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Abstract: In order to address the issue of low tracking accuracy caused by particle depletion in the
particle filter, a mobile target tracking algorithm tailored for wireless sensor networks (WSNs) is
presented. This algorithm, based on the golden-section gray wolf particle filter (PF), represents a novel
approach to target tracking. The algorithm’s originality lies in its ability to guide the particle swarm
toward regions of higher weights, thereby striking a balance between global and local exploration
capabilities. This not only alleviates issues related to sample depletion and local extrema but also
enhances the diversity of the particle swarm, significantly improving tracking performance. To assess
the effectiveness of the proposed algorithm, a series of simulation experiments were conducted,
comparing it with the extended Kalman filter (EKF) and the standard PF algorithm. The experiments
employed a constant velocity circular motion model (CM) for filtering and tracking. The root mean
square error metric demonstrated a significant reduction in error of 57% and 37% in comparison to
the extended Kalman filter (EKF) and the particle filter (PF), respectively. This serves to illustrate the
superiority of our method in enhancing tracking accuracy.

Keywords: WSN maneuvering tracking; particle filtering; gray wolf optimization algorithm; maneuvering
target tracking; nonlinear convergence factor

1. Introduction

A wireless sensor network (WSN) is a sophisticated high-tech technology that employs
wireless sensor devices to detect environmental data within a given environment. The data
collected by these devices are then integrated in real time to form a network connection.
This represents one of the most significant technical forms of the Internet of Things. This
technology offers substantial support for applications such as target tracking.

Target tracking represents a significant application field and a highly active research
area within the domain of wireless sensor networks. In scenarios such as traffic monitoring
and war detection, target tracking technology plays a pivotal role. The placement of the
target in an environment equipped with wireless sensors enables the real-time collection of
data on the target’s movement. These data can then be combined with the control of the
tracking system to estimate the position of the tracked target in real time, thereby achieving
accurate tracking.

In order to ascertain the location of mobile nodes within a wireless sensor network,
the most straightforward approach would be to equip each node with a Global Positioning
System (GPS) or a China’s Beidou Navigation Satellite System (BDS) module. However,
this appears to be an impractical project due to considerations of cost, limitations on node
energy, and the specific deployment environment required for GPS. Consequently, only
a select number of nodes typically obtain their coordinates through the use of GPS or by
being pre-deployed at specific locations. The remaining nodes calculate their distance
from the anchor nodes based on their ranging or connectivity information. They then
employ techniques such as maximum likelihood estimation or triangulation to determine
their positions.
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Generally speaking, wireless sensor network (WSN) tracking algorithms can be di-
vided into algorithmic localization and filtering prediction. Localization algorithms are
divided into two categories: distance-based and distance-free. In distance-measurement-
based methods, the coordinates of two nodes are estimated by measuring the distance
and angle between them. The RSSI (received signal strength indication), TOA (time of
arrival) [1], TDOA (time difference of arrival) [2], and AOA (angle of arrival) [3] are the
most commonly used ranging techniques. These algorithms have high positioning accuracy
but are limited by high measurement costs and power consumption and cannot be applied
to some areas with harsh geographical environments. Algorithms that do not require
distance measurement include APIT (approximate perfect point in tri-angulation test),
DV, and Hop [4], which rely on connectivity information between nodes to estimate the
distance between them. Although these algorithms reduce costs and power consumption,
positioning accuracy is often poor. However, these algorithms often have a large time
delay when facing target tracking and cannot track a target for a long time. As such,
filtering algorithms often become an important method for determining target tracking.
Filtering algorithms are often divided into Kalman filtering and particle filtering algo-
rithms, with particle filtering having significant advantages over Kalman filtering. It is
not limited by linear and Gaussian noise distributions and can flexibly handle nonlinear
and non-Gaussian problems, making it more widely applicable. The particle filter adopts a
recursive structure algorithm, which has high real-time processing efficiency. The recursive
process of Bayesian filtering is achieved through nonparametric Monte Carlo simulation,
thereby more accurately estimating the target state and performing well in the field of
target tracking [5,6].

Nevertheless, in wireless sensor networks (WSNs), there is a prevalent issue of particle
poverty in particle filtering tracking, which can result in a considerable increase in tracking
errors. Particle poverty is most commonly observed during the filtering process when
the particle set is unable to fully represent the posterior distribution of the target state.
Over time, some particles may gradually lose their representativeness toward the target
state, resulting in a decrease in the diversity of the particle set. This can result in inaccu-
racy in the estimation of the target position by the particle filtering algorithm, with the
potential for the target to be completely lost. Particle impoverishment not only affects the
accuracy of target tracking but may also result in a reduction in tracking stability, thereby
rendering it challenging for wireless sensor networks to maintain continuous and effective
target tracking.

