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Abstract: In the modern digital age, users are exposed to a vast amount of content and information,
and the importance of recommendation systems is increasing accordingly. Traditional recommen-
dation systems mainly use matrix factorization and collaborative filtering methods, but problems
with scalability due to an increase in the amount of data and slow learning and inference speeds
occur due to an increase in the amount of computation. To overcome these problems, this study
focused on optimizing LightGCN, the basic structure of the graph-convolution-network-based rec-
ommendation system. To improve this, techniques and structures were proposed. We propose an
embedding enhancement method to strengthen the robustness of embedding and a non-combination
structure to overcome LightGCN’s weight sum structure through this method. To verify the proposed
method, we have demonstrated its effectiveness through experiments using the SELFRec library on
various datasets, such as Yelp2018, MovieLens-1M, FilmTrust, and Douban-book. Mainly, significant
performance improvements were observed in key indicators, such as Precision, Recall, NDCG, and
Hit Ratio in Yelp2018 and Douban-book datasets. These results suggest that the proposed methods
effectively improved the recommendation performance and learning efficiency of the LightGCN
model, and the improvement of LightGCN, which is most widely used as a backbone network, makes
an important contribution to the entire field of GCN-based recommendation systems. Therefore, in
this study, we improved the learning method of the existing LightGCN and changed the weight sum
structure to surpass the existing accuracy.

Keywords: recommendation system; graph convolution network; LightGCN; learning methods

1. Introduction

Today, with the rapid development of the digital age, a lot of content and information
is created per second in the modern digital environment, and Internet users are exposed
to such large amounts. This forces users to filter massive amounts of data to find the
information or products that they want.

Recommendation systems act as a key tool to present the information or content
desired by users in this information overload state, and are used in various areas such
as e-commerce, entertainment, and social media; moreover, they are used to provide the
content desired by users on platforms such as YouTube, Netflix, and Amazon. In order to
recommend user-specific content, the most relevant information or products are effectively
presented by analyzing the user’s behavioral patterns, such as the user’s past behavior,
preferences, and interests. This provides opportunities for new discoveries and increases
user loyalty to the content platform. In addition, by continuously providing relevant and
interesting content to users, it allows users to spend more time on the platform, thereby
increasing its profitability.

However, the existing recommendation system mainly uses the matrix factorization
(MF) approach and the collaborative filtering (CF) approach, but the amount of data used
for recommendation increases. In identifying similarities, a scalability problem occurs,
in which the amount of computer calculations increases enormously, and the need for a
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method to solve problems such as a slow learning speed and an increased inference time has
emerged due to this problem. As a way to effectively solve this problem, a recommendation
system using deep learning based on the CF approach is being proposed. Typically, the
graph convolution network (GCN) captures the correlation between users and items better
than the existing methods, and, through this, studies are being proposed to improve the
learning speed, inference speed, and accuracy of the existing methods [1–18].

Therefore, in this study, we have conducted research to optimize and improve the
accuracy of the LightGCN model, which is mainly used as a backbone network in the
latest GCN-based recommendation system. We propose a weight forwarding technique
to improve learning speed and accuracy and use this method to improve the existing
LightGCN model. Since the LightGCN model has been widely used as a backbone network
in recent research, it is possible to improve the latest model by improving that model. A
study was conducted to improve the layer combination structure.

2. Related Work

The MF approach, which is mainly used in existing recommendation systems, is a
method of decomposing a matrix representing interactions and potential factors between
users and items into two low-dimensional matrices. Hidden features (latent factors) such
as user preferences or item characteristics are reflected in this decomposed matrix. In the
MF approach, the collaborative signal, which refers to the latent feature vector of users
who consumed items similar to mine, is used as the learning data, and the learning is
performed using an optimization algorithm, such as gradient descent. After completing the
learning process, a specific item in the matrix, which is reconstructed by multiplying the
two low-dimensional matrices, represents the rating or preference that the user is expected
to have for that item. However, it is computationally very complex to perform matrix
decomposition on large-scale datasets with this method, and this process requires a lot
of time and resources. Therefore, it is difficult for the MF approach to reflect dynamic
changes in the system as user preferences or item characteristics change over time. In
addition, the CF approach, which is mainly used in existing recommendation systems, is a
recommendation method that recommends items preferred by neighbors with similar tastes
to those of the target user to the target user themself. This methodology views user–item
interaction data as a matrix and makes recommendations by restoring the entire matrix, like
the MF methodology. Through this process, the similarity between the users or between
the items is calculated based on evaluations of the items performed by past users, and
recommendations are provided between users and items, allowing ‘neighbors’ with similar
tastes to interact with the target user. Items that the user has not interacted with can be
recommended as high-ranking items [19–22].

