quickly. ADXL355 was made by Analog Devices
Company, which is headquartered in Wilmington, MA, USA.
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2.2. Raw Data

During the experiment, the user lies on the bed in 4 stationary positions, prone, back,
right side, and left side, to collect data for static state. In the dynamic state, the person
moves and turns around. Finally, an empty state is carried out where no person is on the
bed, and the sensor keeps acquiring the acceleration for data collection. The volunteer
participant is more than 30 years old and has a sleeping issue.

Figure 5 shows the raw data in 3 concerned states on all axes: no person in bed; lying
static positions (joined data from 4 lying positions), and dynamic motion in bed. It is
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complicated to detect a proper threshold to recognize and distinguish these states since
the data conduct high variations, and their ranges are not so clearly different, especially in
the case of no person in bed and lying in static positions. There are also influences from
different sleep positions, which cause the data to be more intricate. Thus, it is necessary to
use the ML approach to achieve high classification efficiency.
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2.3. Data Processing and ML features

The output data rate of the device is 200 Sa/s. The absolute difference between
2 consecutive accelerations (∆acc) on the X, Y, and Z axes are calculated as features. There
are 216,000 data, containing 1080 windows of 200 samples. The sum of each window is
calculated to form the final feature for each axis to classify 3 states: no person, static lying
state, and moving state, as described in Table 1. 70% of data were used for training and
validation; 30% of the rest is used for testing the ML models. For each second, the ML model
will predict the presence of a person in bed and the lying state: static or dynamic state.

Table 1. ML feature and classification.

ML Input Features Class

∆Xsum ∆Ysum ∆Zsum
• No Person
• Static Lying State
• Moving State
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2.4. ML Algorithms

There are 6 powerful algorithms in consideration for ML classification:
LG is a statistical model that estimates the probability of an instance belonging to

a specific class. LG does this by utilizing a logistic function, which is also referred to as
the sigmoid function. This function maps any real-valued input to a value within the
range of 0 to 1. This transformation is crucial as it enables LR to generate probabilities,
which are subsequently utilized for binary classifications. During training, the logistic
regression model learns the association between the input features and the target class by
estimating coefficients for each feature. These coefficients indicate the individual impact of
each attribute on the ultimate forecast. The model iteratively changes these coefficients to
minimize the discrepancy between its predictions and the actual class labels in the training
data. After being trained, LR utilizes the acquired coefficients to estimate the likelihood
that a new instance is part of the positive class. The algorithm calculates a weighted total
of the input features, multiplying each feature by its respective coefficient. The total is
subsequently inputted into the logistic function to derive the likelihood. LR employs
a threshold, usually set at 0.5, to determine the final binary classification based on the
likelihood. If the estimated probability exceeds the specified threshold, the instance is
categorized as belonging to the positive class; otherwise, it is categorized as belonging to
the negative class. LR has a significant benefit in terms of interpretability. LR calculates
coefficients for each feature, allowing us to understand the significance and direction
of their impact on the projected probability, which assists in the comprehension of how
various characteristics contribute to the determination of classification. Nevertheless, LR
also possesses its constraints. It presupposes a linear correlation between the characteristics
and the logarithm of the probability of the result, which may not consistently be accurate
in some scenarios. LR is susceptible to the influence of outliers and multicollinearity
among features, which can have a negative impact on the stability and dependability of
its predictions.

LDA is a classification approach that identifies optimal linear combinations of char-
acteristics to effectively distinguish between different classes in the data. LDA assumes
that the features adhere to a normal (Gaussian) distribution and that the covariance of
the features is uniform across all classes. The main objective of LDA is to identify a linear
decision boundary that optimizes the distance between different classes and minimizes
the variability within each class. In order to accomplish it, LDA initiates the process by
creating a model that represents the distribution of features for each class. The algorithm
calculates the average and covariance matrix for each class, assuming that the characteris-
tics within each class adhere to a multivariate normal distribution. After modeling the class
distributions, LDA computes the class priors, indicating the probability of meeting each
class in the dataset. These prior probabilities are usually calculated by determining the
relative frequencies of each class in the training data. LDA utilizes the class distributions
and priors to create decision boundaries that define specific areas in the feature space for
each class. The decision borders are established by optimizing a criterion to maximize
the variance ratio across classes to variation within classes. When confronted with new
data points, LDA employs the acquired decision boundaries to categorize them according
on their feature values. The algorithm utilizes Bayes’ theorem to compute the posterior
probability of each class for a certain data point, considering both the class distribution and
the class priors. The data point is allocated to the class with the greatest posterior proba-
bility afterward. LDA is able to handle high-dimensional data by lowering the number of
dimensions while retaining most of the class-discriminating information. By mapping the
data into a lower-dimensional subspace determined by the linear discriminants, LDA can
effectively distinguish between classes, even when the original feature space has a high
number of dimensions.

