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Abstract: As global climate change intensifies, the challenges of water scarcity and flood disasters
become increasingly severe. This severity makes efficient reservoir scheduling management crucial
for the rational utilization of water resources. Due to the diverse topological structures and varying
objectives of different watersheds, existing optimization models and algorithms are typically applica-
ble only to specific watershed environments. This specificity results in a “one watershed, one model”
limitation. Consequently, optimization of different watersheds usually requires manual reconstruc-
tion of models and algorithms. This process is not only time-consuming but also limits the versatility
and flexibility of the algorithms. To address this issue, this paper proposes a knowledge graph-driven
method for reservoir optimization scheduling. By improving genetic algorithms, this method allows
for the automatic construction of optimization models tailored to specific watershed characteristics
based on knowledge graphs. This approach reduces the dependency of the optimization model
on manual modeling. It also integrates hydrodynamic simulations within the watershed to ensure
the effectiveness and practicality of the genetic algorithms. Furthermore, this paper has developed
an algorithm that directly converts optimized reservoir outflow into actionable dispatch instruc-
tions. This method has been applied in the Pihe River Basin, optimizing flood control and resource
management strategies according to different seasonal demands. It demonstrates high flexibility
and effectiveness under varying hydrological conditions, significantly enhancing the operational
efficiency of reservoir management.

Keywords: genetic algorithm; optimization; reservoir operation; knowledge graph

1. Introduction

As global climate change intensifies, the issues of water scarcity and flood disasters are
becoming increasingly severe [1]. In this context, effectively managing reservoirs within a
watershed to adequately manage water resources and address flood disasters has become a
focal point of research in water management [2]. Reservoir scheduling involves formulating
timely water storage and release strategies based on predetermined management objectives
and operational constraints to optimize the comprehensive utilization of the reservoirs.
In practice, reservoir scheduling is typically modeled as a multi-constraint nonlinear
optimization model. The process of determining near-optimal outflow rates through
optimization algorithms is referred to as reservoir optimization scheduling [3].

In recent years, with advancements in computer technology, heuristic algorithms
inspired by biology, physics, and artificial intelligence have seen widespread develop-
ment and application [4], especially genetic algorithms. Genetic algorithms adhere to the
fundamental principle of “natural selection, survival of the fittest”. They eliminate less
efficient individuals through the selection of superior genes and processes of crossover and
mutation and, through numerous iterations, progressively evolve and select the optimal
individuals [5]. Compared to other optimization methods, genetic algorithms feature
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global optimization, strong adaptability, and robustness, making them widely used in the
field of reservoir optimization scheduling [6–8]. When applying genetic algorithms to
reservoir optimization scheduling, the outflow from each reservoir in the basin is com-
bined and encoded as the genetic sequence of an individual [9]. During the algorithm’s
iterative process, these individuals are selected, crossed, and mutated to find the optimal
scheduling strategy.

Given the urgency and complexity of reservoir scheduling issues, researchers have
recently refined and optimized genetic algorithms to enhance their local search capabilities
and computational efficiency. Recent advancements include the introduction of a layered
adaptive genetic algorithm equipped with an adaptive dynamic control mechanism, which
has been shown to increase computational efficiency through automatic parameter ad-
justments [10]. Moreover, the transition from binary to decimal representation in genetic
coding has been implemented, effectively diminishing the memory demands of these
algorithms [11]. The integration of parallel implementations into genetic algorithms has
also been observed, markedly boosting their convergence speed and optimization capacity
through real-time strategy adjustments [12]. The innovative merging of the bee algorithm
with traditional genetic algorithms has led to the introduction of “queen bee” and “alien
populations” concepts, which have facilitated the attainment of superior solutions within
the same number of iterations [13]. Enhancements in local search capabilities have been
achieved by incorporating self-organizing maps into genetic algorithms [14]. Additionally,
the optimization of initial population generation, utilizing a chaos model based on Logistic
mapping, has been developed to circumvent the pitfalls of local optima, thus improving
solution viability [15].

However, despite these improvements, genetic algorithms still exhibit certain limita-
tions in practical applications. Firstly, the diversity in watershed topology and manage-
ment objectives makes it difficult to broadly apply optimization models and algorithms
built for specific watersheds [16]. This specificity leads to a “one watershed, one model”
situation [17]. For different watersheds, experts often spend considerable time reconstruct-
ing models and algorithms. This process is not only time-consuming but also restricts the
versatility and flexibility of the algorithms. Specifically, the interaction among parameters
within a watershed depends on its topological structure. Differences in topology between
watersheds mean that relationships and constraints among parameters will vary, necessi-
tating customized model construction for each watershed [18]. Additionally, watersheds
face different optimization objectives in different seasons. During the flood season, flood
prevention is the primary focus. During the non-flood season, the focus shifts to electricity
production and water resource management [19]. Second, in reservoir scheduling practices,
the outflow rates calculated by genetic algorithms cannot be directly used for operational
control of reservoirs. They only serve as auxiliary tools. Dispatchers use these tools to
create specific instructions for opening or closing gates based on trends in outflow rates [20].
This process may result in information loss and discrepancies between the effect of dispatch
commands and the algorithmically calculated outflow rates. Consequently, there is an ur-
gent need for a universal method that can be applied to different watersheds, automatically
construct and solve optimization models, and generate specific dispatch instructions.

Knowledge graph technology represents a cutting-edge method for organizing and
processing information [21]. It effectively encodes expert experience and knowledge,
organizing real-world entities and their interrelations through a graphical structure. In the
field of hydrology, this technology has shown its potential [22]. For example, a knowledge
graph developed for the Yellow River Basin, utilizing a comprehensive data repository from
the Yellow River Conservancy Commission, has provided robust decision support [23].
Furthermore, the creation of water information knowledge graphs from existing relational
databases has underscored the practical applications of this technology [24]. Additionally,
the implementation of the Smart Water Management System, which integrates diverse data
sources, facilitates multidimensional querying of various water-related data, significantly
improving information interconnectivity [25]. By constructing knowledge graphs for
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watersheds, it becomes possible to elucidate the complex interrelationships and interactions
among various water entities. This method supports real-time updates of critical data such
as water levels and flow changes, providing essential support for decision making and
data-driven management. Consequently, integrating knowledge graph technology with
genetic algorithms significantly enhances the responsiveness and predictive accuracy of
hydrological models.

Based on the issues above, this paper presents a knowledge graph-driven method for
optimizing reservoir scheduling, as follows:

(1) This paper proposes an innovative genetic algorithm utilizing knowledge graphs
to build optimization models automatically. It also incorporates hydrodynamic simulation
into the genetic operations, enhancing the accuracy and practical value of outflow rates.
Additionally, the algorithm demonstrates good adaptability and is suitable for various
watersheds without reconstructing models and algorithms. It only requires the construction
of a corresponding watershed knowledge graph. Therefore, this algorithm addresses the
issue of dependency on manual modelling in constructing watershed optimization models,
thereby reducing the cost and complexity of adapting the model to new environments.