However, since the same problems as those seen in the MF methodology still occur
in the CF methodology, deep learning technology is being proposed as a way to improve,
starting with the neural graph collaborative filtering (NGCF) [23] model and the graph
convolution network (GCN). A variety of recommended systems are being studied.

The NGCF model is used in the GCN-based CF model by explicitly encoding collabo-
rative signals using GCN to consider high-order connectivity through user–item interaction
data in a graph converted to a bipartite graph (Figure 1a). Here, high-order connectivity
refers to high-order connectivity that cannot be expressed as a bipartite graph, and high-
order connectivity generally refers to a path that reaches u1 from all nodes with a path
length greater than one. These high-order connections contain rich semantics that convey
collaborative signals. As shown in Figure 1b, for example, the path u1 ← i2 ← u2 indicates
the behavioral similarity between u1 and u2, because both users have interacted with i2.
Looking at the longer path u1 ← i2 ← u2 ← i4, we can see that u1 is likely to adopt i4,
because u2, a similar user, has used i4 before. Since i4 has two connected paths and i5 has
one connected path, from the holistic perspective of <i4,u1> <i5,u1> − l = 3, i4 is more likely
to be of interest to u1 than i5. These high-order connections can be used to provide more
accurate recommendations by capturing collaborative signals between the users and items.
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A collaborative signal reflecting high-order connections is a concept proposed in the NGCF
model, which includes the target users and neighboring users whose interaction history
overlaps with the item’s embedding vector, or the user who interacted with the neighbors
but did not interact with the target. This is the embedding vector of the item. In addition,
while the MF methodology and CF methodology implicitly reflected this collaborative
signal, the NGCF explicitly reflected this, and, through this method, showed improvement
in recommendation performance compared to the existing MF and CF methodologies.
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Equations (1) and (2) are the propagation rule and prediction layer of the NGCF model,
respectively, and learning is performed using only the initial layer (shallow embedding) of
Equation (2), e(0)u and e(0)i . Here, hop refers to the distance between the nodes in the graph,
and the layer of the GCN algorithm serves to aggregate the information of the surrounding
nodes. Therefore, when proceeding with the propagation rule, when passing through the
first layer, the information of the target node’s 1-hop neighbors is aggregated; moreover,
in the case of layer 2, the information of the 1-hop’s neighbors, that is, up to the 2-hop,
is aggregated. If it goes through N-layers, the information up to N-hops is aggregated.
The author of NGCF first named this aggregated information a collaboration signal and
proposed a process of disseminating and learning the collaboration signal containing
information of such high-order connectivity to the GCN, leading to the use of deep learning
in the recommendation system. Nu and Ni in Equation (1) refer to the connected nodes
of the user u and the item i, respectively, and the embedding value when performing the
convolution operation according to the symmetric normalization term (=1/

√
|Nu|

√
|Ni|).

It serves to normalize in order to prevent it from becoming large, which means dividing
by the number of neighboring nodes (users, items). The reason for normalization is that
the more items connected to user u, the larger the collaborative signal becomes. The
corresponding term ( 1√

|Nu |
√
|Ni |

(
W1e(k)i + W2

(
e(k)i

⊙
e(k)u

))
) shows that it is a process of

performing message construction, and, as more messages are delivered in the process, the
expression ability and recommendation performance increase.

e(k)u is the embedding value in the kth layer of user u, and e(k)i is the embedding value

in the kth layer of item i. σ means non-linear activation, and W1e(k)u and W1e(k)i mean
self-connection, where W1 and W2 are learnable weight matrices. To obtain the embedding
value of the k + 1th layer containing the kth hop in the graph, the previous embedding
values of the neighbors of user u and item i are added to the normalized weight.