CART is a decision tree technique that iteratively divides the data space into areas
according to the values of the features. The CART algorithm constructs a decision tree by
dividing the feature space into subsets, each of which is assigned a particular class label.
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This process is carried out iteratively and recursively. The CART algorithm commences by
utilizing the complete dataset, taking into account all the features and cases. The objective
is to identify the characteristic that most effectively divides the data into two groups while
maximizing a measure such as Gini impurity or information gain. Gini impurity quantifies
the likelihood of incorrectly classifying an instance if it were assigned a random label based
on the class distribution within the subset. Information gain measures the decrease in
entropy (uncertainty) when splitting is carried out using a specific feature. After selecting
the initial feature, CART algorithm splits the dataset into two halves using a threshold
value specific to that feature. The algorithm can generate a split for each category when
dealing with categorical features. On the other hand, for numerical features, it can utilize a
threshold to construct binary splits. The CART algorithm assesses all potential divisions
and selects the one that optimizes the criterion, such as minimizing Gini impurity or
maximizing information gain. This technique is iteratively applied to each subset, thus
generating a tree structure. The process of recursion persists until a specified condition for
termination is fulfilled. To ensure the model’s generalization and prevent overfitting to
the training data, it is important to control the depth of the tree and avoid splitting nodes
with insufficient instances. In order to categorize a new instance, the decision tree must be
followed from the starting point to the final point, taking into account the characteristics of
the instance. At every node, it evaluates the feature value of the instance and compares it
to the threshold for splitting. It then proceeds to the appropriate child node based on the
comparison. This procedure iterates until it reaches a leaf node, when the projected class
for the new instance is determined by selecting the majority class among the instances in
that node. The main advantages of CART are its simplicity, interpretability, and capability
to handle numerical and categorical data. The resulting decision tree may be readily visible
and comprehended, rendering it a valuable instrument for elucidating the underlying
decision-making process to stakeholders. Furthermore, CART is resistant to irrelevant
characteristics and has the ability to automatically choose the most informative ones for
splitting, hence minimizing the necessity for feature engineering.

ET differs from regular decision trees by incorporating an extra layer of randomization
in selecting splits instead of evaluating all potential splits for each characteristic at every
node. The core principle of ET revolves around the idea of employing randomization
while selecting splits. When seeking the most favourable division to separate the samples
of a node into two groups, ET generates random splits for each of the randomly chosen
features. The randomization process is carried out separately for each feature and is
iterated numerous times until a specified maximum number of splits is reached. ET
enhances the decision-making process by introducing a greater level of variety and diversity
by generating random splits for each characteristic. This point increased the level of
randomness and helped mitigate the risk of overfitting by preventing the model from
excessively depending on features or patterns in the data. Extra Trees employ a different
approach than traditional methods of selecting the best split based on a predetermined
criterion. Instead of relying on a single split, ET considers numerous random splits and
selects the one that achieves the highest performance. ET mitigates overfitting by employing
multiple random splits for each feature, resulting in decision boundaries that are less prone
to overfitting the training data, which is especially advantageous when working with
datasets that are noisy or have a high number of dimensions, as typical decision trees
may have difficulty in properly generalizing. The increased level of unpredictability in
the selection of splits enables ET to effectively capture a wider range of patterns and
relationships in the data. Enhancing the model’s capacity to extrapolate to unfamiliar
data enhances its performance on test datasets. ET exhibits greater resilience to outliers
and noisy features than conventional decision trees. The technique of randomization
reduces the influence of particular data points or attributes that may significantly affect the
decision-making process.