(2) This paper has developed an algorithm for generating scheduling commands.
This algorithm can directly convert the outflow calculated by the genetic algorithm into
actionable commands, such as the gate of the reservoir opening and closing. This enhances
the efficiency of translating from theoretical models to practical operations and increases
the model’s value in practical applications.

(3) This paper applies the proposed algorithm to the Huaihe basin. During the flood
season, it implemented targeted single-objective scheduling for flood control, effectively
mitigating peak flood levels. This application has also demonstrated that the flood control
contributions of reservoirs vary, indicating that not all reservoirs need to be modeled when
optimizing for flood control during this period. During the non-flood season, the applica-
tion considers multi-objective scheduling for power generation and ecological preservation.
This demonstrates its broad applicability in complex water resource management tasks.

2. Methodology
2.1. Watershed Knowledge Graph

This paper introduces knowledge graph technology to model the watershed as a
watershed knowledge graph. This graph aims to dynamically reflect time-variant processes
in the watershed and provide a rich information resource for genetic algorithms. The graph
covers three types of objects: reservoirs, cross-sections, and river channels, as depicted in
Figure 1. The left part of the figure displays a generalized watershed diagram, showing
Reservoirs A and B, Sections F and G, and Channels C, D, and E located between the
reservoirs and sections. The right side of the figure presents an instantiated view of
these objects and their interrelationships within the watershed knowledge graph. The
relationships between cross-sections and reservoirs illustrate the downstream direction
of water flow. Additionally, associative links exist between sections, reservoirs, and river
channels, which reveal that channels lie intermediate to the associated entities.

Figure 1. Example of the watershed knowledge graph.
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The attributes of the reservoirs, cross-sections, and river channels involved in this
study are detailed in Table 1. These represent the known quantities prior to the application
of genetic algorithms. Attributes can be categorized into three types: static attributes,
dynamic attributes, and functional relationships. Static attributes provide unchanging
fundamental information about the objects; dynamic attributes describe the time-varying
characteristics of the objects based on monitoring and predictive data of the watershed; and
functional relationships define the mathematical transformation logic between attributes.
It is particularly noteworthy that this paper employs the Muskingum model with consider-
ation of time lag. This model is a widely used method for simulating flood progression,
capable of describing the propagation of floods in river channels [26]. Compared to other
models, the Muskingum model offers significant advantages in terms of computational
complexity and model simplification [27]. Time lag refers to the delay in transmitting
the flood from the upstream cross-section to the downstream cross-section of the river
channel [28]. This feature allows the model to simulate the flood propagation process more
accurately. The Muskingum model is represented as an attribute ϕ of the river channel in
the watershed knowledge graph. ϕ encompasses two critical parameters of the Muskingum
model: the flow and weighting coefficients. The flow coefficient indicates the transmission
time of the flood within the river channel, while the weighting coefficient reflects the
proportion of different water volumes during flood propagation. The algorithm can auto-
matically obtain the Muskingum parameters and compute the flood propagation process
through this modeling approach, thereby fully considering the hydrodynamic relationships
between upstream and downstream when optimizing reservoir scheduling.

In the classification of reservoir objects, there is a distinction between the leading
reservoir located at the uppermost stream and other downstream reservoirs. Critical
parameters of the reservoir include water level, inflow, and outflow. The inflow of the
leading reservoir is known and usually obtained through hydrological forecasts of the
watershed. The outflow of the reservoir is the main objective of the genetic algorithm
solution. The water level and inflow of other downstream reservoirs serve as intermediate
variables in the solution process, and all are considered parameters to be optimized. The
main attributes of the channels include the evolution function and interval inflow. The
evolution function calculates the dynamic flow changes within the channel from the inlet
to the outlet. Meanwhile, the interval inflow, obtained through hydrological forecasts of
the watershed, represents the flow process from the channel to downstream sections or
reservoirs. By superimposing the results of the evolution function calculation with the
interval inflow, the final flow at the channel outlet of the current tributary can be calculated.

In addition to the three main types of objects previously mentioned, flood discharge
structures are modeled, primarily considering the water level–flow relationship and the
selectable degree of opening. The control of reservoir outflow depends on several discharge
structures, including flood relief tunnels and overflow channels et al., each equipped
with multiple operable openings or gates. By adjusting the opening of these structures,
the reservoir’s outflow can be precisely controlled. Thus, this graph usually associates a
reservoir with several discharge structures. The following formula can express the specific
control relationship:

Qm
r =

n

∑
i=1

(Qi × Di) (1)

where Qm
r represents the reservoir’s discharged flow, and n is the total number of discharge

projects. Qi is the discharge flow of the i-th discharge project when fully open. Di is the
degree of openness of the i-th discharge project, ranging from 0 (completely closed) to 1
(fully open). For example, if Di is 1

6 , the structure has six gates or apertures, and only one
is open.
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Table 1. Object categories and their attributes.

Object Category Type Property Abbreviation Property Description

Reservoir

Static Name NM Official reservoir name.
Static Design Water Level Zd Highest water level for flood season operation.

Static Flood Season Limiting
Water Level Z f s

The water level at which regulation begins in
flood season.

Static Ideal Ecological Flow Qeco Water flow needed for ecological stability.
Dynamic Real-time Water Level Zr Current reservoir water level.

Dynamic Inflow Process Ir
The future inflow process into the reservoir.

(For the upstream-most reservoir)

Function Water Level–Flow
Relationship Max Calculate the maximum outflow for a specific

water level.

Function Water Level–Volume
Relationship d Calculate the maximum storage capacity of the

reservoir for a specific water level.

River Channel

Static Name NM Official name of the river channel.

Dynamic Interval Inflow ∆q The flow entering the cross-section or reservoir from
outside the river channel.

Function Channel Evolution ϕ Calculate the change of flow within the channel.

Cross-section Static Limiting Flow Q f s Section flow rate warning level.
Static Name NM Official section name.

Discharge Structure

Static Name NM Official name of the structure.
Static Optional Opening Degree Di Open portion of the structure.

Function Water Level–Flow
Relationship Max Calculate the maximum storage capacity of the

reservoir for a specific water level.

After constructing the watershed knowledge graph, various known parameters within
the watershed can be clearly identified. As shown in Figure 2, the inflow Ir to the upstream
reservoirs and the interval inflow ∆q for each river channel are predetermined known
parameters. Additionally, although the water level process Z for each reservoir is an inter-
mediate calculation result in the genetic algorithm, the real-time water level Zr, typically
starting at Zr[0], is also considered a known parameter. These defined parameters provide
a data foundation for executing the genetic algorithm.