Although the particle filter has the potential to be an effective method for target track-
ing, it also has some notable limitations. For instance, the tracking accuracy of the particle
filter may be diminished due to particle degradation. Concurrently, when confronted with
intricate dynamic models, the sampling and updating process of particles may become
inefficacious and time-consuming, which impinges upon the real-time performance of the
algorithm. Furthermore, the particle filter is also relatively constrained in its ability to
address the uncertainty of the observed data, which is susceptible to noise interference.
The motivation for developing the golden-section gray wolf particle filter maneuvering
target tracking algorithm was to address the aforementioned issues. The objective of the
proposed algorithm is to optimize the particle sampling and updating process, reduce
particle degradation, and improve tracking accuracy and stability. This has been achieved
by combining the advantages of the golden-section search and gray wolf optimization
algorithms. Concurrently, the algorithm is capable of more effectively addressing the
uncertainty of observed data, enhancing resilience to noise interference, and improving
the efficiency of the algorithm’s operation while maintaining the tracking performance
necessary for real-time applications.

The particle filter algorithm is based on the Monte Carlo method, which necessitates
a significant number of particles to achieve the desired estimation accuracy; the greater
the number of particles, the greater the time complexity of the algorithm. In order to
maintain local diversity during the process of particle swarm optimization, this paper
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proposes an improvement to the particle filtering algorithm. The proposed improvement
is designed to address the issue of particle impoverishment and to resolve the defect of
particle degradation.

There are various development directions in the field of modern particle filtering,
among which the swarm intelligent optimization particle filtering algorithm is a relatively
new development direction. The main idea of the swarm intelligent particle filter method
is to carry out repeated iterative optimization of the particle distribution, and low-weight
particles in the particle swarm do not have the problem of abandonment, thus increasing
the diversity of the particle iterative process and fundamentally solving the problem of par-
ticle impoverishment. Evolutionary problems and particle filters essentially obtain optimal
solutions through an iterative process of evaluation, selection, and updating [6–9]. There-
fore, many researchers have used evolutionary methods to solve particle filter problems.
Jie Cao [10] and others proposed to combine the weighted dithering firefly algorithm and
incomplete resampling to improve particle filtering and alleviate the problems of particle
degradation and diversity exhaustion. However, the firefly algorithm is extremely easy to
fall into the local optimum during the iteration process, which will verify the efficiency
of particle filtering, which is often non-negligible in maneuvering target tracking. Liu
Haitao [11] proposed an improved low-weight particle intelligent filtering (IPF) processing
strategy based on a genetic algorithm to improve the filtering accuracy. While improving
the filtering performance, low-weight particle intelligent filtering also faces the problem
of underoptimization or overoptimization. Weigang Li et al. [12] proposed a new particle
filtering method based on the improved gray wolf algorithm to improve the estimation
accuracy of particle filtering, which has poorer search accuracy than the gray wolf algo-
rithm in this paper, and it is extremely easy for the ordinary gray wolf algorithm to fall
into the local optimum of the optimization algorithm. Chen Zhimin [13] proposed a new
particle filtering algorithm based on the bat algorithm, which uses particles to represent
individual bats and simulates the process of searching for prey by bat populations, thus im-
proving the overall quality and distribution rationality of particles. Li Ji [14] combined the
Harris hawk optimization algorithm with the hunting strategy and proposed a population
intelligent optimization particle filtering method (EHHOPF) that effectively improves the
system state estimation accuracy and filtering stability. The scalability of these algorithms
may be limited as the size and complexity of the system increases. This is mainly due to
the fact that intelligent algorithms require more computational resources and time when
dealing with large-scale problems. All of the above methods improve the performance of
the particle filtering algorithm, but most of them control the number of iterations of the
intelligent algorithm through empirical values, which can easily lead to underoptimization
or overoptimization, resulting in a decrease in estimation accuracy.

This illustrates the comprehensive research conducted on the utilization of intelligent
optimization algorithms to enhance particle filtering. Consequently, it is also possible to
utilize intelligent optimization particle filtering for the purpose of maneuvering target
tracking. Nevertheless, the necessity for a system that can run quickly is often a prerequisite
for the successful implementation of a maneuvering target tracking system. Consequently,
the algorithms in question should be both simple and accurate.

Particle filtering has been demonstrated to possess unique advantages in applications
within the field of target tracking. As a state estimation method based on Monte Carlo
sampling, particle filtering approximates the probability distribution of the target state
by a set of particles with weights, thereby enabling it to deal with nonlinear and non-
Gaussian state estimation problems in complex environments. In a target tracking task,
the state of the target may change dynamically with time and environment. This may
include the updating of parameters such as position, velocity, and acceleration. Particle
filtering is capable of tracking and predicting the motion trajectory of the target in real
time by continuously and iteratively updating the position and weight of the particles,
thereby achieving the fast and accurate tracking of maneuvering targets. In the tracking
of maneuvering targets, the motion state of the target may change rapidly, necessitating
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the tracking system to possess the capacity for rapid response and accurate prediction.
Particle filtering, in conjunction with intelligent optimization algorithms, enables rapid
convergence to the vicinity of the true value of the target state, thereby facilitating the
real-time tracking and prediction of maneuvering targets through information interaction
between particles and the optimization of the update strategy. The particle filtering method,
when combined with an intelligent optimization algorithm, can enhance the accuracy and
efficiency of target tracking. Furthermore, it can address the uncertainty factors present in
complex environments, such as noise interference and target occlusion. This results in a
more reliable and stable target tracking system.