e(k+1)
u = σ

(
W1e(k)u + ∑

i∈Nu

1√
|Nu |
√
|Ni |

(
W1e(k)i + W2

(
e(k)i

⊙
e(k)u

)))
,

e(k+1)
i = σ

(
W1e(k)i + ∑

i∈Ni

1√
|Nu |
√
|Ni |

(
W1e(k)u + W2

(
e(k)u

⊙
e(k)i

))) (1)
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e*
u = e(0)u ∥· · · ∥e

(L)
u , e*

i = e(0)i ∥· · · ∥e
(L)
i (2)

LightGCN [24], an improved NGCF model, simplifies complex weight learning by
removing feature transformation, non-linear activation, and self-connection from the prop-
agation layer (Equation (3)). The prediction layer is shown in Equation (4). In addition,
by changing the existing NGCF method to a weighted sum, all layers are summed and
the last embedding values of the user and item, e′u and e′i, are calculated through their
average (αk = 1/k). Here, the weighted sum process used to obtain the last embedding
value includes the initial layer embedding value. Score ŷui, which represents the prefer-
ence between user u and item i, is calculated by inner producing eu and ei, as shown in
Equation (5). The matrix obtained through the inner product is used for recommendation.
The basic learning process is shown in Figure 2. LightGCN uses an interaction graph
between users and items to strengthen interactions between the nodes. As a result, the
recommendation performance is improved by generating the node embedding value using
only the connection information between the user and the item. LightGCN generates node
embeddings using the interaction graph between the nodes instead of the weight learning
of the GCN algorithm; therefore, the learning and inference time can be significantly re-
duced compared to NGCF. Additionally, its architecture is simpler than that of NGCF, so it
can be usefully used in various recommendation scenarios and large-scale recommendation
systems. Due to these various advantages, the LightGCN model is the most widely used
backbone network in follow-up research.

e′(k+1)
u = ∑

i∈Nu

1√
|Nu|

√
|Ni|

e′(k)i ; e′(k+1)
i = ∑

i∈Ni

1√
|Ni|

√
|Nu|

e′(k)u (3)

e′u =
n

∑
k=0

αke′(k)u ; e′i =
n

∑
k=0

αke′(k)i (4)

ŷui = e′Tu e′i (5)
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However, NGCF and LightGCN repeatedly perform a symmetric normalization term
to obtain the embedding of the next layer and transmit the value to the next layer. They
experience an underfitting problem, in which the embedding value decreases each time
that it is transmitted to the next layer. These problems impede LightGCN’s learning process
and degrade its recommendation performance, preventing the original purpose of the
recommendation system from being achieved. Additionally, the embedding value used
for the recommendation of the LightGCN model is used after averaging the averages,
as shown in Equation (4). Layer 1 learns only the 1-hop relationship and repeats it by
increasing the length of the hop. The learning results of each hop are passed on to the
next layer. The relationship data with a short previous hop length are the items that are
most relevant to the user. The most related relationships are averaged and overlapped
with the less related ones. The stronger the embedding value for this most relevant
relationship, the lower the recommendation accuracy and recommendation diversity in
the recommendation system. To overcome these problems, we improve the learning speed
of the GCN algorithm and propose techniques and improvement structures to increase its
recommendation performance.

3. Proposal Method (Embedding Enhancement Method)

LightGCN, whose embedding values continued to decrease during the learning pro-
cess, robustly learns only the item features that the user has continuously viewed, allowing
the users to discover new and relevant content that they would not have encountered
otherwise, which is the essential reason for using a recommender system. With this, the
probability decreases further. As a way to overcome this issue, in the process of passing
the embedding of the previous layer to the next layer (as shown in Equation (6)), a scalar
multiplication is performed on the embedding value that has performed a symmetric
normalization term, resulting in enhancement embedding e′′(k+1)