Figure 2. Known parameters.

To construct the watershed knowledge graph, we designed an ontology structure
based on reservoir scheduling needs. This structure models the hydrological entities
within the watershed and their upstream and downstream relationships, including the
attributes and relationships of reservoirs, cross-sections, and river channels [23]. In practical
applications, entity recognition and relationship extraction can process structured data,
like tables, extracting triples that describe the attributes and relationships of hydrological
entities. For unstructured data, text analysis techniques based on large language models,
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using ontology and unstructured text as the Input to generate Cypher statements, can
be used to build the knowledge graph. Previously, we validated the effectiveness of this
method through experiments. The experimental results indicate that the knowledge graph
construction method based on ontology structure and large language models can accurately
extract and represent hydrological entities and their relationships within the watershed. It
provides rich support information for reservoir scheduling optimization [29].

2.2. Knowledge Graph-Driven Genetic Algorithm

This study proposes a knowledge graph-driven genetic algorithm, which automati-
cally constructs and solves optimization models based on the watershed knowledge graph.
Inputs of the algorithm include seasonal types and the watershed knowledge graph. Out-
puts are the near-optimal outflow process for each reservoir. In the non-flood season,
the algorithm considers multiple basin demands such as ecological protection and power
generation, implementing multi-objective optimization; during the flood season, it focuses
on flood control safety and effective water level management, employing a single-objective
optimization strategy. The specific implementation process of the algorithm is as follows:

(1) Traverse the basin to determine parameters for optimization: This process in-
volves querying the watershed knowledge graph, identifying the most upstream reservoirs,
and randomly selecting one as the starting point for traversal. During traversal, as each
new object is visited, its parameters for optimization are identified and recorded. The
traversal proceeds downstream along the water flow direction. When a confluence point is
reached where multiple objects exist upstream of the current object, the traversal expands
to include all upstream tributaries until reaching the uppermost reservoir. After complet-
ing the traversal of all tributaries, the process continues downstream until reaching the
terminal cross-section of the basin. The parameter-setting strategies for various objects are
as follows:

• For the uppermost reservoirs, the parameters to be optimized include the water level
process Z and the outflow process Qr.

• For other reservoirs, the parameters include the inflow process Ir, the water level
process Z, and the outflow process Qr.

• For cross-sections, the parameter to be optimized is the flow rate Q.

As shown in Figure 3, the outflow from each reservoir, denoted as Qr, is a target
for calculation by the genetic algorithm. Thus, it is a parameter to be optimized. The
water level process Z of the reservoir is an intermediate result of the genetic algorithm’s
solution process, determined by Qr and also considered a parameter to be optimized. For
cross-sections F and G, their flows QF and QG are also parameters to be optimized.

Figure 3. Known parameters and parameters to be optimized.

(2) Initialization of population and Parameters: In genetic algorithms, a population
consists of multiple individuals, each representing a potential solution. The number of
genes in each individual is determined by the number of reservoirs and the total data steps.
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For example, if there are two reservoirs in the watershed and the total number of data steps
is 10, each individual’s genetic sequence will include outflow sequences Qr from the two
reservoirs. Each sequence will contain 10 data points, resulting in a total of 20 genes per
individual.

Parameters are configured as a dictionary matched to the population size, which stores
other parameters that require optimization except outflow. Additionally, this dictionary in-
cludes characteristics such as the fitness and congestion of each individual. Specifically, for
each individual, population[individual] stores the current individual’s outflow sequence
Qr for the reservoirs. Additionally, population[individual][A] contains the current indi-
vidual’s outflow sequence for Reservoir A. Meanwhile, Parameters[individual] includes
intermediate calculation results based on the current individual’s outflow configuration.
This encompasses reservoir inflow Ir, water level Zr, and flow Q at watershed sections,
as well as characteristics like the individual’s fitness and congestion. Thus, there is a
one-to-one correspondence between population[individual] and Parameters[individual].

To reduce the complexity caused by hydrological constraints, such as water balance,
channel evolution, and water level–flow relationships, all reservoirs are initially set to oper-
ate in a single-reservoir scheduling mode during initialization. Single-reservoir scheduling
involves each reservoir independently managing and scheduling its water without consid-
ering downstream flood control tasks. This mode effectively meets primary water resource
distribution and flood prevention requirements. However, single-reservoir scheduling
may struggle to effectively manage peak flows during extreme hydrological events such
as floods. In such cases, a shift to multi-reservoir joint scheduling strategies is necessary.
Multi-reservoir joint scheduling coordinates the operation of various reservoirs to opti-
mize water resource allocation and flood management across the entire watershed. This
approach more effectively controls flood risks and ensures water security.

During initialization, an individual that conforms to hydrological constraints is first
generated based on the single-reservoir scheduling mode and known parameters. Subse-
quently, this individual is replicated to the preset population size, typically set at 100. Since
all individuals are identical during the initial generation of the population, the intermediate
calculation results for each individual remain consistent in the Parameters dictionary. This
approach not only simplifies the construction process of the initial population but also
ensures the homogeneity of all individuals at startup.

(3) Choose the appropriate optimization strategy based on the season: During the
flood season, single-objective optimization is implemented. The population is updated
iteratively through crossover mutation and fitness-based tournament selection until termi-
nation conditions are met, as follows:

• Crossover mutation: First, the fittest individual is retained from the population
for elite protection. For the rest, a without-replacement sampling method is used
to perform crossover mutation operations randomly. This process combines genes
from different individuals to create new ones, thereby increasing the population’s
genetic diversity.
Whenever an individual’s genetic sequence changes, meaning the outflow from the
reservoirs included in the individual changes, this necessitates an update. Accordingly,
the corresponding intermediate calculation results in the Parameters dictionary must
be updated synchronously.
This study has improved the traditional genetic algorithm’s crossover and mutation
operations by merging them into a continuous step and incorporating hydrological
constraints. These modifications will be detailed in subsequent sections.

• Fitness calculation: Since the initial population is produced by cloning, individuals
have a high degree of homogeneity. Therefore, the crossover mutation step must
first introduce the necessary genetic diversity. Subsequently, fitness calculations are
performed, where an individual’s fitness is determined based on its performance
under a specific optimization function. After the fitness calculation, the fitness value
of each individual is updated in the corresponding entry in the Parameters dictionary.
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The fitness calculation module defines the paths for retrieving optimization parameters
from Parameters or Population for each optimization function. It also sets the formulas
for calculating the objective values based on these parameters. To update or add
optimization functions, one needs to adjust the paths for retrieving parameters and
modify the calculation formulas, thus ensuring the flexibility of the computation
process and the scalability of the module.

• Fitness calculationWinner determination: A tournament selection strategy is used,
randomly dividing the population into several tournament groups. The individual
with the highest fitness is selected as the winner from each group.