The gray wolf optimization algorithm represents a simplified and more robust ap-
proach to optimization. In addition to its intuitive nature, this algorithm is also straight-
forward to implement in program code. In contrast to other algorithms, the program
code is relatively concise and can be readily employed to address a range of optimization
issues [15]. Moreover, in contrast to some recently developed optimization algorithms, the
gray wolf optimization algorithm has been employed in a diverse range of applications.

In this study, the gray wolf optimization algorithm, renowned for its simplicity, ro-
bustness, and ease of implementation, was further enhanced by integrating the golden
ratio algorithm and introducing an adaptive adjustment strategy. This hybrid approach
combines the global search capabilities of the gray wolf optimization algorithm with the
local search precision of the golden ratio algorithm, thereby simulating the social behavior
of gray wolves to strike a balance between global and local searches. To validate its per-
formance, we designed experiments on benchmark optimization problems and applied
the algorithm to real-world challenges, such as WSN maneuvering target tracking. The
results demonstrate the effectiveness of this innovative fusion in efficiently solving complex
optimization problems.

2. Particle Filter

In particle filtering, the posterior probability density is often approximated by ran-
domly weighted random samples. Assuming there are N samples in particle filtering,
x′g ∼ u(xg|z1:g), Formula (1) describes the principle of particle filtering [16,17].

It is recommended that research manuscripts reporting large datasets that are de-
posited in a publicly available database specify where the data have been deposited and
provide the relevant accession numbers. In the event that the accession numbers have
not yet been obtained at the time of submission, this should be stated and the relevant
information should be provided during the review process. Such information must be
provided prior to publication.

u(xg|z1:g) =
1
N

n

∑
i=1

δ(xg − xi
g) (1)

where δ is the delta function; in the particle filter algorithm, the state of a moving target is
often predicted in real time using the posterior estimation density function. At the same
time, according to the principle of important samples, the importance distribution function
is used to obtain high-weight particles as important particles and low-weight particles as
small-weight particles [18]. In the case of known sample distribution, the calculation of the
weight corresponding to each particle individual is carried out using Formula (2), and the
calculation of the posterior probability is carried out using Formula (3).

wi
g ∝

u(xi
g)

v(xi
g)

and u(xg = xi
g) = wi

g (2)

u(xg|z1:g) =
n

∑
i=1

wi
gδ(xg − xi

g) (3)
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By substituting Equation (2) into Equation (4), the update process of the weighted
particle set can be determined as follows:

wi
g ∝ wi

g−1

u(zg|xi
g)u(xi

g|xi
g−1)

v(xi
g|xi

g−1 · zg)
(4)

The particle filtering algorithm is constituted by the application of Formulas (3) and (4).
In order to maintain a reasonable distribution in particle filtering, the method of particle re-
sampling is typically employed. This entails the duplication of particles with high weights
and the deletion of particles with low weights [19–23]. Nevertheless, particle resampling
may result in an increase in the repetition rate of particles with high weights and a decrease
in particle diversity, which significantly impairs the accuracy of tracking. This paper intro-
duces a golden-section gray wolf particle filtering algorithm, which guides particles in the
particle filtering process to the interval with higher weight values. This effectively enhances
the global and local exploration capabilities of the particles and reduces the impact of
particle impoverishment, thereby further improving tracking performance.

3. Translation of the Golden-Section Gray Wolf Filter Algorithm

In particle filtering, resampling represents a pivotal step employed to address the
issue of particle degradation [24]. The optimization of the resampling process through the
utilization of the gray wolf optimization algorithm enables the selection of representative
particles to be conducted in a more effective manner, thus avoiding oversampling or
undersampling. Consequently, this results in an enhancement of the filtering performance
and the accuracy of the filtering prediction.

3.1. Nonlinear Convergence Factor

The gray wolf algorithm exhibits robust optimization capabilities; however, the con-
vergence factor of the gray wolf optimization algorithm declines linearly with the increase
in iteration times. This may result in the algorithm becoming trapped in local optima. In the
initial stages of the algorithm, the decay of the convergence factor is relatively low, which
allows the wolf pack to move with a larger step size. This enables the algorithm to conduct
a global search more effectively. As the number of iterations increases, the convergence
factor declines, and the wolf pack’s movement step size diminishes. This enables a more
precise local search, which ultimately leads to the identification of the optimal solution.

