
Academic Editor: Valeri Mladenov

Received: 2 January 2025

Revised: 28 January 2025

Accepted: 1 February 2025

Published: 4 February 2025

Citation: Sabit, H. Artifical

Intelligence-Based Smart Security

System Using Internet of Things for

Smart Home Applications. Electronics

2025, 14, 608. https://doi.org/

10.3390/electronics14030608

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Artifical Intelligence-Based Smart Security System Using Internet
of Things for Smart Home Applications
Hakilo Sabit 1,2

1 Department of Electrical and Electronic Engineering, Auckland University of Technology,
Auckland 1010, New Zealand; hakilo.sabit@aut.ac.nz

2 School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology,
Auckland 1010, New Zealand

Abstract: This study presents the design and development of an AI-based Smart Security
System leveraging IoT technology for smart home applications. This research focuses
on exploring and evaluating various artificial intelligence (AI) and Internet of Things
(IoT) options, particularly in video processing and smart home security. The system is
structured around key components: IoT technology elements, software management of
IoT interactions, AI-driven video processing, and user information delivery methods.
Each component’s selection is based on a comparative analysis of alternative approaches,
emphasizing the advantages of the chosen solutions. This study provides an in-depth
discussion of the theoretical framework and implementation strategies used to integrate
these technologies into the security system. Results from the system’s deployment and
testing are analyzed, highlighting the system’s performance and the challenges faced during
integration. This study also addresses how these challenges were mitigated through specific
adaptations. Finally, potential future enhancements are suggested to further improve the
system, including recommendations on how these upgrades could advance the functionality
and effectiveness of AI-based Smart Security Systems in smart home applications.

Keywords: AI; smart home security; IoT; face recognition; motion detection; smart home app

1. Introduction
At the start of the twenty-first century, the world entered the Internet era, fundamen-

tally transforming how people live and work. With the rapid advancement of information
technology and the Internet, a new application emerged, known as the Internet of Things
(IoT) [1]. A smart home is an application within the IoT environment, consisting of physical
devices connected to the Internet. These devices communicate with one another to deliver
innovative, intelligent services to users. Over time, advancements in technology have
significantly shifted people’s expectations regarding Home Automation and how they
interact with their homes [2]. The increasing affordability and widespread use of electronic
devices and the Internet have played a key role in this transformation. Today’s modern
Home Automation Systems are a sophisticated blend of Ubiquitous Computing Devices
and Wireless Sensor/Actuator Networks. However, the growing demand for ‘Convenient
Access’ has introduced new security challenges within the Home Automation landscape.
There is a pressing need for a viable and accessible approach that enables the collection
of data and identification of risky behaviors within smart-home environments [3], while
ensuring user privacy is preserved. Despite the growing interest in integrating artificial
intelligence (AI) and Internet of Things (IoT) technologies in smart home security, there
remains a significant research gap in thoroughly exploring and evaluating the range of

Electronics 2025, 14, 608 https://doi.org/10.3390/electronics14030608

https://doi.org/10.3390/electronics14030608
https://doi.org/10.3390/electronics14030608
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9358-7733
https://doi.org/10.3390/electronics14030608
https://www.mdpi.com/article/10.3390/electronics14030608?type=check_update&version=1

Electronics 2025, 14, 608 2 of 25

AI and IoT options, particularly in the context of video processing. Limited studies have
focused on comparing various AI algorithms and IoT configurations to determine their
effectiveness and adaptability for real-time security applications in smart homes. This gap
underscores the need for a comprehensive analysis of different AI-driven video-processing
techniques and IoT frameworks, which could reveal valuable insights for enhancing secu-
rity, optimizing resource use, and addressing privacy concerns in the smart home domain.
To address these challenges, this study proposes to develop innovative strategies that
leverage the capabilities of artificial intelligence (AI) and Internet of Things (IoT) technolo-
gies. This includes exploring a range of AI algorithms suited for real-time data processing,
enhancing IoT connectivity for seamless device integration, and implementing robust
privacy-preserving mechanisms. This study presents the development of a smart security
system designed to monitor specific areas and notify a designated user when motion is
detected, all while maintaining a high level of user privacy. The system is composed of
three primary components: a motion sensor, a computational unit capable of performing
advanced computations, and a camera. Upon detecting motion, the system activates the
camera, which is then utilized by the computational unit to apply artificial intelligence (AI)
techniques. The user is subsequently notified of the detected motion and is provided with
the option to view the AI-processed camera feed. Figure 1 illustrates the proposed smart
security system function routine. A primary functionality of this project is its capacity
to alert the user upon motion detection. Following this, the system enables the user to
access either the live or recorded camera feed, with the AI model assisting in identifying
the subject. Alternatively, the alert can be dismissed if the AI recognizes the individual as
non-threatening. This study addresses the issue of home security and its common limita-
tions. Although many households rely on security cameras to safeguard their property,
it is impractical to continuously monitor camera footage. This study seeks to overcome
this challenge by developing a more intelligent and autonomous security system that
does not require constant human oversight and only issues notifications when necessary.
Throughout the project, user privacy remained a paramount concern, and critical decisions
were made to safeguard privacy, significantly shaping the project’s direction from its initial
planning stages onward.

Figure 1. The proposed smart security system function routine.