• Winner crossover mutation: Other individuals in the same tournament undergo
crossover mutation with the winner. Consequently, the corresponding intermediate
calculation results in Parameters are updated.

• Termination condition determination: The optimization process is terminated based
on predetermined generational limits, such as the number of iterations. Alternatively,
it may end when a predefined fitness level is reached.

During the non-flood season, multi-objective optimization is implemented. After
initializing the population, it is replicated, crossover mutation is performed on the repli-
cated population, and then the original and mutated populations are merged. Fast, non-
dominated sorting and crowding distance calculations are used to determine each indi-
vidual’s Pareto rank. Selection is based on rank and crowding to form a new population,
as follows:

• Clone the population: To increase the population’s genetic diversity, the initial popu-
lation is cloned to create a similarly sized group with n individuals.

• Crossover Mutation: Perform crossover mutation on the cloned population. First, the
fittest individual from the population should be retained for elite protection. Apply
without-replacement sampling to the remaining individuals and randomly perform
crossover mutation to enhance genetic diversity. This step is the same as during the
flood season.

• Merge Populations: Merge the crossover-mutated population with the original to
form a new population consisting of 2n individuals.

• Fitness Calculation: Assess the fitness of the merged population. Unlike the flood sea-
son, in the non-flood season, each individual’s fitness comprises an array of objective
values from multiple optimization functions.

• Fast Non-Dominated Sorting: Apply fast non-dominated sorting to rank individuals
in the population, determining each individual’s Pareto rank in a multi-objective
optimization environment. A lower Pareto rank indicates that an individual has
superior overall performance across multiple objectives, making it more likely to be
chosen as an optimal solution.

• Crowding Distance Calculation: Assess the crowding distance of individuals within
the population. This metric helps maintain the diversity of solutions and prioritizes
individuals with a broader distribution. Individuals with higher crowding distances
are relatively isolated in the parameter space, reducing the risk of overconcentration
in that area and aiding in the exploration of different regions of the parameter space.

• Final Selection: Sort individuals by Pareto rank (from low to high) and crowding
distance (from high to low). Select the top n individuals from 2n to form the new
generation. In the first round of selection of the initial population, the original first-
generation population is usually eliminated. These individuals are set based on the
maximum discharge capacity of the reservoirs, leading to the maximum peak flow
values in the watershed sections. Any crossover mutation operation may reduce these
peak values, resulting in poor performance in fitness evaluations.

• Termination Condition Determination: Repeat the above process until the set number
of iterations is reached or the fitness level meets the predetermined standard, thereby
determining whether to end the optimization process.
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(4) Individual Selection: During the non-flood season, when events such as insuf-
ficient ecology or inadequate power generation are detected, the optimal individual for
the corresponding objective is selected from the solution set. At this time, within the
Pareto front, priority is given to selecting the individual that performs optimally in the
corresponding objectives, such as ecological maintenance or power efficiency. During
the flood season, given the urgency of flood control, the selection strategy emphasizes
flood prevention effectiveness. Therefore, the individual with the best flood prevention
effectiveness is chosen from the current population. This selection aims to maximize the
reduction in potential water disaster risks in the face of extreme precipitation events.

The algorithm’s workflow is illustrated in Figure 4 and Algorithm 1. The algorithm
selects different computational strategies based on the varying seasons.

Figure 4. Genetic algorithm process.
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Algorithm 1 Knowledge Graph-Driven Genetic Algorithm

1: Input : seasonalTypes, watershed knowledge graph (KG)
2: Output: near-optimal outflow process Qr for each reservoir
3: Initialize:
4: population
5: Parameters
6: Begin:
7: procedure TRAVERSE BASIN
8: for each reservoir in KG do
9: Parameters[reservoir]← Extract parameters (Z, Qr) from KG

10: Query hydrological and operational constraints from KG for each reservoir
11: Store these constraints in Parameters
12: end for
13: end procedure
14: procedure INITIALIZE POPULATION
15: for i← 1 to population size do
16: population[i]← Generate individual based on single-reservoir mode
17: Parameters[i]← Initialize with Zr[0], Ir, Qr from KG
18: Update KG with initial conditions of each individual
19: end for
20: end procedure
21: if seasonalTypes is "flood" then
22: SingleObjectiveOptimization(population, Parameters)
23: else
24: MultiObjectiveOptimization(population, Parameters)
25: end if
26: while not termination condition do
27: CrossoverMutation(population, Parameters)
28: Update KG based on crossover results
29: FitnessCalculation(population, Parameters)
30: Update KG with new fitness values
31: population← TournamentSelection(population, fitness)
32: Update KG with selected individuals’ details
33: end while
34: FinalSelection(population)
35: Update KG with the final selected outflow processes
36: Return Qr from best individual in population

2.3. Knowledge Graph-Driven Crossover Mutation Module

To ensure that the genetic algorithm accurately reflects and meets the actual hydro-
logical and operational constraints of reservoir outflows, this study proposes an improved
crossover mutation strategy. This strategy is based on the topological relationships in the
watershed knowledge graph. It merges crossover and mutation operations into a continu-
ous process, incorporates hydrological constraints, and is termed crossover mutation. The
main constraints considered in this step are:

• Channel evolution constraints: The change in the outflow Qr(t) from upstream
reservoirs as it evolves through river channels to downstream reservoirs or cross-
sections at any given time [30].

• Water balance constraints: The impact of the outflow Qr(t), inflow Ir(t), and current
water level Zr(t) of a reservoir on the water level at the next moment, Zr(t + 1) [31].

• Water level–flow constraints: The limitations imposed by the water level Zr(t) of a
reservoir on its maximum discharge capacity Qmax(t) at any given moment [32].

The Input to the crossover mutation module includes two individuals from the pop-
ulation, individual1 and individual2, along with the Parameters dictionary. The output
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consists of the newly created individuals, new_individual1 and new_individual2, and the
updated Parameters dictionary. The specific steps of the crossover mutation are as follows:

(1) Current reservoir crossover mutation: First, randomly select a reservoir i within the
watershed and determine the crossover time t. At this time, perform a crossover operation
on the outflow sequences of the two individuals at the specified reservoir and time. After
the crossover, the same mutation operation is performed on both individuals. The specific
operations are as follows, where “individual” refers to either individual1 or individual2.
Based on the exchanged outflow Qr(t), look up the water level Zr(t) and inflow Ir(t) of the
crossover reservoir at time t in Parameters[individual]. Then, calculate the next moment’s
water level Zr(t + 1) using the water balance constraint. First, determine the maximum
allowable outflow Qmax(t + 1) based on the water level–flow relationship. Then, randomly
generate the outflow Qr(t + 1) within this range and update it in the genetic sequence.
Repeat this process until all time points for that reservoir are updated, and update the new
Zr(t) in Parameters[individual].