u , e′′(k+1)
i being passed to

the next layer. Through this process, you will obtain enhancement embedding. Through
the obtained embedding value, the user not only learns the characteristics of the item
that he or she has continuously viewed, but also learns the relationship between other
users and items, so that new items that have a relationship between the user and the item,
but were not previously recommended, can be recommended. From this, the probability
increases. Additionally, in the existing LightGCN structure, the self-connected effect of
graph convolution is maintained by weight summing the embedding value derived from
the previous hop layer, leading to the extraction of comprehensive representation. The
embedding calculated by taking the weight sum overlaps the embedding value in the order
of short hop length, due to the summation process, which has the effect of being further
emphasized. However, the embedding value obtained through the proposed embedding
enhancement method robustly contains the information of all hops, and, instead of using
the enhancement embedding to perform a weight sum process (as shown in Equation (7)), it
is recommended to use only the last layer embedding value, as shown in Equation (8). This
makes it possible to provide more diverse recommendations than the existing LightGCN.
The proposed non-combination structure specifically addresses LightGCN’s weight sum
issue by avoiding the averaging of embedding values from each layer and instead utilizing
only the embedding value from the final layer. The reason for adopting this method is
that the interference from the initial layer embeddings can actually degrade the recommen-
dation performance, and increasing the layer depth beyond a certain point can also lead
to performance degradation. Therefore, it is crucial to identify the optimal layer for each
dataset or requirement and use only the results from this optimal layer for inference, which
enhances the performance of the recommendation system. This approach minimizes the in-
terference from the initial layers, allowing the model to learn deeper and more meaningful
representations. By leveraging the embedding from the final layer, the model captures the
most relevant and significant features for making recommendations. Furthermore, using
the final layer embedding value helps us to provide more diverse recommendations, as it
robustly includes the information from all hops without the overlapping effect seen in the
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weight-summed embeddings. This method increases the likelihood of recommending new
items that have a relationship with the user but were not previously recommended, thus
improving the overall recommendation quality. By implementing this non-combination
structure, the recommender system not only learns the characteristics of the items that the
user has continuously viewed, but also understands the relationships between the other
users and items, facilitating the recommendation of previously unseen but relevant content.
This ensures that the proposed method outperforms the existing LightGCN in providing
diverse and accurate recommendations. A schematic diagram of the proposed method is
shown in Figure 3.

e′′(k+1)
u = wk ∑

i∈Nu

1√
|Nu|

√
|Ni|

e′′(k)i ; e′′(k+1)
i = wk ∑

i∈Ni

1√
|Ni|

√
|Nu|

e′′(k)u (6)

e′′u = e′′(k)u ; e′′i = e′′(k)i (7)

ŷ′ui = e′′Tu e′′i (8)
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4. Experiment

In this study, a non-combination structure was proposed through the embedding en-
hancement method as a method to improve the problems that hinder the recommendation
performance of LightGCN, as well as learning efficiency. The weight of the embedding
enhancement of the proposed method is 2 of 0. To verify the proposed technique and
structure, an experiment was conducted by applying the proposed method to LightGCN
by increasing the weight from the power of 2 to the 11th power of 2. Since LightGCN is
widely used as a backbone network in follow-up research, we believe that, if the perfor-
mance and learning efficiency of LightGCN increases, the network proposed in follow-up
research will also be able to produce meaningful results. SELFRec [25] was used in this
experiment, which is an open-source library for GCN-based recommendation system
algorithms. This library implements various recommendation algorithms based on Py-
Torch and facilitates recommendation system research and development. Additionally,
several subsequent studies have used the same library as this experiment. Section 4.1
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shows the experimental environment and data, and Section 4.2 shows the analysis re-
sults of the overall experiment. The link to the code written referring to SELFRec is as
follows: Github, https://github.com/d9249/OptGCN (accessed on 22 February 2024).
The learning records are as follows and have been posted on the Internet: Train log:
https://wandb.ai/d9249/OptGCN (accessed on 22 February 2024).

4.1. Experimental Data and Environment

In experiments conducted to verify the proposed method, four types of datasets were
used, as shown in Table 1. The MovieLens dataset is a dataset that is widely used in
movie recommendation systems and contains interaction information about users’ ratings
of movies. Here, the interaction data refers to the viewing history between the user and
the item, and this interaction relationship is expressed as a bipartite graph; furthermore,
the interaction is learned in order to predict the mapping between the user and the item.
The size of the dataset is divided based on the number of user viewing records. Likewise,
the FilmTrust dataset is a dataset created by crawling users’ movie evaluation information
on the FilmTrust website, and, like the MovieLens dataset, it is often used in movie
recommendation systems. In this experiment, only the rating information of the MovieLens
dataset was used for learning between 4 and 5 points, but the FilmTrust dataset used rating
information from 0.5 to 4 points for learning. The Douban-book dataset is a dataset created
by crawling from Douban, a Chinese book review website, and includes book ratings and
user information. The rating range for the dataset used in this experiment was four to five
points. The Yelp2018 dataset comes from the Yelp Challenge 2018 and records ratings for
local businesses, such as restaurants and bars, in 10 metropolitan areas across two countries,
showing only those for which users have interacted with items.