The objective of the AI system is to assist users in assessing the threat level of a given
situation, enabling them to determine whether it is necessary to view the camera feed or
conclude that the situation poses no risk. The AI accomplishes this by first applying motion
tracking to moving objects or individuals, facilitating the initial detection of movement.
In the subsequent stage, the AI employs facial recognition to further evaluate the level of
threat. If the AI identifies a known individual, it classifies the situation as non-threatening.
However, if the AI does not recognize the individual, it signals a potential security breach,
indicating a heightened threat level. In this study, OpenCV will be employed due to its
status as an open-source software platform offering a comprehensive computer vision
library suitable for commercial applications. OpenCV is widely adopted by major compa-

Electronics 2025, 14, 608 3 of 25

nies, including Google, Microsoft, Intel, and Sony, among others [4]. It supports multiple
programming languages, such as C++, Python, Java, and MATLAB, providing flexibility in
selecting the platform for AI implementation without compromise. Furthermore, the exten-
sive online documentation and support available for OpenCV significantly enhance the
efficiency of troubleshooting and research efforts. The system is designed to provide users
with significant control over its functionality. Users can specify the duration for which the
camera remains active upon motion detection and have the option to activate the camera
remotely via cloud access, thereby eliminating the need for physical intervention. Further-
more, the system supports continuous customization of the AI model, allowing users to
adjust parameters such as the motion tracking threshold (i.e., the minimum movement size
to be tracked) and to add new faces to the facial recognition database.

The rest of this paper is organized as follows: Section 2 reviews related work, while
Section 3 introduces the proposed security model. Section 4 describes the security system
application, and Section 5 presents the results. Section 6 discusses the findings, and
Section 7 concludes the paper with suggestions for future work.

2. Related Work
2.1. Face Detection Algorithms and Libraries

Face detection and recognition are essential tasks in computer vision, with applications
spanning security systems, social media, and beyond. Over time, numerous algorithms and
frameworks have been developed to address the challenges of detecting and recognizing
faces in images and video streams. One widely adopted and lightweight framework is
OpenCV, which provides classical methods like the Haar Cascade Classifier and Local Bi-
nary Patterns (LBPs) for real-time detection. Researchers, including those in home security
applications [5–8], commonly utilize OpenCV for face detection and recognition. How-
ever, traditional OpenCV methods often fall short in accuracy compared to modern deep
learning-based approaches, especially in complex environments. The Single Shot Multibox
Detector (SSD) is a deep learning-based method known for its real-time performance in
object detection, including faces, by using a single neural network to predict bounding
boxes and class scores in one pass [9–11]. Despite its speed, SSD struggles with faces in
extreme poses or occlusions. The Multi-task Cascaded Convolutional Networks (MTCNN),
which uses a cascade of three convolutional networks for face detection, bounding box
regression, and facial landmark detection, offers high accuracy and robustness in varying
orientations, but it is slower and can face difficulties in challenging lighting conditions
or occlusions [12–14]. FastMTCNN improves upon this by offering similar accuracy with
faster processing, though it is less effective in extreme conditions [15,16]. RetinaFace
provides exceptional accuracy and robustness under difficult conditions, but it is computa-
tionally intensive and slower [17–19]. MediaPipe is a fast, real-time framework suitable
for mobile devices, though it is less accurate for face recognition [20,21]. YOLOv8 stands
out for its remarkable speed and accuracy in real-time detection and recognition, though it
requires significant computational resources [22–24]. YuNet excels in multi-pose detection
and recognition in diverse conditions, but it is computationally demanding and slower
on lower-end devices [25–27]. Lastly, CenterFace is optimized for real-time applications,
particularly in crowded environments, but its performance can decline for small faces or
extreme angles. Summary of the face detection librarires and tools are presented in Table 1.

Electronics 2025, 14, 608 4 of 25

Table 1. Face detection libraries and tools comparison.

Algorithm Speed Accuracy Robustness to Pose Resource Efficiency

Haar-Cascade High Moderate Low High
HOG + SVM Moderate Moderate Moderate Moderate
SSD High High Moderate Moderate
YOLO Very High High Moderate Low
MTCNN Moderate High High Moderate
Faster R-CNN Low Very High High Low

2.2. Face Recognition Models

Facial recognition, a technology used to verify personal identities by pinpointing
and measuring facial features from a digital image or a video frame, has become an
important technology for various applications. With real-time face recognition, faces
can be detected and identified instantly using a camera feed or video stream. There are
many robust open-source libraries and tools available today that make it easy to build
real-time facial recognition capabilities into applications and systems. Over the years
face recognition models have evolved significantly, leveraging advancements in machine
learning and deep learning. These models vary significantly in methodology, performance,
and application. Traditional models like Eigenfaces and Fisherfaces [28–31] utilize PCA and
LDA, respectively, to reduce dimensionality and enhance class separability, making them
computationally efficient but sensitive to lighting, pose, and dataset size. The Local Binary
Pattern Histogram (LBPH) model employs local feature encoding, offering robustness
to lighting variations but limited scalability for complex datasets [32–35]. Modern deep
learning-based models, such as DeepFace [36,37] and FaceNet [38–41], leverage CNNs and
embedding techniques to achieve state-of-the-art accuracy and robustness across diverse
conditions, though they require significant computational resources and extensive training
data. Dlib [42–46] combines HOG and CNNs for lightweight applications, while DeepID
and ArcFace push the boundaries of accuracy and generalization with advanced loss
functions, making them ideal for large-scale biometric and commercial systems. These
models balance trade-offs between computational cost, accuracy, and dataset requirements,
catering to varied real-world scenarios. The different models comparison is presented
in Table 2.