(2) Mutate downstream reservoirs: According to the watershed knowledge graph’s
watershed topology and object types, traverse downstream from the current reservoir.
Then, mutation operations on the traversed path are performed. The strategy for mutation
operations is as follows:

• When reaching a section, use the channel evolution function of the river channel
upstream of the section from the watershed knowledge graph to calculate the flow at
the section after time t. Combine this channel evolution result with the river’s interval
inflow to determine the total flow of the current tributary. If no tributaries are upstream
of the section, this total flow will be directly updated as the flow Q of the section in
Parameters[individual]. If there are tributaries, use a similar method to calculate the
total flow of each tributary. Sum these flows to determine the flow Q at the section,
then update this new Q in the corresponding individual’s Parameters[individual].

• When reaching a reservoir, first apply the same strategy used for updating the section
flow Q to update the inflow Ir(t) from time t in Parameters[individual]. Then, check
the current water level Zr(t) and apply the water balance constraint for that reservoir
from the watershed knowledge graph. Using the water level–storage relationship,
calculate the water level Zr(t + 1) for the next moment. Finally, based on the water
level–flow relationship, randomly generate the outflow Qr(t + 1) for the next mo-
ment and update this in the individual’s genetic sequence. This updating process
continues until all steps are completed, and the updated Zr and Ir are written into
Parameters[individual].

After completing the traversal of the watershed’s terminal section, the crossover muta-
tion process also concludes. Consequently, the water levels and flow rates of reservoir i
and all downstream reservoirs and sections at time t and subsequent periods have been
updated. These updates are based on water balance, channel evolution constraints, and
water level–flow relationships. These updates accurately reflect the dynamic changes
in the watershed after changes in outflow, thus ensuring the effectiveness of the genetic
algorithm in reservoir optimization scheduling. Figure 5 illustrates an example of ap-
plying the crossover mutation module, where (a) represents the watershed topology and
(b) depicts the process of crossover mutation. The numbers in the diagram indicate the
order of parameter calculation in the current object. Arrows show the direction of traversal;
yellow represents the outflow from the reservoirs in the individual genetic sequences; blue
represents intermediate computational results contained in Parameters; and red indicates
parameters that are pending update.
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Figure 5. Example of the crossover mutation. (a) the watershed topology; (b) the process of crossover
mutation.

As is shown in Algorithm 2, first, the algorithm randomly selects Reservoir A for
crossover and sets the crossover time at t = 4. Since the crossover occurs at t = 4, all
parameters of Reservoir A and its downstream hydraulic objects before t = 4 do not require
updating; only changes at t = 4 and beyond need to be considered. For Reservoir A, 1⃝
indicates that through crossover with individual2, the outflow of individual1[Reservoir
A] at t = 4 changes to 20. 2⃝ is based on the inflow, water level, and outflow at t = 4, using
the water balance constraint to calculate the water level at t = 5, which results in 96m due
to reduced outflow and increased water storage in the reservoir. 3⃝ indicates that based
on the current water level of 96 m and the water level–flow relationship, the maximum
discharge capacity of the reservoir at the current moment is 160 cubic meters per second.
4⃝ states that, with a lower bound of 0 and an upper bound of 160 cubic meters per second,
the outflow at the current moment is randomly generated as 150 cubic meters per second.
At this point, the crossover and mutation process for Reservoir A is complete, and the
procedure moves downward to continue the mutation process.

The algorithm traverses down to Section F. 1⃝ indicates that based on the latest
outflow from Reservoir F, the flow channel evolution to Reservoir B is calculated. For ease
of calculation, the channel evolution function “ϕ” is set as a constant 1. Thus, ϕ(20) equals
20 cubic meters per second. 2⃝ shows that the result of the ϕ function is summed with the
interval inflow (fixed at 100), yielding the flow process for Section F. The mutation process
for Section F is thus completed.

Then, the traversal continues downward to Section G. 1⃝ indicates that based on the
flow at Section F, the flow channel evolution to Section G is calculated. 2⃝ shows that
the result of the ϕ function, combined with the interval inflow (fixed at 100 cubic meters
per second), yields the total flow for the current tributary. This total is then added to that
of another tributary to determine the flow process at Section G. Since Section G is the
terminal Section, the crossover mutation process concludes here. As the crossover involves
Reservoir A, there is no need for mutation and updates for Reservoir B, which is located on
a different tributary.
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Algorithm 2 Knowledge Graph-Driven Crossover Mutation

1: Input: Watershed knowledge graph, individual1, individual2, Parameters
2: Output: new_individual1, new_individual2, updated Parameters
3: procedure CROSSOVERMUTATION(individual1, individual2, Parameters)
4: Select a reservoir i and a crossover time t randomly
5: Perform crossover on outflow sequences Qi

r(t) of individual1 and individual2 at
reservoir i and time t

6: Apply mutation operation to both new individuals
7: Query initial conditions from the knowledge graph for reservoir i
8: for each time t from crossover time to end do
9: Zi

r(t + 1)← Calculate the next water level using water balance constraints from
KG

10: Qi
max(t+ 1)←Determine max outflow using water level–flow relationship from

KG
11: Randomly set Qi

r(t + 1) within [0, Qi
max(t + 1)]

12: Update Qi
r(t + 1) in new individuals

13: end for
14: Update Zi

r(t) in Parameters for both new individuals
15: Update KG with new water levels and outflows for reservoir i
16: for each downstream object from reservoir i do
17: if object is a section then
18: Calculate flow at section using channel evolution function from KG
19: Sum flows from tributaries as defined in KG
20: Update flow Q in Parameters
21: Update KG with new flows at section
22: else if object is a reservoir then
23: Update inflow Ir(t) in Parameters based on new outflows
24: Recalculate and update water level Zr(t + 1) using KG
25: Update outflow Qr(t + 1) based on new water level
26: Update KG with new inflows, water levels, and outflows for the reservoir
27: end if
28: end for
29: After completing traversal, finalize updates in Parameters
30: Update KG with final conditions for all objects traversed
31: end procedure
32: Return new individuals and updated Parameters

2.4. Scheduling Instruction Generation Algorithm

The scheduling instruction generation algorithm inputs the discharge structure open-
ing levels and water level–flow relationships from the watershed knowledge graph and
the outflow process of the reservoir. Its outputs are the status and actions of the discharge
structures at each moment. Precisely, based on the known outflow Qm

r , the algorithm can
calculate and determine the degree of openness for each discharge project. This allows it to
set the degree of openness and scheduling actions at each moment in response to water
level and flow changes. As is shown in Algorithm 3, the specific steps implemented by the
algorithm are as follows:

(1) Generating Options: The algorithm first queries the water level–flow relationship
and the selectable degrees of openness of discharge structures from the watershed knowl-
edge graph. Subsequently, based on the selectable degrees of openness for each structure,
the algorithm generates a series of optional scheduling plans. For example, assuming there
are three discharge structures, a, b, and c, where a must be opened, and c provides two
open options, the algorithm can generate all possible options, including (a), (a, b), (a, b, c),
(a, b, 1/2c), (a, c), and (a, 1/2c).