Table 1. Datasets used in the experiment.

Yelp2018 MovieLens-1M [26]
Train Test Train Test

User 1499 812 12,638 10,882
Item 2033 340 22,222 19,075

Interaction 33,750 1747 478,730 119,690
Rating Range 0.5~4 0.5~4 4~5 4~5

Sparsity 98.89% 99.37% 99.83% 99.94%

FilmTrust [27] Douban-book [28]
Train Test Train Test

User 6038 5989 31,668 31,668
Item 3492 3190 38,048 36,073

Interaction 460,359 114,922 1,237,259 324,147
Rating Range 4∼5 4∼5 None None

Sparsity 97.82% 99.40% 99.90% 99.97%

The datasets used in the experiments of this study were the same as those used in
the LightGCN follow-up study, and no preprocessing was performed on the data. These
datasets are widely used as benchmark datasets for evaluating the performance of rec-
ommender system algorithms. To avoid overfitting problems, we implemented several
strategies. First, we limited the training to 300 epochs and monitored the performance
metrics during the training process. In particular, the epochs showing the highest perfor-
mance metrics were selected to evaluate and compare the results. This approach prevents
overfitting by preventing the model from continuing to learn beyond its optimal perfor-
mance point. Second, we implemented early stopping based on the performance of the
validation set. If the validation loss did not improve over a period of epochs, we stopped
training to avoid overfitting the model to the training data. Finally, all accuracy analyses
were performed using a separate validation dataset that the model did not see during
training. This ensured that the reported performance metrics reflected the model’s ability

https://github.com/d9249/OptGCN
https://wandb.ai/d9249/OptGCN
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to generalize to unknown data. These strategies ensured the robustness of the results and
prevented overfitting problems. By using early stopping and monitoring the performance
of a separate validation dataset, we can provide strong support that our model maintains
its ability to generalize across different datasets.

Information about the experiment environment of this study is shown in Table 2, and
the parameters used for learning LightGCN are also shown in the table.

Table 2. Experimental environment and parameters.

Resource Property

OS Ubuntu 18.04.06 LTS
Nvidia Driver 525.78.01

CPU Intel i9-12900K
GPU GeForce RTX 3090
RAM Samsung DDR4 16 GB (4EA)

CUDA 12.0
CuDNN 11.6
Python 3.7.11
Pytorch 1.10.0

Optimizer Adam
Learning Epoch 300

Batch size 2048
Embedding size 64
Learning Rate 0.001
Reg lambda 0.0001

Layer 3

4.2. Experimental Results and Analysis

Figure 4 shows the analysis results achieved through dimensionality reduction tech-
niques (DRT) using embedding values and datasets. In this analysis, principle component
analysis (PCA) and Gaussian kernel density estimation (GKDE) were performed for each
dataset to analyze the distribution and density of the embeddings. Additionally, for vi-
sualization purposes, we performed a data sampling process to rank the users and items
by popularity, and then randomly selected 500 hot users (blue) and hot items (green)
from the top 5% of users and item groups. Here, 500 cold users (red) and cold items
(orange) were randomly sampled from the bottom 80% of the user and item groups. The
expression learned through the sampling process was mapped to a two-dimensional space
using t-SNE, and PCA visualization was performed through the expression mapped to
the two-dimensional space. Additionally, the GKDE visualization results are shown below,
and each point (x,y) was visualized using GKDE of atan(x,y).