Table 2. Face recognition models comparison.

Model Accuracy Robustness Scalability Computational Cost

Eigenfaces Moderate Low Low Low
Fisherfaces High Moderate Moderate Moderate
LBPH Moderate High Low Low
DeepFace Very High Very High High High
FaceNet State-of-the-Art Very High Very High High
Dlib High High Moderate Moderate
DeepID Very High Very High High High
ArcFace State-of-the-Art Very High Very High High

2.3. Security Vulnerabilities and Privacy in Smart Home AI

The increasing reliance on smart home devices on the Internet of Things (IoT) has
raised concerns regarding security and privacy, prompting various studies to propose
methodologies and frameworks for improving the safety and efficiency of these systems.
Murat et al. [47] highlight the importance of securing smart home devices and introduce a
comprehensive methodology for IoT security assessments. Their work suggests that deeper
firmware analysis and automated fuzzing capabilities could significantly enhance the

Electronics 2025, 14, 608 5 of 25

robustness of these assessments. Similarly, Kim et al. [48] propose a forensic methodology
tailored to smart home devices with displays, revealing that these control devices often
store substantial amounts of user-related information. They emphasize the need for further
research to refine the methodology and broaden its applicability. Shah et al. [49] present
a secure smart home framework that utilizes AI algorithms, such as Isolation Forest (IF)
and K-Nearest Neighbors (KNN), for anomaly detection, alongside blockchain and IPFS
for secure data storage. Their research also addresses the challenges of blockchain latency
and mining costs, proposing solutions for efficient and secure smart home operations.
Wang et al. [50] focus on the Connected Internet of Things (CIoT) in smart homes, offering
an architecture that incorporates blockchain, federated learning, and a Gateway Peer
method to enhance security, scalability, and automation. Rahim et al. [51] evaluate logit-
boosted CNN models for anomaly detection and face recognition in smart home IoT devices,
achieving high accuracy while identifying future research directions, such as improving
model generalizability and addressing privacy concerns. Lastly, Asghar et al. [52] analyze
existing user-authentication schemes for smart homes, identifying vulnerabilities and
proposing an enhanced scheme, with future research focusing on adaptive authentication
and scalability. These studies collectively contribute to advancing the security, scalability,
and performance of smart home systems.

2.4. Privacy Concerns and Mitigation Strategies for Home Security Cameras

The primary privacy concerns associated with home security cameras include unautho-
rized access [53], data privacy [54], surveillance overreach [55], and physical security risks.

Unauthorized Access: Cameras are susceptible to hacking, weak passwords, and
outdated firmware, which can compromise their security. Mitigation strategies include em-
ploying strong, unique passwords, enabling two-factor authentication (2FA), and regularly
updating firmware to address vulnerabilities.

Data Privacy: Concerns in this area stem from risks associated with cloud storage,
unclear data policies, and potential third-party sharing without user consent. To safeguard
data privacy, it is essential to use cameras that feature end-to-end encryption and adhere
to transparent privacy policies. Additionally, opting for local storage or trusted cloud
providers with robust security measures is recommended.

Surveillance Overreach: Cameras may inadvertently capture areas beyond their in-
tended focus, such as neighboring properties or private moments. This issue can be
mitigated by employing privacy-enhancing techniques such as privacy masks, geofencing,
or adjustable recording zones. Proper positioning of cameras to restrict their field of view
to intended areas further reduces the risk of overreach.

Physical Security Risks: Stolen or tampered cameras can result in the loss of footage
and privacy breaches. To address these risks, cameras should be secured in tamper-resistant
mounts, and footage should be regularly backed up. Enabling tamper alerts provides an
additional layer of protection against unauthorized physical access.

2.5. Encryption Standards

Encryption standards are essential for securing digital data by ensuring confidentiality,
integrity, and authenticity. Common standards include AES, known for its strong security
and performance with 128, 192, or 256-bit keys; RSA, which uses public and private keys for
secure exchanges; and TLS/SSL, ensuring secure internet communications, such as HTTPS.
SHA provides data integrity checks, and ECC offers strong encryption with shorter keys
suitable for IoT devices. These standards are vital for secure communications, protecting
e-commerce transactions, and complying with data protection regulations.

Electronics 2025, 14, 608 6 of 25

2.6. Anonymization Techniques

Digital image anonymization is crucial for protecting individual privacy by obscuring
identifiable information in images. Techniques such as blurring, pixelation, and masking
are commonly employed to conceal sensitive features like faces or license plates. Advanced
methods include the use of generative models, such as the Realistic Anonymization using
Diffusion (RAD) framework, which utilizes Stable Diffusion and ControlNet to produce
high-quality synthetic images [56]. Additionally, selective feature anonymization ap-
proaches, like the privacy-preserving semi-generative adversarial network (PPSGAN), add
noise to class-independent features to maintain data utility while protecting privacy [57].
These techniques balance the need for data utility with the imperative of privacy protection,
ensuring compliance with regulations and ethical standards.