The convergence factor of the gray wolf algorithm can be enhanced in order to achieve
a more balanced approach between global and local search, thereby enabling it to adapt
more effectively to complex search processes [25]. Consequently, the algorithm’s capac-
ity to optimize is enhanced. In comparison to alternative methodologies, the nonlinear
convergence factor is capable of more effectively balancing global and local search while
maintaining the algorithm’s overall simplicity. Particle filtering is more computationally
intensive than other filtering algorithms. Consequently, this paper employs a relatively
simple nonlinear convergence factor, which not only markedly balances the search process
but also significantly reduces the algorithmic complexity [26,27].

In the gray wolf particle filtering algorithm, the nonlinear convergence factor plays a
decisive role. This factor balances the global and local search capabilities of the algorithm
by nonlinearly adjusting the search behavior during iterations. At the beginning of the
algorithm, the nonlinear convergence factor allows the algorithm to descend at a slower
rate, which enhances the global search of the solution space and helps the algorithm
discover potential optimal solution regions. As the iterations progress, the convergence
factor decreases, speeding up the convergence of the algorithm and improving the search
accuracy. In the gray wolf particle filtering algorithm, the nonlinear convergence factor is
also used to adjust the state update process of the particle swarm and control the diffusion
and convergence speed of the particles, thus maintaining the diversity of the particles
while improving the convergence speed and accuracy of the algorithm. This flexible
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and effective adjustment strategy makes the gray wolf particle filtering algorithm show
excellent performance.

The expression of the nonlinear convergence factor is as follows:

a =
e(

t
maxt −1)

e − 1
(5)

The term “max t” in the equation refers to the maximum number of iterations.

3.2. Fusion of Golden Sine

In the context of the gray wolf optimization algorithm, during the iteration process, the
alpha wolf assumes the position with the highest fitness value, thereby leading the entire
gray wolf population in hunting. However, there is a notable absence of communication
between individual gray wolves. The incorporation of the golden sine can effectively
compensate for this deficiency in the optimization algorithm. The steps of the golden sine
are as follows:

Step 1: The fitness value of each discovered wolf individual is calculated, and they are
sorted in descending order based on their fitness values.

Step 2: Subsequently, the updated positions of each discovered wolf individual are
calculated in accordance with the mathematical formula of the golden sine function. The
golden sine function enables the magnitude of the position update to be determined based
on the current iteration count and the ranking of the discovered wolf individual.

Step 3: The positions of each discovered wolf individual are updated based on the
calculated updated positions.

Step 4: Following the updating of the positions of all discovered wolf individuals, the
fitness value of each individual must be recalculated, and they must be sorted in descending
order based on their fitness values.

Step 5: The aforementioned steps are repeated until the predefined iteration count is
reached or the stipulated stopping condition is met.

The introduction of the golden sine function facilitates enhanced communication
between discovered wolf individuals, enabling the entire population to more effectively
search for positions with higher fitness values. This, in turn, enhances the performance and
effectiveness of the algorithm.

The expression of the golden sine function is as follows:

a = 2 − 2 × t
maxt

b = 1
r = λ

r4 = r × 2π
r5 = r × π

g =
√

5−1
2

X1 = a + (1 − g)× (b − a)
X2 = a + g × (b − a)

(6)

In the equation above, maxt is the maximum number of iterations, λ is a random
number between 0 and 1, and g is the golden ratio.

3.3. Fusion of Golden-Section Gray Wolf Optimization Algorithm and Particle Filtering Algorithm

The golden-section gray wolf algorithm is a hybrid of the golden-section principle
and the optimization strategies of the gray wolf algorithm. The algorithm is designed to
identify optimal or satisfactory solutions to optimization problems through iterative search.
This algorithm not only exhibits the characteristics of heuristic algorithms, which are
constructed based on intuition or experience but also demonstrates enhanced global search
capabilities and optimization performance through the integration of random strategies
with local search.
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The golden-section gray wolf algorithm represents an advanced optimization tech-
nique that combines the accuracy of the golden-section method with the group intelligence
of the gray wolf optimization algorithm to form an efficient and powerful solution tool. The
initial phase of the algorithm’s operation involves the gray wolf optimization algorithm
rapidly identifying the region within the solution space of the problem that may contain
the optimal solution, due to its exceptional global search capability. This is achieved by
simulating the hunting behavior of gray wolf packs in nature, where information exchange
and collaboration among individual gray wolves allows the algorithm to rapidly adapt to
complex search environments.

Once the gray wolf algorithm has identified an approximate location for the optimal
solution, the golden-section method employs its distinctive capabilities to refine the search
process to a smaller area. The golden-section method determines the step size and range of
the search by applying the golden-section ratio, thereby significantly enhancing the search
accuracy of the algorithm while maintaining search efficiency. This degree of precision is of
particular importance during the local search phase, as it enables the algorithm to identify
the optimal or satisfactory solution to the problem with great accuracy.