The visualizations shown in Figure 4 allow us to evaluate the distribution and density
of the embeddings, providing insights into factors such as separability, density, uniformity,
clustering, noise, outliers, and stability. The visualizations represent the best-performing
proposed method for each dataset. For the existing LightGCN, multiple clusters appeared
in the PCA visualization, but the boundaries between the clusters were relatively less
distinct compared to those of the proposed method. This suggests that the embeddings
are not clearly separated and are intermingled. A similar pattern was observed in the
GKDE visualization, with peaks indicating that specific feature values are concentrated
in certain areas. In contrast, the embeddings resulting from the proposed algorithm
showed relatively distinct clustering and wider dispersion in the PCA visualization. This
indicates that the proposed method captures the diversity and features of the data more
effectively. The GKDE results also showed relatively smoother curves, with the peaks
being more subdued, indicating that the embeddings are more uniformly distributed. The
use of t-SNE and PCA for dimensionality reduction and visualization is appropriate for
several reasons. The t-SNE is particularly effective at preserving local structures in high-
dimensional data, making it well-suited for visualizing the clusters and relationships within
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the data. By mapping the high-dimensional embeddings to a 2D space, t-SNE helps us to
reveal natural groupings and separations that might not be apparent in the original high-
dimensional space. PCA, on the other hand, is a linear dimensionality reduction technique
that captures the global variance structure of the data. By projecting the embeddings
onto the principal components, PCA helps us to understand the overall distribution and
spread of the data. It provides insights into the major directions of variance and helps
us to identify the primary factors contributing to the data structure. Combining t-SNE
for initial dimensionality reduction with PCA for subsequent visualization leverages the
strengths of both methods. t-SNE ensures that the local relationships are maintained,
making the clusters more apparent, while PCA provides a broader view of the data’s
variance and distribution. This combination allows for a more comprehensive analysis of
the embeddings, making it easier to evaluate their quality in terms of clustering, dispersion,
and uniformity. These visualization results suggest that the proposed method learns the
distribution of the embeddings more effectively than the existing method, better reflecting
the diverse features of the data. Consequently, the proposed method enhances the quality
of the embeddings by achieving clearer clustering, wider dispersion, and more uniform
distribution, thus better representing the complexity of the data. The embedding values
changed through the proposed method are shown in Table 3.
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based on the best performance of the applied methods for each dataset.
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Table 3. Statistical analysis values of the existing LightGCN and the proposed method.