2.7. Compliance with Regulations Such as ENISA/ETSI

Home security cameras must adhere to regulations set by ENISA (European Union
Agency for Cybersecurity) and ETSI (European Telecommunications Standards Institute)
to ensure privacy and data protection [58]. ENISA provides guidelines for securing IoT
devices, emphasizing strong authentication, encryption, and secure data storage. ETSI
focuses on telecommunications standards, recommending frameworks for secure commu-
nication protocols and privacy policies. Compliance with these standards ensures that
home security cameras protect user privacy and meet legal requirements.

3. The Proposed Security Model
The developed system integrates a Raspberry Pi equipped with a camera and passive

infrared (PIR) sensors. The camera remains in low-power mode until the PIR sensors
detect motion. Upon activation, the camera initiates recording, and the captured footage is
processed using OpenCv’s Dlib and face-recognition libraries to apply both face detection
and facial recognition algorithms. This processed footage is then uploaded to the user’s
Google Drive database. Simultaneously, the system sends the user an email containing a
link to the uploaded footage. Additionally, a text message is dispatched to alert the user
of the detected disturbance, directing them to check the provided email link. A proof-of-
concept application has also been developed to serve as a user interface, enabling the user
to interact with the security system by viewing notifications and accessing stored footage.

The system is structured around key components: IoT technologies (PIR Sensor and
Camera), AI-driven video processing (Object Detection and Face Recognition), user informa-
tion delivery methods, and hardware platform. Figure 2 shows the system block diagram.

Figure 2. The proposed smart security systemblock diagram function routine.

Electronics 2025, 14, 608 7 of 25

3.1. IoT Technology

Internet of Things (IoT) is the vast array of physical objects equipped with sensors
and software that enable them to interact with little human intervention by collecting and
exchanging data via a network [59]. IoT technology comprises essential hardware, IP, tools,
systems, sensors, and software that enable the creation of smart devices, ranging from
medical equipment to industrial machinery. It also includes security features to protect
these connected devices from online threats. The IoT working principles are depicted in
Figure 3. The IoT technology elements utilized in realizing the presented application are
described in the following sections.

Figure 3. Iot technology working.

3.1.1. PIR Sensor

The sensor selected for the security system was the passive infrared sensor (PIR). It
works on the principle of the Pyroelectric Effect, as modeled in Equation (1) below [60]. PIR
sensors detect infrared radiation emitted by all objects that generate heat. The advantage of
PIR sensors lies in their method of detecting differential heat energy. They detect motion
by measuring changes in infrared radiation across their two separate sensing elements.
When an IR-emitting object crosses the sensing element path, the first element measures
it and generates a HIGH signal. When the object crosses the second element’s path, the
element generates a LOW signal. On detecting a large difference between the signals from
the two sensing elements, the sensor outputs a HIGH signal, as shown in Figure 4. This
enables the sensor to respond specifically to the heat emitted by a person, making it less
susceptible to false signals from non-heat-based movements, such as wind. However, a
limitation of PIR sensors is their likelihood of being triggered by animals, a challenge also
common to other types of sensors. They are “passive” since they do not emit any heat or
energy themselves. It is crucial to note that PIR sensors respond to infrared radiation, not
to heat directly.

Figure 4. The PIR sensor operation.

The voltage response V(t) of a pyroelectric crystal to an infrared (IR) radiation step
pulse can be modeled by considering the temperature change in the crystal caused by the
absorbed radiation and the resulting polarization change due to the pyroelectric effect. The
general expression is given in Equation (1).

Electronics 2025, 14, 608 8 of 25

V(t) =
p∆T

C
· e−t/τ (1)

where we have the following:

• p: Pyroelectric coefficient (C/m2K), describing the change in polarization per
unit temperature;

• ∆T: Temperature change in the crystal caused by the IR step pulse;
• C: Capacitance of the crystal (F);
• t: Time after the step pulse is applied.

Other sensors such as the Active Infrared and Ultrasonic Sensors (Figure 5) can only be
used for quite small areas, as they typically work linearly in such a way that if an intruder
walks through a small area such as a doorway, they will interrupt the reflection of a light
beam or sound wave, setting off the security system. The PIR sensor, in comparison, can
cover large open areas, which matches the typical placement of camera systems where
the full range of the camera field of view can be utilized. This makes it the most versatile
option for a single security unit system where the sensor, camera, and processing hardware
are all part of a combined unit.

Figure 5. The ultrasonic sensor operation.

3.1.2. Camera

A camera is used as an edge device that captures valuable footage and provides
insight into the security system. The Raspberry Pi High-Quality Camera (HQ) propri-
etary M12-mount Sony IMX477 Camera was selected for its superior image quality com-
pared to the widely used ESP32-compatible OV2640 camera. This module, featuring an
12.3 MP sensor, supports 1080p video and high-resolution still images, connecting directly
to the Raspberry Pi through the Mobile Industry Processor Interface (MIPI) Camera Serial
Interface (CSI) port. It is fully compatible with the latest Raspbian OS, making it suit-
able for applications such as time-lapse photography, video recording, motion detection,
and security. The camera’s sensor has a native 12.3 MP resolution with a fixed-focus
lens, capable of capturing 12.3 megapixels static images and supporting video formats at
2028 × 1080p50, 2028 × 1520p40, and 1332 × 990p120. Thus, the Pi HQ Camera Module
was selected. The systems use a client-server architecture depicted in Figure 6: the video
feed must go through an AI processing and cloud server to get to the user device. The
latency between the surveillance camera being triggered by the PIR sensor and successful
message delivery is analyzed in the client-server mode. For delay-sensitive applications,
peer-to-peer architecture may be preferred.