In conclusion, the introduction of adaptive weight values has the potential to enhance
the adaptability of global and local exploration, improve particle degeneration and local
extremum problems, and increase the diversity of the particle swarm, thereby improving
tracking performance. The algorithm displays enhanced adaptability and randomness. The
repeated interaction of these two algorithms in iterative updates allows for improvement
in particle diversity and the effective compression of particle scale while simultaneously
enhancing computational efficiency and accuracy.

The particle filter resampling method of the golden-section gray wolf algorithm
has the capacity to prevent particle degeneration and increase particle diversity while
simultaneously stabilizing the scale of the particle set within a smaller range. Furthermore,
it can enhance the computational accuracy of the particle filter algorithm and reduce the
running time, thereby significantly enhancing real-time performance. To address the issue
of particle degeneration in the particle filter algorithm, this paper employs the golden-
section gray wolf optimization algorithm to replace the original resampling process within
the particle filter algorithm. The implementation steps of the golden-section gray wolf
particle filter are as follows:

Step 1: Set j = 0 as the starting point for the algorithm and perform the initial sampling
according to the distribution p(x0). The generated N particles may be utilized as the initial
samples for the particle filtering algorithm, where xk(j) follows the importance density
function as follows:

x k (j)_p(x k (j)
∣∣x k (j − 1), z(j)) (7)

Step 2: Some particles are initialized in the particle filter algorithm and assigned initial
weights in accordance with Equations (2) and (3).

Step 3: The golden-section gray wolf algorithm is used to identify particles. Firstly,
the position of each particle in the search space must be determined in accordance with its
weight. Subsequently, the positions of each particle are updated in accordance with the
search strategy of the gray wolf algorithm.

(1) The initial particles for optimization are shown in Equation (8).

{ i(j)} =
{

xg(j)
}
(i = 1, 2, · · · , N) (8)

(2) In the gray wolf algorithm based on the golden section, particle samples are added.
In accordance with the aforementioned steps, a novel set of particles is generated with each
iteration update. Consequently, the outcome of each iteration is contingent upon the results
of the previous iteration. The fitness function is employed to compute the fitness value of
the filtering parameters generated in the current iteration. The fitness function employed
in this algorithm is based on the golden-section gray wolf algorithm.
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f (xi
g) = exp

(
− 1

2R
|zg − zi

g |
)

(9)

where zi
g is the corresponding observation values, and R is noise variance.

(3) The golden-section gray wolf algorithm is employed in the resampling process of
particle filtering.

(4) The importance weights of the particles are calculated once more, and the data are
normalized.

ωi(g) =
ωi(g)

N
∑

g=0
ωi(g)

(10)

(5) The mean of the particles is calculated following the application of the golden-
section gray wolf particle filter.

In terms of the convergence of the algorithm proposed in this article, each repetition
of the algorithm generates the optimal position for the population, thereby enabling the
random algorithm to achieve convergence. Following a number of iterations, the proposed
algorithm improves the state of the population sequence of gray wolf positions, reaching
the optimal state position. Consequently, the potential for an infinite search for the global
optimum is eliminated. Consequently, the algorithm proposed in this article will converge
to the global optimum. The schematic diagram of the golden-section gray wolf particle
filter is presented below Figure 1.
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4. Simulation and Evaluation
4.1. Basic Performance Testing
4.1.1. Filtering Performance Testing

In order to ascertain the efficacy of the proposed filtering algorithm, a comparative
experiment was conducted between the GWO-PF algorithm and the proposed algorithm.
The selected filtering model is based on a univariate dynamic changing model, with the
state equation and observation equation presented below.

x(u) = 0.5x(u − 1) +
25x(u − 1)

1 + [x(u − 1)]2
+ 8 cos[1.2(u − 1)] + ω(u) (11)

z(u) =
x(u)2

20
+ v(u) (12)

In this equation, w(u) and v(u) represent zero-mean Gaussian noises, and X(u) denotes
the state of the system at time u, while Z(u) represents the measurement value of the system
at time u. The initial state is x = 1. The parameter distribution from left to right is set to
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N = 100, Q = 1, and R = 1; N = 200, Q = 2, and R = 1; and N = 200, Q = 1, and R = 1. The
comparison of filtering effects is shown in Figure 2.
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The proposed algorithm is enhanced by incorporating elements of the gray wolf
optimization algorithm. In comparison to the particle filtering algorithm of gray wolf
optimization, the algorithm presented in this paper demonstrates enhanced global and
local search and optimization capabilities, as evidenced by the comparative test of filtering
effectiveness. This improvement enables a more accurate prediction of the state value of
maneuvering targets in maneuvering target tracking. The proposed algorithm is well suited
to the task of fast and accurate prediction, such as radar and wireless sensor target tracking.