(2) Selecting the Best Option: The algorithm will use all possible options to traverse
the time series of water levels and flows, calculating the maximum flow for each option at
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each time point. First, it will eliminate options where the maximum flow is less than the
actual flow. Among the filtered options, the algorithm calculates the gap between the flow
generated by each option and the current actual flow, selecting the option with the smallest
gap as the optimal openness plan. It then generates a sequence of plans representing the
status of each project at each time point. For example, [23 March 2024: (a, b, 1/2c); 24
March 2024: (a, c)].

(3) Generating Scheduling Actions: Based on the sequence of plans generated from
the analysis above, the algorithm compares the openness of discharge projects between
two consecutive time points. By analyzing changes in openness, the algorithm determines
the specific scheduling actions needed at the current time. For example, if the plan at time
t-1 was (a, b, 1/2c) and changes to (a, c) at time t, it indicates the need to close b and fully
open c. Ultimately, a sequence of actions is generated, such as [23 March 2024: (a to 1, b to
1, c to 1/2); 24 March 2024: (b to 0, c to 1)].

Algorithm 3 Scheduling Instruction Generation Algorithm

1: Input: Watershed knowledge graph, outflow process Qm
r

2: Output: Status and actions of discharge structures
3: procedure GENERATESCHEDULINGINSTRUCTIONS(KnowledgeGraph, Qm

r )
4: Query OpennessLevels, WaterFlowRelationships from KnowledgeGraph
5: Generate possible openness combinations based on discharge structure levels from

KnowledgeGraph
6: for each time step do
7: Evaluate all combinations against the outflow Qm

r
8: Eliminate combinations where the max flow < actual flow
9: Calculate the gap between possible and actual flow

10: Select the combination with the smallest gap
11: Record the selected combination as the plan for that time
12: end for
13: for each transition between consecutive time steps do
14: Compare the selected combinations
15: Determine necessary adjustments in discharge structures
16: Generate scheduling actions based on adjustments
17: end for
18: Update KnowledgeGraph with the new discharge structure status and actions
19: Return Updated KnowledgeGraph, Scheduling Actions
20: end procedure

3. Performance Evaluation
3.1. Watershed Overview

This study selects the Pihe River Basin as the research watershed. As shown in Figure 6,
the core protection object in this watershed is the Zhengyangguan section. This area has
four main reservoirs: MoziTan Reservoir, Foziling Reservoir, Bailianya Reservoir, and Xi-
anghongdian Reservoir. These reservoirs jointly ensure flood safety at Zhengyangguan, with
Xianghongdian, Foziling, and MoziTan also tasked with protecting downstream channel flood
safety [33].
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Figure 6. Schematic map of the Pihe River Basin.

The main attributes of the four reservoirs within the watershed are shown in Table 2.
For Xianghongdian, Foziling , and MoziTan Reservoirs, to simplify the watershed topology, no
separate sections are set downstream of these three reservoirs. Instead, the safe discharge
capacity of downstream channels is set to the maximum discharge flow during operation,
ensuring the safety of the downstream channels.

Table 2. Key attributes of the reservoirs.

Reservoir
Name

Total Capacity
(Bm³)

Verification
Water Level (m)

Design Water
Level (m)

Flood Control
Capacity (Bm³)

Maximum
Discharge Flow

(m³/s)

Downstream
Channel Safe

Discharge
(m³/s)

Xianghongdian 26.10 143.37 140.98 5.00 5121 1500
Foziling 4.91 129.80 125.97 0.80 7750 3450
MoziTan 3.47 203.79 197.28 1.12 4250 4000
Bailianya 4.60 234.50 209.24 2.75 5049 N/A

The Pihe River Basin is modeled as a watershed knowledge graph, including sections,
reservoirs, and river channels within the watershed, as illustrated in Figure 7. We collected
hydrological data, scheduling rules, historical operation records, and other information
for this watershed. For unstructured data, we employed text analysis techniques based
on large language models to extract relevant entities and relationships from the text and
generate corresponding Cypher statements. For structured data, such as tables and database
records, we used entity recognition and relationship extraction techniques to automatically
generate triples describing hydrological entities and their relationships. By integrating
these structured and unstructured data, we successfully constructed the knowledge graph
for the Pihe River Basin, providing a solid foundation for comprehensive management and
optimized scheduling of the watershed.

Figure 7. Watershed knowledge graph of the Pihe River Basin.



Electronics 2024, 13, 2283 16 of 24

The flood control task of the Pihe River Basin during the flood season is to ensure the
flood safety of the Zhengyangguan section. In the non-flood season, reservoir water levels
are generally low due to lower rainfall and smaller inflow. The main objectives considered
in such cases are ecological water supply and maximizing power generation [34]. The
optimization functions for the flood and non-flood seasons of the watershed are as follows:

(1) Maximum Peak Reduction (Flood Season): This objective function is intended to
quantify the effect of peak reduction, represented explicitly by minimizing the peak flow at
Zhengyangguan, thereby ensuring effective control of the peak flow. The flow process at the
Zhengyangguan section is denoted by Qzheng, and the maximum value in this flow process,
i.e., the peak flow, is represented as:

f1 = min(max{Qzheng}) (2)

where Qzheng is the flow process at the Zhengyangguan section, and max{Qzheng} is the
maximum value in the flow process at Zhengyangguan, i.e., the peak flow.

(2) Maximum Power Generation (Non-Flood Season): When the outflow from the
reservoirs, head, and turbine efficiency are relatively stable, the power generation is directly
proportional to the outflow. Considering that a too low flow may not fully utilize the power
generation capacity of the power stations, the objective function aims to maximize the total
flow of all reservoirs over a given period:

f2 = max
N

∑
n=1

T

∑
t=1

Qm
r (t) (3)

where N represents the total number of reservoirs, T is the total number of time periods
considered, and Qm

r (t) is the outflow from the m-th reservoir in the watershed during time
period t.

(3) Minimum Ecological Water Supply Deviation (Non-Flood Season): This objective
function aims to meet human water and power demands while ensuring the minimum
deviation from the required ecological flow in the watershed. The formula is given by:

f3 = min
M

∑
m=1

T

∑
t=1
|Qm

eco −Qm
r (t)| (4)

where M represents the total number of reservoirs; T the total number of time periods
considered; Qm

eco the ideal ecological flow for the m-th reservoir; and Qm
r (t) the outflow

from the m-th reservoir during time period t.
There is an apparent conflict between objectives f1 and f2: higher flows benefit the

maximum power generation objective, while lower flows favor the minimum ecological
water supply deviation objective. Therefore, a balance must be struck between these
two objectives during the scheduling process.