FilmTrust Yelp2018

Existing
Average Value

Proposed Method
Average Value

Existing
Average Value

Proposed Method
Average Value

User
Embedding

Mean −5.57 × 10−3 −3.11 × 100 −1.67 × 10−2 −5.19 × 10−2

Standard Deviation 4.94 × 10−1 2.60 × 101 6.78 × 10−1 4.78 × 10−1

Standard error 3.47 × 10−4 4.86 × 10−2 7.54 × 10−4 5.32 × 10−4

Variance 2.44 × 10−1 1.27 × 102 4.59 × 10−1 2.29 × 10−1

Midian −8.12 × 10−3 −3.86 × 100 −1.90 × 10−2 −2.62 × 10−2

Item
Embedding

Mean −2.73 × 10−4 −9.37 × 10−1 −1.35 × 10−2 −3.83 × 10−2

Standard Deviation 4.17 × 10−1 1.20 × 101 5.50 × 10−1 3.82 × 10−1

Standard error 2.67 × 10−4 3.31 × 10−2 4.62 × 10−4 3.20 × 10−4

Variance 1.74 × 10−1 1.33 × 102 3.03 × 10−1 1.46 × 10−1

Midian 9.80 × 10−4 −5.17 × 10−1 −1.29 × 10−2 −2.52 × 10−2

MovieLens-1M Douban-book

Existing
average value

Proposed method
average value

Existing
average value

Proposed method
average value

User
Embedding

Mean 6.55 × 10−3 −6.70 × 10−3 4.93 × 10−3 −6.27 × 10−3

Standard Deviation 3.23 × 10−1 3.49 × 10−1 3.72 × 10−1 3.06 × 10−1

Standard error 3.59 × 10−4 3.88 × 10−4 5.98 × 10−4 4.93 × 10−4

Variance 1.04 × 10−1 1.22 × 10−1 1.38 × 10−1 9.39 × 10−2

Midian 6.83 × 10−3 −6.99 × 10−3 6.57 × 10−3 −1.03 × 10−2

Item
Embedding

Mean −7.72 × 10−5 −1.96 × 10−3 3.82 × 10−3 −2.51 × 10−2

Standard Deviation 2.40 × 10−1 2.64 × 10−1 4.78 × 10−1 4.60 × 10−1

Standard error 2.02 × 10−4 2.21 × 10−4 1.01 × 10−3 9.74 × 10−4

Variance 5.77 × 10−2 6.96 × 10−2 2.28 × 10−1 2.12 × 10−1

Midian −2.03 × 10−3 −1.96 × 10−3 4.15 × 10−3 −1.95 × 10−2

Four evaluation functions were used to verify the entire experiment, as follows: Preci-
sion, Recall, NDCG, and Hit Ratio, which were used to evaluate the quality of the model
from various aspects. The Precision@K represents the ratio of items of interest to actual
users among the recommendations proposed by the recommendation system. In other
words, it measures how accurately the system actually recommends the preferred items
to the user, and high precision indicates that the recommendation system accurately rec-
ommends the items that are highly relevant to the user. The Recall@K represents the ratio
of items suggested by the recommendation system among the items that the actual user
is interested in. In other words, it measures how many related items the recommender
system recommends, and a high recall rate means that it suggests many related items to
the user without missing them. Normalized discounted cumulative gain (NDCG)@K is a
function that evaluates the relevance and ranking of the recommended items. The higher
the user’s preferred items are, the higher the value is. Therefore, a high NDCG indicates
that the recommendation system accurately suggests items of interest to the user with a
high ranking. The Hit Ratio@K represents the rate at which the recommendation system
successfully includes the user’s preferred items in the recommendation list. This measures
whether the recommendation system recommends at least one item of interest to the user,
and a high hit rate means that the recommendation system includes the user’s preferred
items well, without missing them.

Through these various evaluation indicators, the performance of the recommendation
system was evaluated and compared from various aspects. Precision and Recall evaluate
the accuracy and diversity aspects of the recommendations, NDCG evaluates whether the
items of interest to the user are accurately recommended at the top, and Hit Ratio measures
how successful the recommendation system is in suggesting at least one related item to the
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user. The entire experiment was conducted with K = 20, and the quantitative results of the
entire experiment are shown in Table 4.

Table 4. Quantitative results of the entire experiment with both the traditional model and the
proposed method per dataset.

Dataset Weight Best Epoch Model Precision Recall NDCG Hit Ratio

Yelp2018

- 101 MF 0.02235 0.04998 0.04055 0.04367
- 231 LightGCN 0.02688 0.05949 0.04887 0.05253

8, 8, 8 56 LightGCN_W 0.02809 0.06191 0.05086 0.05488

8, 8, 8 271
LightGCN_N

(Propose
method)

0.03093 0.06873 0.05656 0.06044

MovieLens-1M

- 46 MF 0.189 0.249 0.2831 0.197
- 261 LightGCN 0.19987 0.27196 0.30274 0.20838

64, 64, 64 11 LightGCN_W 0.19937 0.27716 0.30852 0.20786
128,128,128 271 LightGCN_N 0.20214 0.27748 0.3083 0.21074

FilmTrust

- 296 MF 0.0868 0.848 0.6169 0.8178
- 276 LightGCN 0.08761 0.85376 0.61566 0.82547

8, 8, 8 76 LightGCN_W 0.08817 0.86131 0.6197 0.83481
32, 32, 32 226 LightGCN_N 0.08824 0.85874 0.62453 0.83137

Douban-book

- 66 MF 0.05407 0.1247 0.1039 0.09662
- 266 LightGCN 0.06209 0.14783 0.12508 0.11095

16, 16, 16 26 LightGCN_W 0.06315 0.15127 0.12867 0.11284
16, 16, 16 181 LightGCN_N 0.07103 0.16701 0.14632 0.12692

The analysis of the experimental results for each dataset was performed using the
results shown in Table 4. On the Yelp2018 dataset, the proposed method achieved the best
performance, showing remarkable improvement in all evaluation indicators. This dataset
achieved an increase of 15.07% in Precision, 15.53% in Recall, 15.74% in NDCG, and 15.06%
in Hit ratio. These numbers indicate a significant improvement in the model’s ability to
accurately recommend relevant items and encompass a wider range of user interests, and
consistent improvements in all of these metrics suggest that LightGCN_N was particularly
effective for the Yelp2018 dataset.

In the case of the MovieLens-1M dataset, the performance improvement was relatively
small compared to that of Yelp2018. An improvement of approximately 2% was achieved
in both the Recall and NDCG metrics, and this increase indicates a slight improvement in
the model’s ability to capture relevant items for user recommendations. Precision and Hit
Ratio also showed a slight improvement, with an increase of about 1%. This confirmed
that LightGCN_N improved in recommendation quality, but the impact was not as clear as
that observed for the Yelp2018 dataset. These results occurred due to inherent differences
between the datasets.