Figure 6. Camera in client–server architecture.

Electronics 2025, 14, 608 9 of 25

3.2. AI-Driven Video Processing

The AI module is implemented on the Raspberry Pi 4B to facilitate face detection
and facial recognition. The computer vision model, designed in OpenCV and running
on the Raspberry Pi, comprises two distinct models—one dedicated to face detection and
the other to facial recognition—operating concurrently in real-time. Given the project’s
requirements for continuous 24/7 operation, paying special attention to optimizing the
code for efficiency ensures consistent performance on the Raspberry Pi. Due to the high
computational demands of computer vision, particularly on the Raspberry Pi—a compact
device with limited cooling and performance capabilities relative to a full-sized computer,
the process here involved initially designing the foundational models, integrating the
face detection and facial recognition modules, and finally implementing efficient coding
practices to ensure reliable, continuous operation. The two AI models were integrated using
a resource-efficient trigger logic, which minimized computational load while ensuring
seamless functionality for the final system.

Face Detection

Face detection, also known as facial detection, is a computer vision task that identifies
human faces in digital images and video. It is conducted by analyzing the visual input to
determine whether a person’s facial features are present and clearly distinguishing those
faces from other objects. Face detection is the first step in face tracking, face analysis,
and facial recognition. In the face detection stage, the proposed system pipeline begins
with acquiring video frames from a Raspberry Pi camera. The acquired frames are then
converted from the original RGB images to grayscale images for the efficiency of the
detection model. The images are resized to 500 × 500 pixels for optimization due to limited
processing power and consistency of scale. The pixel values are then normalized to reduce
computational complexity, and the Gaussian blurring technique is applied to remove image
noise for enhanced feature detection. The detection steps output is shown in Figure 7.
The Haar cascade algorithm is used to extract facial features. The OpenCV built-in Haar
cascade classifier is used as it is already trained on a large dataset of human faces. This
algorithm is capable of processing images extremely rapidly and achieving high detection
rates [61].

(a) (b) (c) (d)

Figure 7. Face detetion steps with privacy preserved. (a) camera capture; (b) grayscale; (c) Gaussian
blur; (d) face detection.

3.3. Facial Recognition

Face recognition can be achieved by employing a deep learning library to train a model
capable of identifying and distinguishing facial features. Through this training process, the
model learns to recognize distinct characteristics across different faces, enabling accurate
identification. Specifically, a deep learning model must be trained to produce a specific
classification output for a given input. For example, the model would output an individual’s
name when presented with an image of their face [62].

Electronics 2025, 14, 608 10 of 25

To implement facial recognition within this project, a library was required that con-
tained a database of facial signatures for the algorithm to compare against detected faces.
However, the primary challenge was the sample size of the library. Larger libraries enhance
accuracy by enabling the algorithm to better differentiate between the facial features of
various individuals, thus improving the identification of correct identities. These libraries
must be trained using extensive datasets of diverse images and faces to achieve the desired
level of precision.

Developing and training a custom facial recognition library with such a large dataset
was deemed impractical for the scope of this study. Consequently, existing Python libraries
‘Dlib’ and ‘face_recognition’, were utilized. The face_recognition library, developed by
Adam Geitgey, based on a pre-trained model using a dataset of 3 million images [63] is
utilized. Dlib’s face recognition system primarily relies on a deep learning-based approach,
using a pre-trained model to encode faces into 128-dimensional feature vectors. The face
recognition pipeline implementation in this study is summarized below:

Face Detection: Dlib’s (HOG) face detection model utilizes Histogram of Oriented Gradients
(HoG) features combined with a Support Vector Machine (SVM) classifier. HoG is a popular
method for extracting feature descriptors from images, and it is known for being efficient
in terms of computational cost, particularly when run on CPUs. This method works well
for detecting frontal faces and slightly rotated ones. However, it has limitations, such as
reduced accuracy when detecting smaller faces or when faces are occluded. Additionally, it
may miss certain facial regions, such as parts of the chin and forehead, during detection [61].
Face Landmark Detection: Dlib’s facial landmark detection model uses key facial points,
including the right and left eyebrows, eyes, nose, and jaw, to precisely localize and represent
important regions of the face. The model utilizes a 68-point landmark system, which allows
it to detect these critical facial features with high accuracy. This process plays an essential
role in tasks like face alignment and recognition, contributing to robust performance across
various conditions such as facial variations and lighting changes [64,65].
Face Encoding: Following face detection, dlib extracts facial features and computes a
numerical representation (encoding) for each face. These encodings are used for face
recognition. A face encoding is basically a way to represent the face using a set of
128 computer-generated measurements. Two different pictures of the same person would
have similar encoding, and two different people would have totally different encoding.
Face Matching: The feature-based recognition is performed by comparing the distance
between the input face’s facial features and the registered faces. When a registered face
meets the matching criteria, the face recognition returns the matching face ID found in the
database. The recognition process typically involves calculating the Euclidean distance
between the feature vectors of the detected face and known faces stored in a database. If
the distance is below a certain threshold, the faces are considered to match. This makes it a
powerful tool for both identification (finding a matching face in a database) and verification
(confirming if two faces are the same).