4.1.2. Optimizing Algorithm Performance Testing

In order to assess the optimization performance of IGWO, we chose twenty standard
test functions from the CEC Benchmark, as presented in Table 1. The four functions,
each with distinct features, permit a comprehensive analysis of IGWO’s optimization
abilities. The population size was set to 30, and the number of iterations was set to 200.
A comparison was conducted between the dragonfly optimization algorithm (DBO), the
gray wolf optimization algorithm (GWO), the whale optimization algorithm (WOA), the
northern goshawk optimization algorithm (NGO), and the proposed algorithm [28–30]. A
total of 30 independent simulations of the test function were conducted, and the resulting
experimental data were compiled. A comparison of the aforementioned optimization
algorithms is presented in Figures 3 and 4.

Table 1. Benchmark test functions.

Number Name Search Range Dimension Optimal Value

F1 Sphere [−100,100] 30 0
F2 Schwefel’s Problem 2.22 [−10,10] 30 0
F3 Schwefel’s Problem 1.2 [−100,100] 30 0
F6 Step Function [−100,100] 30 0
F8 Schwefel’s Problem 2.26 [−500,500] 30 0

F10 Ackley’s Function [−32,32] 30 0
F14 S-H Camel-Back Function [−5,5] 2 −1.0306
F18 Shekel’s Family [0,10] 4 −10.1532

The final fitness convergence comparison curves indicate that IGWO demonstrates the
fastest convergence speed for the F1 function, thus demonstrating superior fitness simulta-
neously. Similarly, the outcomes for the F2 to F3 functions closely resemble those of the F1
function, thereby corroborating the superior performance of IGWO. Figure 4 illustrates that,
although IGWO does not achieve the absolute best performance, its convergence speed
and fitness consistently rank within the top three. With regard to the F20 functions, IGWO
continues to demonstrate its superiority.
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In comparison to other algorithms, the gray wolf optimization algorithm exhibits
significant advantages in solving optimization problems. This is due to its balanced
approach to global and local search, rapid convergence speed, ability to avoid falling into
local optima, robust performance, and ease of implementation. These characteristics render
the algorithm more reliable, flexible, and efficient in practical applications.

4.2. Mobile Target Tracking Test

The text primarily concerns the performance testing of the constant speed turning
motion model [31,32]. The motion state equation of the constant speed turning motion
model is as follows:

F =


1 sin Ω∆t

Ω 0 1−cos Ω∆t
Ω

0 cos Ω∆t 0 − sin Ω∆t
0 1−cos Ω∆t

Ω 0 sin Ω∆t
Ω

0 sin Ω∆t 0 cos Ω∆t

 (13)

Gk =


∆t2

k
2 0

∆tk 0

0 ∆t2
k

2
0 ∆tk

 (14)

xk+1 = Fxk + Gwk (15)

The variable “wk” in the equation represents the system noise in the state equation.
The observation model used by the sensors in the WSN is as follows:

zi = (1 + γi)ri + ni = ri + ui (16)

ri =

√(
x − xi

)2
+

(
y − yi

)2 (17)

This equation represents the position of the target (x, y) at time t, where (xi, yi) is the
position of sensor i, and ui is the random noise generated with covariance Q.

4.2.1. WSN Ranging Model Modelin

A total of 30 sensors were randomly deployed in a wireless sensor network monitoring
area of 100 m × 100 m. The communication radius of the sensors was set to 30 m. The
sampling period was set to 0.1 s, and the number of samples was set to 50. In the filtering
algorithm, the environmental noise was set to diag[(0.5,0.5)] and the observation noise was
set to 10.

In the gray wolf optimization algorithm with golden section, the population size M
was set to 30, and the maximum number of iterations was set to 50.

The efficacy of target tracking algorithms is typically gauged by the magnitude of
tracking accuracy, which is typically represented by the average square root error. We
employed three algorithms, namely the PF algorithm, the EKF algorithm, and the UKF
algorithm, to assess their performance by calculating the average square root error and
comparing their curves. In the simulation experiment, the root mean square error (RMSE)
was employed as a measure of tracking performance, with the following Formula:

RMSE =

√√√√ 1
N

N

∑
i=1

√
(x̃ − x)2 + (ỹ − y)2 (18)

In the above equation, RMSE represents the normalized average positioning error of
the nodes, (

⌢
x ,

⌢
y ) represents the estimated coordinates at time t, and (x, y) represents the

actual coordinates of the unknown nodes.
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4.2.2. WSN Trace Test Results

The initial value of the trajectory in the X direction was set to 10 m, and the initial
value in the Y direction was set to 10 m. The initial velocities in the X direction and Y
direction were set to 5 m/s and 0.122, respectively. Once the target model was established,
and the initial conditions for simulation were set, the trajectory was tracked using the
algorithm proposed in this paper. Figure 5 depicts the trajectory comparison graph. To
validate the efficacy of the algorithm, 100 repeated experiments were conducted using this
algorithm, the PF algorithm, and the EKF algorithm for the tracking of a maneuvering target.
The root mean square error (RMSE) was employed as the performance evaluation metric.
Table 2 presents a comparison of the tracking errors of the three algorithms. The simulation
results indicate that, in terms of tracking accuracy and error, the order of superiority of the
algorithms is as follows: the algorithm proposed in this paper, the PF algorithm, and the
EKF algorithm.
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Table 2. Comparison of tracking errors.