3.2. Single-Objective Scheduling during Flood Season

Single-objective scheduling during the flood season was based on the real-time data
collected from the Pihe River Basin from 14:00 to 23:00 on 21 July 2020. This dataset
includes interval inflows for each channel and inflows to the uppermost MoziTan, Bailianya,
and Xianghongdian Reservoirs. Data from ten hours with higher inflows were selected,
corresponding to the actual scheduling cycle of the watershed. As shown in Figure 8, (a)
represents the inflow process to the upper reservoirs, and (b) shows the interval inflow
within each channel of the watershed.
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Figure 8. Inflows to the upper reservoirs and interval inflow of channels. (a) the inflow process to the
upper reservoirs; (b) the interval inflow within each channel of the watershed.

Initially, this study implemented a strategy of setting all reservoirs within the wa-
tershed to single-reservoir scheduling during population initialization. After setting the
reservoirs for single-reservoir scheduling, the first generation of the population was gener-
ated, with initial water levels at MoziTan, Foziling , Xianghongdian, and Bailianya Reservoirs
set to 185 m, 115 m, 129.83 m, and 203.37 m, respectively. Each reservoir’s outflow was
discharged according to the maximum discharge capacity based on the water level–flow
relationship, as shown in Figure 9. The population consisted of individuals with 40 genes,
comprising outflow data from four reservoirs over ten time steps. During the population
generation process, intermediate values were calculated, such as the water level changes
of the reservoirs and the flow process at the Zhengyangguan section, and added to the
Parameters dictionary.

Figure 9. Changes in flow within the watershed due to single-reservoir scheduling.

In the genetic algorithm settings, the predetermined number of populations was set
to 100, with each population containing 100 individuals. After initializing the population,
crossover mutation and selection processes were carried out on the first generation of
100 individuals to optimize their fitness. Through 100 generations of iteration, individuals
with higher fitness were retained, and the optimal outflow strategy for each reservoir was
ultimately determined.

Due to differences in each reservoir’s scale, location, and storage capacity, their con-
tributions to flood protection within a watershed vary [35]. Including all reservoirs in the
modeling process might not significantly enhance flood control and would increase the
complexity of the model [36]. Related studies in the Pihe River Basin have already addressed
the issue of selecting reservoirs with significant flood control contributions for schedul-
ing [37]. During floods at Zhengyangguan, these key reservoirs should be jointly scheduled
and modeled as a single system, while other reservoirs can be managed individually. The
outflow rates of these individually scheduled reservoirs will be updated in the watershed
knowledge graph and used as inputs for the optimization model. Therefore, to comprehen-
sively evaluate the flood control contributions of the reservoirs, this study designed four
different scheduling strategies for comparative experiments: (a) joint scheduling of Foziling



Electronics 2024, 13, 2283 18 of 24

and Xianghongdian Reservoirs; (b) joint scheduling of Xianghongdian, Foziling , and Bailianya
Reservoirs; (c) joint scheduling of Xianghongdian, Foziling , and MoziTan Reservoirs; and (d)
comprehensive joint scheduling of all the aforementioned reservoirs. These experiments
aimed to analyze the impact of different joint scheduling strategies on the flow process at
the Zhengyangguan section.

The experimental results are displayed in Figure 10, which details the optimal outflow
from the reservoirs under different scheduling strategies. Meanwhile, the process of water
level changes in the reservoirs is shown in Figure 11. The dashed line represents the design
flood level of the respective reservoir, which should not be exceeded during scheduling.

Figure 10. Optimal z outflow from reservoirs under each scheduling strategy. (a) joint scheduling
of Foziling and Xianghongdian Reservoirs; (b) joint scheduling of Xianghongdian, Foziling , and
Bailianya Reservoirs; (c) joint scheduling of Xianghongdian, Foziling, and MoziTan Reservoirs; and
(d) comprehensive joint scheduling of all the aforementioned reservoirs.

It is evident from the charts that under the four different scheduling strategies, the
reservoirs’ water levels were within the designed flood levels, indicating that the reservoirs’
safety was not severely threatened during the implementation of these scheduling plans,
thus ensuring structural safety. Specifically, from Figure 10 , it can be observed that the
peak flow rates at the Zhengyangguan section under the four strategies were 5097 m³/s,
5478 m³/s, 5834 m³/s, and 5820 m³/s, respectively. Compared to the predicted peak flow at
Zhengyangguan, these scheduling plans achieved peak reductions of 56%, 53%, 51%, and
50%, respectively.

Although the basic genetic algorithm exhibits some randomness in generating results,
directly comparing the merits of these four outcomes may not be entirely scientific. How-
ever, by comparing the peak reduction rates, it is evident that the effects of these four
strategies are similar. This finding indicates that under current hydrological conditions,
whether MoziTan and Bailianya Reservoirs participate in joint scheduling has a limited
impact on the flow process at the Zhengyangguan section. In such cases, the scheduling
strategy should focus more on effectively utilizing each reservoir’s regulatory capabilities
to achieve optimal flood control and water resource utilization efficiency.
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Figure 11. Water level changes corresponding to optimal outflow from reservoirs. (a) joint scheduling
of Foziling and Xianghongdian Reservoirs; (b) joint scheduling of Xianghongdian, Foziling , and
Bailianya Reservoirs; (c) joint scheduling of Xianghongdian, Foziling, and MoziTan Reservoirs; and
(d) comprehensive joint scheduling of all the aforementioned reservoirs.

3.3. Multi-Objective Scheduling during Non-Flood Season

As data on interval inflow and inflow to upstream reservoirs during the non-flood
season were not available, the data from the flood season were proportionally reduced
by a factor of 50 to simulate hydrological conditions during the non-flood season. Initial
water levels were set at 160 m for MoziTan Reservoir, 190 m for Bailianya Reservoir, 122 m
for Xianghongdian Reservoir, and 115 m for Foziling Reservoir. Additionally, the ecological
flow for each reservoir was set at 50 cubic meters per second. Unlike the flood season,
the scheduling cycle during the non-flood season is calculated daily, with each time step
corresponding to the average daily flow.

After 100 generations of iteration, the algorithm generated the final generation of the
population. A Pareto front was extracted from this population, with the level 0 Pareto
front containing 97 individuals and the level 1 Pareto front containing 3 individuals. The
distribution of the Pareto front is shown in Figure 12, where red indicates individuals on
the level 0 Pareto front, and blue indicates individuals on the level 1 Pareto front. The
horizontal axis represents the optimization objective f2, where a higher value indicates a
better individual; the vertical axis represents the optimization objective f3, where a lower
value indicates a better individual. Overall, individuals positioned in the top right corner
excel in both objective functions.