The objective of the facial recognition system in this project was to identify two live
users and 23 face images. the two live users are referred to as “TTu” and “SPh”. To achieve
this, a large collection of photographs for each user was initially assembled to create a
database. A larger reference dataset enhances accuracy by accounting for variations in
facial signatures caused by differing angles, lighting conditions, and facial expressions.
During testing, it was observed that the large database significantly affected the system’s
performance and frame rate. Utilizing the Raspberry Pi 5, the video frame rate has been
improved to 30 frames per second, and the sample size of images has been increased to
20 per subject, capturing variations in lighting conditions, facial angles, expressions, and

Electronics 2025, 14, 608 11 of 25

partial occlusion (e.g., wearing glasses). The face database has been expanded to include
25 individuals by incorporating additional open-access images [66].

In this section, faces are detected, compared against the known face database, and,
where applicable, the identity of the matched face is appended.

To display this information to the user within the footage, the program overlays
a bounding box around the detected face and adds a label indicating the name of the
identified individual which is shown in Figure 8.

(a) (b) (c) (d)

Figure 8. Recognized face with an identity label and unrecognized face. (a) user “TTu”; (b) user
“SPh”; (c) “R. Federer”; (d) “Unknown”.

3.4. Information Delivery

In scenarios where a sensor is triggered, leading to the activation of the camera to
record and upload footage to Google Drive, it is essential to implement a mechanism to
notify the user of the event. To address this, a Python script was developed to send an
email containing key details and a link to the uploaded recording on Google Drive.

While email serves as the primary notification method, it relies on the user having an
active internet connection. To enhance the reliability of notifications, the Python program
also integrates the Pushbullet API, which enables the delivery of text messages to the user’s
mobile device. This ensures that notifications can still be received in the absence of an
internet connection, provided the user has access to a cellular network, which is generally
more dependable.

Although Pushbullet could potentially serve as the sole notification method by includ-
ing the footage link in the text message, this approach was deemed less secure compared to
providing the link within an email. Consequently, the text message notification is limited
to prompting the user to check their email for the link.

The initial step in the information delivery process involves uploading the footage, as
illustrated in Listing 1. A dedicated Google account was created to facilitate this process,
utilizing both Google Drive and Gmail. An API authentication key was obtained from this
account to enable file access and uploading. JSON is used to retrieve the recorded file from
Raspberry Pi’s internal storage and upload it to Google Drive. Subsequently, the metadata
file ID is extracted for inclusion in the email message sent via Gmail.

The second stage of this process involves sending an email alert to the user’s Gmail
account, as depicted in Listing 2. After retrieving the file ID associated with the Google
Drive link, Python’s SMTP and SSL libraries are employed to send the email and ensure
message encryption, respectively.

Initially, the sender and recipient email addresses are defined as simple string variables,
allowing for easy modification. Using the retrieved file ID, a unique Google Drive URL
for the video is generated. The email is then composed utilizing the MIME library, with a
customized message as the body and the URL included as an attachment. Finally, the email
is transmitted securely via SSL, ensuring the message is encrypted during delivery.

Electronics 2025, 14, 608 12 of 25

Listing 1. Uploading file to Google Drive.

1 #will be used to upload recorded footage
2 headers = { "Authorization": "Bearer <redacted API key >"

}
3 para = {
4 "name": "output.avi"
5 }
6 # File data to upload
7 files = { ’data’: (’metadata ’, json.dumps(para), ’

application/json; charset=UTF -8’),
8 ’file’: open("./ output.avi", "rb")
9 }

10 r = requests.post(
11 "https :// www.googleapis.com/<redacted >",
12 headers=headers ,
13 files=files)
14 # Parse the response for the file ID
15 meta = r.json()
16 file_id = meta[’id’]
17 # Return the ID of the uploaded file
18 return file_id

Listing 2. Send email with file link.

1 # To send the user an email with the link of the file
2 def send_email(id):
3 # CHANGE RECEIVER ADDRESS HERE -------
4 to_addrs = ’test.email .18039875 @gmail.com’
5

6 # Sender parameters , Body of Email
7 sender = ’test.email .18039875 @gmail.com’
8 sender_password = ’oxqzglbnzfnwktnq ’
9 from_addr = sender

10

11 # Body of message
12 url = ’https :// drive.google.com/open?id=’ + id
13 body = ’Please find your link to the recorded video below , or in

your Google Drive folder .\n\n’
14

15 # Creating the Message , Subject line , From and To
16 msg = email.mime.text.MIMEText(body + url)
17 msg[’Subject ’] = ’MOTION ACTIVATED VIDEO RECORDING ’
18 msg[’From’] = sender
19 msg[’To’] = to_addrs
20

21 # Gmail uses SSL
22 s = smtplib.SMTP_SSL(host=’smtp.gmail.com’, port =465)
23 s.login(sender , sender_password)
24 s.sendmail(sender , to_addrs , msg.as_string ())
25 s.quit()

As an alternative notification method that does not require an internet connection, the
Pushbullet API is utilized to send text message alerts. This system is integrated with facial
recognition applied to the recorded footage, allowing the alert to include the name of the
individual who triggered the system, if identified. This procedure is illustrated in Listing 3.

Electronics 2025, 14, 608 13 of 25

Listing 3. Send notification alert.