SVM is a highly adaptable supervised learning model extensively employed for classi-
fication and regression problems. The classification method employed here is distinctive as
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it focuses on finding the most suitable hyperplane that successfully distinguishes different
classes in the feature space. The objective is to maximize the distance between the hyper-
plane and the nearest data points, referred to as support vectors. SVM in classification
aims to identify the hyperplane that effectively separates the classes and optimizes the
margin, which is the distance between the hyperplane and the nearest data points from
each class. SVM seeks to obtain superior generalization performance and resilience to data
noise by maximizing the margin. The data points located on the margin and closest to the
hyperplane are known as support vectors. These support vectors are essential in determin-
ing the decision boundary. However, real-world data frequently lack linear separability,
indicating that a solitary hyperplane cannot achieve perfect separation between the classes.
In such situations, SVM employs kernel functions to transform the input data into a feature
space with more dimensions. This transformation increases the probability of finding a
hyperplane that can effectively separate the classes. The transformation enables SVM to
effectively deal with non-linear decision boundaries by implicitly mapping the input into a
higher-dimensional space where a linear separator may be applied. Kernel functions are
crucial for SVM’s capacity to handle non-linearities in the data. These functions calculate
the inner product of data points in the input space, quantifying their similarity. SVM
applies a kernel function to the input data, implicitly transforming the data into a feature
space of greater dimensions. This transformation enables the possibility of achieving linear
separation. In this application, Gaussian Kernel Radial Basis Function captures complex
decision boundaries that conduct a non-linearity within the original space of features.
SVM’s adaptability allows it to capture variety of classification problems.

RF is a technique in ensemble learning that builds numerous decision trees during
training and merges their predictions to enhance performance. RF is a fundamental
technique in ensemble learning, known for its capacity to improve predictive accuracy by
aggregating the outputs of many decision trees. RF addresses the problems of overfitting
and high variance commonly associated with single decision trees. It achieves this by
utilizing many trees, which introduces variety and helps to minimize these concerns,
resulting in more reliable and accurate predictions. RF method functions by constructing
several decision trees in the training phase. Every decision tree is trained using a bootstrap
sample of the data, which involves training each tree on a randomly chosen subset of the
original dataset with replacement. Bootstrap sampling creates variability among the trees,
guaranteeing that each tree learns from a slightly distinct viewpoint of the data. In addition,
RF offers further unpredictability at each node of every decision tree by examining only a
subset of features for splitting. Instead of assessing all features to identify the best split, RF
randomly chooses a subset of features and evaluates them to discover the most optimal split.
This procedure introduces diversity into the model, preventing it from unnecessarily relying
on any specific characteristic and encouraging the examination of other data elements.
RF possesses good qualities due to the combination of bootstrapping and random feature
selection. RF mitigates the risk of overfitting and enhances generalization performance
by training each decision tree on a distinct subset of the data and restricting the number
of features examined at each node. The RF guarantees that the combined predictions
of the entire forest minimize the errors made by each individual tree. RF is particularly
effective in situations where the dataset has a large number of dimensions. The method
of randomly selecting features enables RF to prioritize the most informative ones and
ignore unnecessary or redundant ones, making it particularly suitable for datasets with a
high number of dimensions. RF has the ability to capture complex correlations between
features that individual decision trees may overlook, which is achieved by integrating the
predictions of numerous decision trees, each trained on a distinct subset of data and features.
An ensemble approach allows the RF algorithm to effectively capture and represent complex
interactions and non-linear relationships within the data, improving its ability to make
accurate predictions.
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2.5. Evaluation Metrics

In order to validate the described models, the ML factors of precision, recall, and
F1-score were computed. These factors were based on the values of true positive (TPA),
false positive (FPA), and false negative (FNA) for class A.