Location RMSE (m) X Location RMSE (m) Y Location RMSE (m)

UKF 0.8016 0.4972 0.4131
EKF 0.7009 0.4862 0.4039
PF 0.4576 0.2270 0.3124

The algorithm
trajectory in this article 0.3037 0.1571 0.1529

Figure 5 illustrates the comparison of the target tracking trajectory in two-dimensional
space. Figure 5 and Table 2 demonstrate that the tracking trajectory of the algorithm in
this paper is nearly identical to the true trajectory. The root mean square error of tracking
is 0.3037. Consequently, it can be concluded that the algorithm in question is an effective
means of tracking nonlinear model targets.

Table 2 and Figure 6 illustrate that particle filtering is more effective than the PF and
EKF algorithms in handling complex motion situations, such as nonlinearity, through
Monte Carlo sampling. Furthermore, it has a broader range of applications and higher
tracking accuracy. The proposed algorithm exhibits excellent tracking performance. The
incorporation of the enhanced gray wolf strategy enables the algorithm to achieve the
performance of a larger number of particles with a smaller number of particles. When the
number of particles is held constant, the tracking performance of the proposed algorithm is
superior to that of the particle filtering algorithm.
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Figure 7 demonstrates that the incorporation of the enhanced gray wolf strategy sig-
nificantly enhances the tracking efficacy of the particle filtering algorithm. Concurrently,
the enhanced algorithm exhibits a reduced reliance on the positional predictions of the
preceding stage during the tracking of maneuvering targets, resulting in diminished fluc-
tuations in the prediction outcomes and optimal tracking stability and precision. The
experimental results demonstrate the effectiveness of the proposed golden-section gray
wolf particle filtering algorithm for WSN target tracking. Particle resampling is enhanced
in the golden-section gray wolf optimization particle filtering algorithm, and the fitness
function of particles is redefined based on the most recent sensor observations. This results
in the algorithm guiding particles to move toward higher random areas on a global scale,
effectively adjusting the exploration capabilities of both global and local search. The pro-
posed algorithm is demonstrated to exhibit superior tracking performance in both the X
and Y directions in comparison to the PF and RSSI algorithms. This is attributed to the
algorithm’s capacity to address the issues related to particle impoverishment and local
extremum problems, as well as to enhance the diversity of the particle swarm, thereby
improving tracking performance.
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In order to verify that the algorithm proposed in this paper still has a good tracking
effect under the linear motion model, the uniformly variable linear motion model was
chosen. The initial value of the X direction and Y direction of the target trajectory was
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set as 0 m, the initial value of the Y direction was set as 10 m, and the initial value of the
velocity in the X direction and Y direction was set as 3 m/s. The acceleration was 1 m/s.
The equations of motion state of the uniformly variable linear motion model are shown
as follows:

F =



1 T 1
2 T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T 1

2 T2

0 0 0 0 1 T
0 0 0 0 0 1

 (19)

where T is the sampling interval.
The experimental results are shown in Figures 8 and 9.
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From the detailed comparison and presentation in Figures 8 and 9, we can clearly
observe that the algorithm proposed in this paper demonstrates excellent tracking per-
formance in linear maneuvering target tracking tasks. This indicates that the algorithm
proposed in this paper can not only adapt to the complex nonlinear tracking environment
but also has a good tracking performance in the uncomplicated linear tracking environment.
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Given the severely constrained connectivity resources of wireless sensor networks, it is
insufficient to consider tracking accuracy as the sole indicator of algorithmic efficacy when
designing algorithms. The complexity of the tracking algorithm is also a crucial factor in the
effectiveness of the tracking algorithm. In contrast to traditional intelligent optimization-
enhanced particle filtering algorithms, the algorithm presented in this paper employs the
golden ratio to approximate the roots of nonlinear equations. One of the advantages of this
method is its rapid convergence, which greatly reduces the complexity of the optimization
algorithm, especially in the vicinity of the roots. The gray wolf algorithm is enhanced
by an improved convergence factor, which achieves a more balanced approach between
global and local search. This results in greater effectiveness in adapting to complex search
processes and a notable reduction in algorithmic complexity, thereby improving tracking
performance in applicable scenarios.