1 # For sending Notification alert to user’s phone
2 def send_alert(name):
3 API_KEY = "reducted"
4 pb = Pushbullet(API_KEY)
5

6 if name == "Unknown":
7 msg = "Unknown person spotted on the premises. \nPlease see

your email for recording"
8 else:
9 msg = name + " was spotted on the camera. \nPlease see your

email for recording"
10

11 push = pb.push_note("ATTENTION! Motion Activated", msg)

To prevent interception or spoofing of Google Drive video footage links shared via
email notifications, this project implemented steps such as secure access where the link is
available only to a specific individual who can access the link using a given password over
HTTP transport. However, future implementation could consider other measures such
as two-factor authentication, expiring URL, DomainKeys Identified Mail (DKIM), Sender
Policy Framework (SPF), and Domain-based Message Authentication, Reporting, and
Conformance (DMARC) to authenticate emails and prevent spoofing as well as Regularly
review Google Drive’s access logs to detect unauthorized access to shared files or links.

3.5. Risk Evaluation of Using Google Drive to Store Sensitive Data

Using Google Drive to store sensitive data presents several risks, including privacy
concerns, unauthorized access, and potential data loss. While Google implements encryp-
tion for data in transit and at rest, the fact that encryption keys are controlled by Google
raises concerns about data access, including by law enforcement with a warrant. Addition-
ally, weak passwords, phishing attacks, or cyberattacks can compromise account security,
granting unauthorized users access to sensitive information. There is also a risk of data
loss due to service outages, file deletion, or corruption. Furthermore, compliance with
regulatory frameworks such as General Data Protection Regulation (GDPR) [67] or Health
Insurance Portability and Accountability Act (HIPAA) [68] may be a concern if Google
Drive does not meet specific regional legal requirements for data handling. To mitigate
these risks, users should employ strong passwords, enable two-factor authentication, and
consider additional encryption tools before storing sensitive data on the platform.

4. Security System App
Ideally, the entire notification system and video footage viewing functionality would be

integrated into a dedicated application. For this purpose, an application was developed using
the JavaScript programming language and the React Native framework. React Native, which
is widely utilized in popular applications such as Facebook and Uber Eats, was chosen due
to its cross-platform compatibility with Android, iOS, and web platforms. Additionally, React
Native offers a range of libraries that facilitate development, including React Navigation, heavily
utilized to implement the desired user interface and tab structure, and Expo AV, which supports
in-app video playback. The development process also incorporated tools and services such
as Expo and Visual Studio Code. Expo proved particularly useful during the development
cycle, enabling the application to be run on an Android device via a local area network and
updated in real time. This feature significantly enhanced the efficiency of interface design
and testing. The application’s tabbed interface was implemented using the React Navigation

Electronics 2025, 14, 608 14 of 25

Bottom Tab Navigator combined with the Native Stack Navigator. The bottom tab navigator
defines the names, titles, styles, and icons for each tab, with icons dynamically changing their
appearance upon selection. Additionally, a native stack was employed for the in-app video
player, allowing a secondary navigation layer within an existing bottom tab. This feature
enables greater customization of the video player screen, accessible through the “Locations”
tab by selecting a specific location. The “Locations” tab demonstrates two distinct methods for
accessing recorded footage as a proof of concept. The first method employs Linking openURL
to open the user’s Google Drive in an external browser. This approach leverages Google
Drive’s inherent security, requiring the user to sign in to access the content, ensuring a secure
connection. The second method utilizes the aforementioned video stack for in-app playback.
In this implementation, a button press navigates to the LiveStreamScreen stack and passes the
corresponding video URL as a route parameter. By linking the route parameter to the button,
multiple buttons with distinct video URLs can utilize the same LiveStreamScreen function for
video playback. In a fully realized implementation, the video URL would automatically update
to reflect the latest footage. However, significant security concerns associated with this approach
necessitated alternative methods. Listing 4 illustrates the configuration of the video player,
which accepts an input URL provided by the pressed button. The player supports full-screen
mode and includes external pause and play controls, enhancing user interaction.

Listing 4. LiveStreamScreen component.

1 function LiveStreamScreen ({ navigation , route}) {
2 const { videoURL } = route.params;
3

4 const video = React.useRef(null);
5

6 const [status , setStatus] = React.useState ({});
7

8 return (
9 <View style={ styles.container}>

10 <Video
11 ref={ video}
12 style={ styles.video}
13 source ={{uri: videoURL }}
14 useNativeControls
15 resizeMode="contain"
16 isLooping
17 onPlaybackStatusUpdate ={(status) => setStatus (() =>

status)}
18 />
19 <View style={ styles.buttons}>
20 <Button
21 title={ status.isPlaying ? ’Pause ’ : ’Play ’}
22 onPress ={() =>
23 status.isPlaying
24 ? video.current.pauseAsync ()
25 : video.current.playAsync ()
26 }
27 />
28 </View >
29 </View >
30);
31 }

Electronics 2025, 14, 608 15 of 25

5. Results
As outlined earlier, the hardware configuration of the developed system comprises

a Raspberry Pi equipped with a camera and a passive infrared (PIR) sensor. The camera
remains in a low-power state until the PIR sensor detects motion, at which point the camera
is activated to begin recording. The recorded footage is processed using OpenCV to perform
facial recognition and object detection. Subsequently, the footage is uploaded to the user’s
Google Drive database. Simultaneously, the user is notified via email, which includes a
link to the uploaded footage, and a text message alerting them of the detected disturbance
and prompting them to check their email.