• TPA refers to the count of predictions made by a classifier that accurately forecast
class A;

• FPA refers to the count of objects that are not part of class A, yet are incorrectly
classified as class A;

• FNA represents the count of objects belonging to class A that are anticipated to belong
to a different class;

• Precision measures the proportion of positive class predictions that truly belong to
the positive class. The calculation involves adding up the number of true positives for
each class and dividing it by the sum of true positives and false positives for all classes:

Precision =
TPA

TPA + FPA

• Recall is a metric that measures the proportion of positive class predictions produced
correctly out of all the positive examples in the dataset. Unlike precision, which only
evaluates the accuracy of correctly predicted positive outcomes out of all positive
predictions, recall measures the number of positive predictions that were missed. In
the context of multiple categorizations, recall is calculated by adding up the number
of true positives for each category and dividing it by the sum of true positives and
false negatives across all categories:

Recall =
TPa

TPA + FNA

• F1-score is a unified metric that takes into account both precision and recall, providing
a single score. The F-score provides a method to merge precision and recall into a single
metric that encompasses both attributes. After obtaining the values for precision and
recall in the multiclass classification issue, these two scores can be merged to calculate
the F-Measure. Similar to precision and recall, an F-Measure score of 0.0 indicates poor
performance, whereas a score of 1.0 represents the best or flawless performance:

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall

• Accuracy is the ratio of correct predictions to the total number of predictions.

Accuracy =
Correct predictions

Total predictions

3. Results and Discussion

This section shows the performances of ML models via cross-validation. The best
models were programmed into the microcontroller for further analysis in real time and
code size.

3.1. Model Comparison and Selection

K-fold cross-validation is a widely used technique in ML that validates the perfor-
mance of a predictive model and mitigates the risk of overfitting. The process entails
dividing the dataset into K subsets or folds, training, and evaluating the model K times.
For each iteration, one specific fold is set aside as the test set, while the rest of the K-1
folds are used for training. The outcomes are calculated by averaging across K iterations,
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guaranteeing a more robust and reliable performance estimation. In this instance, the
K-fold cross-validation was performed using a value of k equal to 10.

The AI models underwent training on the host computer, which was equipped with
an NVIDIA Quadro P620 featuring a Pascal GPU boasting 512 CUDA cores (NVIDIA, Santa
Clara, CA, USA). The system is equipped with 2 GB of GDDR5 memory, an Intel Core i7
vPro-10850H Processor operating at a speed of 2.70 GHz, and 32 GB of RAM. The machine
is manufactured by Intel, located in Santa Clara, CA, USA.

As shown in Figure 6 and Table 2, ET, LR, CART, and RF have the highest accuracy
among all the models. Among these four models, the LR and RF possess the lowest
standard deviation (std), showing the small variance between all 10 results. LDA has a
weaker prediction capability for this specific case with an accuracy of 0.8, and SVM has
a poor accuracy of 0.6. It is essential to achieve more than 0.9 of accuracy for this sleep-
monitoring task to handle the proper information, so the four models with an accuracy of
0.99 are selected for a further test procedure.
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Table 2. AI model comparison.

Models Mean Accuracy Std 10-Fold Cross Validation Time
(s)

ET 0.997 0.007 0.029
LR 0.997 0.004 0.593

LDA 0.811 0.028 0.034
CART 0.997 0.005 0.029
SVM 0.666 0.045 1.307
RF 0.997 0.004 0.194

3.2. Test Process

In this test, 30% of the total data are used for testing the four selected models. Overall,
all of them attain highly effective results. As reported in Table 3, all three tree algorithms
have the same performance, with the precision, recall, and F1-score being similar. Their
predictions are almost perfect, with a small misprediction between the moving state and
static position. The moving state has a recall of 0.98, which means that the models correctly
identified and classified 98% of the actual instances. Static position has a precision of 0.98,
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showing that, out of all instances predicted as a static position by the models, 98% are
actually true static position instances.

Table 3. Test result on the selected models.

State
Precision Recall F1-Score

ET LR CART RF ET LR CART RF ET LR CART RF

Moving State 1 1 1 1 0.98 0.96 0.98 0.98 0.99 0.98 0.99 0.99
No Person 1 0.98 1 1 1 0.99 1 1 1 0.99 1 1

Static Position 0.98 0.96 0.98 0.98 1 0.99 1 1 0.99 0.98 0.99 0.99

• Total Accuracy of ET, CART, and RF models: 99.34%
• Total Accuracy of LG model: 98.01%

Unlike the tree algorithms, LG has an inferior performance in the test process with the
wrong predictions also in the case of no person, which leads to the precision, recall, and
F1-score of the other classes not being as good as the ET, CART, and RF algorithms.