The FilmTrust dataset showed an enhanced performance across all metrics, each
showing an increase of approximately 1%. This slight improvement observed in the results
after applying the proposed method indicates limited improvement compared to the basic
LightGCN model. The relatively low increase compared to the other datasets suggests that
the proposed technique may have a limited impact on datasets with similar characteristics
to those of FilmTrust.

The Douban-book dataset showed the most notable improvement among all datasets,
especially for NDCG, with an increase of 16.98%. Additionally, both Precision and Hit Ratio
increased by about 14.4%, and Recall improved by 12.97%. This suggests that LightGCN_N
is very effective on the Douban-book dataset. This increase in all metrics indicates that
the proposed method not only improved the overall recommendation accuracy, but also
better identified a wider range of relevant items for users. It can be seen that the proposed
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method is suitable for the characteristics of the Douban-book dataset, including item types
and user interaction patterns.

5. Conclusions

In the digital age, users are overwhelmed by the vast amount of content and informa-
tion available online, and, as a solution to this, recommendation systems play an important
role in helping users to find relevant content. Traditional recommendation systems utilizing
matrix factorization and collaborative filtering approaches have scalability issues, due to
increasing data volumes. This causes scalability problems and a decrease in the learning
and inference speed of the existing methods. Therefore, this study aimed to optimize
and improve the accuracy of the LightGCN model, which is a widely used backbone
network in GCN-based recommendation systems. For this purpose, the following method
was proposed: As a way to improve the robustness of the embeddings, the robustness
between the layers was maintained by increasing the embeddings through weights af-
ter symmetric normalization. Using the enhancement embedding obtained through this
process, learning was completed without going through the existing weighted sum, and
only the last layer’s embedding was used for recommendation; however, it surpassed
the accuracy of the existing recommendation performance. What can be seen from these
experiments is that the proposed method does not recommend only the items with a small
number of hops—although there was a user–item relationship in the past—but is capable of
recommending new and diverse items that had longer hops and were not otherwise recom-
mended. The entire experiment was conducted on the MovieLens, FilmTrust, Douban-book,
and Yelp2018 datasets using the SELFRec library, and Precision, Recall, NDCG, and Hit
Ratio were evaluated as performance indicators for model verification. The analysis of the
entire experiment showed notable improvements in all datasets, especially the Yelp2018
and Douban-book datasets. There were notable increases in these four indicators.

The detailed experimental results for each dataset are as follows: In most datasets, the
proposed LightGCN_N showed improvements in all evaluation indicators. In the Yelp2018
dataset, Precision increased by 15.07%, Recall increased by 15.53%, NDCG increased by
15.74%, and Hit Ratio increased by 15.06%. This means that the proposed LightGCN_N
can cover the user’s interests more broadly and recommend related items more accurately
than the existing LightGCN model. In the MovieLens-1M dataset, Precision increased by
1.14%, Recall increased by 2.03%, NDCG increased by 1.84%, and Hit Ratio increased by
1.13%. This suggests that, although the LightGCN_N model improves in recommendation
quality, the effect is relatively less pronounced compared to that of the Yelp2018 dataset.
In the FilmTrust dataset, Precision increased by 0.72%, Recall increased by 0.58%, NDCG
increased by 1.44%, and Hit Ratio showed a performance improvement of 0.71%. The
impact of the proposed technique was found on the datasets with similar characteristics to
those of FilmTrust. This means that it may be limited. The Douban-book dataset showed
the most notable performance improvement, especially for NDCG, which increased by
16.98%. Additionally, Precision and Hit Ratio improved by 14.4%, and Recall increased by
12.97%. This indicates that the proposed method improved the recommendation accuracy
overall and provided the users with a wider range of related items.

The comprehensive results show that the proposed methods effectively improved the
recommendation performance and learning efficiency of LightGCN, especially showing
notable improvements in the Yelp2018 and Douban-book datasets. This can be seen as an
important contribution that significantly improves the performance of the LightGCN model
in the field of recommender systems. In the future, we plan to verify the proposed methods
by applying LightGCN (which was proposed in a follow-up study) to algorithms [29–33]
that use the backbone network, and to learn to overcome the problem of having to manually
search for weights to obtain enhancement embedding. In the process, we plan to perform a
learning process in which the optimal weight is calculated. These methods will be applied
to the latest recommendation model.
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