When managing watershed resources, especially when facing critical challenges such
as insufficient power generation or ecological flow, it is typical to select the most suitable
optimization solution that meets current needs. Within the Pareto front, the optimal outflow
processes for f2 and f3 are shown in Figure 13a,b, respectively.



Electronics 2024, 13, 2283 20 of 24

Figure 12. Pareto front.

Figure 13. Best optimal outflow processes for f2 and f3.

3.4. Generation of Scheduling Instructions

This section conducted two experiments: first, converting the flow processes obtained
by the basic genetic algorithm into scheduling actions, and second, converting the actual
outflow of the reservoir into scheduling actions, using Foziling Reservoir as an example.
Foziling Reservoir has three main flood discharge structures: a power generation channel, a
flood discharge channel, and a spillway. The power generation channel must be opened,
while the flood discharge channel can be opened or kept closed, with two open options (0
and 1). The spillway has six gates, each of which can be opened to degrees of 0, 1/6, 2/6,
3/6, 4/6, 5/6, or entirely (6/6), making seven possible degrees of openness [38]. Therefore,
there are 14 possible combinations of openness settings for Foziling Reservoir. The water
level–flow relationship for Foziling Reservoir is shown in Table 3.

As the water level in the reservoir changes over time, the discharge capacity of these
14 openness combinations will vary depending on the water level. Therefore, when gener-
ating scheduling instructions, it is necessary to choose the best combination of openness
settings based on the current water level of the reservoir to achieve optimal discharge
effects. The basic strategy is to calculate the maximum flow of the 14 openness combina-
tions at the current water level and find the combination higher than and closest to the
current outflow.
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Table 3. The water level–flow relationship of Foziling Reservoir.

Water
Level (m)

Storage
(billion

m3)

Discharge
Building
Release
(m3/s)

Power
Genera-

tion

Flood
Discharge

Pipe

Spillway
(6 Holes)

Total
Discharge

108.76 1.25 100 165 0 165 265
109.56 1.34 100 167 0 167 267
110.56 1.46 100 170 0 170 270
111.56 1.58 100 173 0 283 383
112.56 1.71 100 176 0 286 386
113.56 1.85 100 179 96 385 485
114.56 1.99 100 182 264 556 656
115.56 2.14 100 184 490 784 884
116.56 2.29 100 187 760 1057 1157
117.56 2.43 105 190 1075 1370 1470
118.56 2.62 105 193 1400 1698 1798
119.56 2.79 105 196 1780 2080 2180
120.56 2.97 100 199 2180 2479 2579
121.56 3.16 100 202 2600 2900 3000
122.56 3.35 100 205 3070 3375 3475
123.56 3.55 95 208 3575 3877 3977
124.56 3.75 95 210 4075 4380 4480
125.56 3.96 94 213 4644 4951 5051
126.56 4.18 0 216 5225 5441 5541
127.56 4.40 0 219 5850 6069 6169

The results of converting flow processes into scheduling actions for the joint schedul-
ing scenario of Xianghongdian and Foziling using the basic genetic algorithm are shown
in Table 4. In this table, the status column shows the degrees of openness of the power
generation channel, flood discharge channel, and spillway at the current time. Moreover,
the action column indicates the specific scheduling actions to be executed at that mo-
ment. The maximum flow column displays the maximum possible discharge flow the
reservoir can achieve based on the current degrees of openness. The table shows that the
errors between the maximum flows and the actual outflows are within 100 cubic meters
per second, indicating that the conversion from flow processes to scheduling actions is
relatively accurate.

Table 4. Conversion of Foziling Reservoir outflow from basic genetic algorithm to scheduling actions.

Time Water
Level Outflow Status Actions Max Flow

14:00 115 401 (a, 5/6c) a to 1, c to 5/6 402.8
15:00 116.3 173 (b) a to 0, b to 1, c to 0 186.22
16:00 117.5 255 (a, 1/6c) a to 1, b to 0, c to 1/6 280.7
17:00 118.4 64 (a) c to 0 105
18:00 119.7 385 (a, 1/6c) c to 1/6 410.3
19:00 120.6 436 (a, 1/6c) No change 466.1
20:00 121.5 66 (a) c to 0 100
21:00 122.2 510 (a, 1/6c) c to 1/6 583.4
22:00 122.8 130 (b) a to 0, b to 1, c to 0 205.72
23:00 123.3 412 (c) b to 0, c to 1 522.95

Subsequently, the actual outflow process of the Foziling Reservoir was converted
using data from the outflows between 18:00 on 1 July 2020, and 03:00 on 2 July 2020, as
shown in Table 5. Through the conversion process, the maximum difference between the
maximum flow and the actual outflow was 107 cubic meters per second, and the minimum
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difference was only two cubic meters per second. Such conversion results further validate
the algorithm’s effectiveness in scheduling for Foziling Reservoir.

Table 5. Conversion of actual monitored outflow from Foziling Reservoir to scheduling actions.

Time Water
Level Outflow Status Actions Max Flow

18:00 121.53 2480 (6/6c) a to 0, b to 0, c to 6/6 2587.4
19:00 121.3 2480 (6/6c) No change 2490.8
20:00 121.08 2480 (a, 6/6c) a to 1 2498.4
21:00 120.88 2480 (b, 6/6c) a to 0, b to 1 2514.36
22:00 120.68 2480 (a, b, 6/6c) a to 1 2529.76
23:00 120.54 2020 (a, b, 5/6c) c to 5/6 2109.04
00:00 120.45 1690 (a, b, 4/6c) c to 4/6 1723.22
01:00 120.39 1671 (a, b, 4/6c) No change 1707.34
02:00 120.33 1671 (a, b, 4/6c) No change 1691.46
03:00 120.26 1671 (a, b, 4/6c) No change 1672.9

4. Conclusions

This paper has developed an innovative genetic algorithm integrated with knowledge
graph technology to optimize reservoir scheduling for diverse hydrological scenarios. The
genetic algorithm, enhanced by the knowledge graph, facilitates the automatic construction
and solving of optimization models, which adapts effectively across different watersheds.
This integration addresses the need for custom model reconstruction for each unique
watershed by encoding hydrodynamic simulations within genetic operations, thereby
improving the practical utility of the outflow rates generated. Results from applying this
methodology to the Huaihe basin demonstrated significant improvements in flood control
during the flood season and optimized multi-objective scheduling for power generation
and ecological preservation in the non-flood season.

Further exploration into integrating emerging technologies like real-time data process-
ing and artificial intelligence could lead to more robust, predictive hydrological models.
These advancements would ideally contribute to developing universally applicable, au-
tomated reservoir management systems that ensure efficient and effective water resource
management across varying geographical and climatic conditions.
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