3.3. Real-Time Test with STM32-Microcontroller

In this stage, the trained models of the four selected algorithms are implemented in the
IoT kit STM32 B-L475-IOT01A microcontroller board. The real-time test with the embedded
system includes:

• No person is in bed with 720,000 data;
• A person statically lies on the bed with 1,440,000 data;
• A person moves on the bed with 180,000 data.

Table 4 reports the accuracy and the code size of the ML models. All the models
demonstrate a good execution with an accuracy greater than 98%. The LR model has the
advantage of the lightest code size, but a lower accuracy than the other models. Since the
performance of the other three algorithms are almost the same, the CART model is the most
suitable model for the MCU application, with the smallest code size among the tree models.

Table 4. Real-time test with microcontroller.

ML Model Accuracy (%) Code Size
(Bytes)

ET 99.325 4346
LG 98.05 1480

CART 99.325 1583
RF 99.330 18,224

3.4. IoT Dashboard

With the MQTT [53–56] broker by HiveMQ [57], the Node Red [58–62] received the
ML prediction about the monitoring state via Wi-Fi, which can be observed via tele-distance
as a result of the IoT technology, as shown in Figure 7. Here, the numeric data means:

• 0: No person on bed;
• 1: Person stays in static position on the bed;
• 2: Person moves on bed.

The dashboard on Figure 7 shows a case where, in the first period, there is no person in
bed (0), then the person goes to bed and turns himself to adjust the sleep position, causing
a strong motion (2), then lays in a stationary position (1). In this way, the sleep routine of
the concerned person will be monitored effectively from a far distance via Wi-Fi based on
IoT communication.
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4. Discussion

This paper outlines the approaches and results of our study, which entailed gathering
and examining more than 216,000 pieces of acceleration data of X, Y, and Z axes points.
The difference of two consecutive samples are elaborated, and each of the 200 samples
formed a window. These windows are the ML instances for the purpose of training and
validating the ML algorithms. The results emphasize the outstanding performance of
the chosen Machine-Learning models, reaching accuracy rates that surpass 99% in tests
conducted on workstations. The CART technique stood out among the best models in terms
of performance, showing both a high accuracy and the lightest code size that is suitable
for effective deployment on a IoT microcontroller with limited memory. The monitoring
process is carried out via the MQTT protocol and Node-RED development tool.

5. Conclusions

In conclusion, this study demonstrates the significant potential of integrating MEMS
accelerometers, IoT frameworks, and Machine-Learning algorithms for automated sleep
pattern analysis. By accurately detecting individuals in a bed and classifying their sleep
states in real time, this approach offers promising avenues for enhancing patient outcomes,
particularly in remote monitoring and elderly care scenarios. The findings underscore
the transformative impact of technology-driven healthcare solutions and highlight the
importance of continued innovation in this field to realize its full potential in improving
healthcare delivery and patient well-being.

Three algorithms, ET, CART, and RF, accomplish the best performances. LG also has a
high efficiency with a light code size, although its accuracy is still lower than that of the
tree models. This work shows the potential of the automated sleep pattern analysis of a
real-time ML model implementation. By remotely monitoring sleep patterns, healthcare
professionals can tailor interventions and treatment plans based on individualized data in-
sights, enhancing patient outcomes and fortifying elderly care. Furthermore, the scalability
and accessibility afforded by IoT devices promise to democratize access to sleep-monitoring
services, ensuring equitable healthcare provision across diverse populations.

As we navigate towards this future, it is imperative to harness the full potential of these
technologies to realize their transformative impact on healthcare delivery and improve
the lives of individuals worldwide. In future work, more algorithms with more tests will
be carried out for the developed platform. Other types of beds and more patients will be
tested with the developed system.
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Notations and Abbreviations

CART Classification and Regression Trees
ET Extra Tree Classifier
IoT Internet of Things
LR Logistic Regression
LDA Linear Discriminant Analysis
MCU Microcontroller
ML Machine Learning
MQTT Message Queuing Telemetry broker
RF Random Forest
SVM Support Vector Machines
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