4.3. Mobile Target Tracking Test

In this paper, four filtering algorithms, namely the PF algorithm, the UKF algorithm,
the EKF algorithm, and the algorithm proposed in this paper, were each subjected to
100 simulated experiments. The results of this comparison are presented in Figure 10,
which shows the timeliness comparison table of the four algorithms. The incorporation
of an adjustment factor into the gray wolf optimization algorithm results in the algorithm
proposed in this paper demonstrating the most optimal timeliness.
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In view of the severely constrained connectivity resources of wireless sensor networks,
it is not sufficient to consider tracking accuracy as the sole indicator of the efficacy of
algorithms when designing them. The complexity of the tracking algorithm is also a crucial
factor in determining the effectiveness of the tracking algorithm. In contrast to traditional
intelligent optimization algorithms, the algorithm presented in this paper employs the
golden ratio to approximate the roots of nonlinear equations. One of the advantages of this
method is its rapid convergence, which greatly reduces the complexity of the optimization
algorithm, especially in the vicinity of the roots. The enhanced convergence factor of the
gray wolf algorithm enables a more balanced approach between global and local search,
rendering it more adept at adapting to complex search processes and significantly reducing
its complexity. Consequently, this enhances its tracking performance in applicable scenarios.

The golden-section gray wolf algorithm shows its unique optimization ability and
scalability when dealing with the complex computational problems faced by filtering
algorithms in wireless sensor networks. First, in the design of the algorithm, the proposed
algorithm is capable of automatically adjusting key parameters, such as the golden-section
ratio and the convergence factor of the gray wolf algorithm, in different iteration stages
and search environments by introducing a parameter adaptive adjustment strategy, so
as to ensure that the algorithm always stays in the optimal search state. This adaptive
mechanism greatly improves the algorithm’s ability to adapt to different problems and
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scenarios. In terms of search strategy, the proposed method ensures that the algorithm
can avoid falling into the local optimal solution while maintaining the search efficiency
by balancing the local search and global search. Different individuals in the gray wolf
algorithm undertake different search tasks; some are responsible for global search, while
others perform local fine search, and this collaborative work makes the algorithm cover the
solution space more comprehensively in the search process.

In addition, the golden-section gray wolf algorithm introduces a heuristic strategy
that combines the properties of the problem and prior knowledge to provide guidance
for the search process. This heuristic strategy helps the algorithm to find the approxi-
mate or optimal solution to the problem faster, and it especially excels in dealing with
complex nonlinear problems. Meanwhile, in terms of scalability, the algorithm adopts a
modularized design, which divides the algorithm into several independent modules, each
of which is responsible for handling a specific task. Also, the algorithm fusion strategy
enables the algorithm to be used in conjunction with other optimization algorithms to solve
complex problems.

5. Conclusions and Future Direction

In order to address the issue of low tracking accuracy caused by particle depletion
in particle filters, a mobile target tracking algorithm for wireless sensor networks (WSNs)
based on the golden-section gray wolf particle filter (PF) is proposed. The algorithm guides
the particles in the filtering process toward intervals with higher weight values, thereby
enhancing their exploration capability and reducing the impact of particle impoverishment.
Moreover, this method can enhance the diversity of particle groups, thereby improving
tracking performance. The efficacy of this algorithm was demonstrated through filtering
and tracking using the constant velocity circular motion model (CM) and compared with
the EKF algorithm and PF algorithm to obtain the mean square error curve of the position.
Upon analysis of the results, it is evident that the proposed golden-section gray wolf parti-
cle filter algorithm offers a significant improvement in tracking accuracy. The algorithm’s
capacity to direct particles toward regions of greater weight effectively balances global and
local exploration, overcoming the challenges posed by sample scarcity. Furthermore, the
increased diversity of the particle swarm contributes to enhanced tracking performance.
However, this algorithm is only applicable to scenarios with relatively small environmen-
tal areas. Future research will concentrate on reducing the algorithm’s complexity and
conserving energy on nodes while maintaining tracking accuracy in large scenarios. This
will allow the network to function for a longer period. Although the golden-section-based
gray wolf particle filtering algorithm significantly enhances the accuracy of tracking in
mobile target tracking for wireless sensor networks, it still exhibits limitations in certain
respects. Firstly, the algorithm’s computational complexity and resource consumption
may be excessive when applied to large-scale environments, which limits its applicability
in a wider range of scenarios. Given the fact that nodes in WSNs typically have limited
computational power and energy resources, the high complexity of the algorithm may
result in the nodes consuming energy at an accelerated rate, which could ultimately impact
the lifespan of the entire network. This issue was incorporated into the summary section
“Conclusions and Future Direction”.

In response to the advantages demonstrated by the golden-section-based gray wolf
particle filtering algorithm in mobile target tracking for wireless sensor networks and its
computational complexity and energy consumption problems in large-scale environments,
future research will focus on the optimization of the algorithm and the exploration of energy-
saving strategies. Further research will be conducted with the objective of reducing the
complexity of the algorithms and improving their applicability in large-scale environments.
Furthermore, intelligent node scheduling mechanisms will be developed with the objective
of facilitating more efficient distributed processing and adaptive energy saving. The
objective of these research programs is to ensure the accuracy of tracking while extending
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the lifetime of WSNs and to promote their application and development in a wider range
of fields.
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