Additionally, a proof-of-concept application has been developed to serve as an inter-
face for user interaction with the security system, allowing the user to receive notifications
and access recorded footage.

5.1. Hardware

The proposed system is built around the Raspberry Pi 5 with 8 GB of LPDDR4X
RAM, running the latest Raspbian OS Bookworm to ensure optimal performance and
software compatibility. The system utilizes an M12-mount Sony IMX477 camera module,
equipped with a wide-angle lens to achieve an extended field of view. This camera, with its
12.3-megapixel resolution, is capable of capturing high-quality images, making it suit-
able for tasks such as object detection, facial recognition, and environmental monitoring.
Two HC-SR501 Passive Infrared (PIR) sensors are integrated to enhance motion detection
capabilities. Each sensor has a horizontal detection angle of approximately 120° and an
8m range. They are strategically positioned to provide overlapping coverage, ensuring
comprehensive motion detection in the monitored area. The PIR sensors are connected to
the Raspberry Pi’s GPIO pins and are used to trigger the camera for event-driven image
capture, reducing redundant data collection. For data storage, the system is equipped with
a 64 GB SSD card, which provides sufficient capacity for storing high-resolution images and
processing logs. The storage solution ensures reliable and fast read/write speeds, essential
for handling large image datasets and real-time computational tasks. The Raspberry Pi 5’s
powerful 2.4 GHz quad-core ARM Cortex-A76 processor and 8GB of RAM enable efficient
real-time image processing and machine learning tasks, such as motion analysis and object
detection. The camera module is connected via the MIPI CSI-2 interface, ensuring seamless
data transfer for high-speed image capture. Power is supplied through a 5 V/5 A USB-C
adapter, ensuring stable operation even under high processing loads. This hardware config-
uration provides a robust platform for applications in environmental monitoring, security,
and smart systems research, leveraging the Raspberry Pi 5’s performance and the versatility
of the integrated sensors and camera.

From a hardware perspective, the primary components subject to testing are the
functionality of the camera and the PIR sensor module.

During initial testing, a simple program was implemented to increment a counter
each time the PIR sensor was triggered. The sensor was configured in single-trigger mode,
where its output remains low until motion is detected, at which point it transitions to
a high state for a predefined duration before returning to low, irrespective of continued
motion detection.

To evaluate this behavior, a hand was waved back and forth over the sensor, allowing
brief pauses between motions to ensure the sensor output returned to the low state. This
process was repeated seven times, and the counter correctly incremented with each trigger
event, confirming the sensor’s proper operation, as illustrated in Figure 9.

Electronics 2025, 14, 608 16 of 25

Figure 9. PIR sensor detection test outcome.

For the purposes of this project, the specific mode of the PIR sensor is not critical, as
the program is designed to respond to any high signal by initiating recording for a fixed
duration, regardless of whether the sensor continues to detect motion. If the sensor remains
triggered after the recording period ends, the process will simply repeat.

In scenarios where sensor reliability is further explored, the repeat-trigger mode—where
the output remains high as long as motion is detected—could be utilized. This configuration
would allow the camera to record continuously but only while motion is actively sensed.

To verify functionality, the sensor was deliberately triggered, successfully initiating
the recording and uploading process as expected.

5.2. Experimental Procedure

The face recognition tests were conducted by displaying images on a mobile device
and introducing them into the PIR sensor’s field of view to activate the camera. The
device was held stationary to enable the camera to capture the image and the processor
to complete the face recognition process. Upon successful recognition, a text or email
alert was generated. This procedure was repeated for all test image samples to ensure a
comprehensive evaluation of the system.

5.3. AI Processing

The implemented object detection and facial recognition systems are demonstrated in
Figure 10. The facial recognition algorithm identifies individuals by drawing a rectangle
around the detected face and labeling it with the corresponding identity.

(a) (b) (c) (d)

Figure 10. Recognized face with an identity label and unrecognized face. (a) user “TTu”; (b) user
“SPh”; (c) “B. Elish”; (d) “Unknown”.

Electronics 2025, 14, 608 17 of 25

5.4. Quantitative Analysis of the Face Recognition System

To evaluate the performance of a face recognition system, the following metrics
and analysis techniques are employed: where TP = True Positive, TN = True Negative,
FP = False Positive, and FN = False Negative.

Accuracy: A quantity which measures the proportion of correctly recognized faces out
of the total number of test cases calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision: The proportion of correctly identified faces (True Positives) out of all in-
stances identified as positive (TP + FP) given as:

Precision =
TP

TP + FP
(3)

Recall: Indication of the system’s ability to detect all relevant faces given as:

Recall =
TP

TP + FN
(4)

F1 Score: A harmonic mean of precision and recall, balancing both metrics given as:

F1Score = 2 · Precision · Recall
Precision + Recall

(5)

False Positive Rate (FPR): The proportion of False Positives among all actual negatives
calculated as:

FPR =
FP

FP + TN
(6)

Sample results and computed metrics according to Equations (2)–(6) are presented
in Table 3 and Figure 11, indicating a highly accurate and reliable face recognition system
with minimal false positives and strong overall performance.

Table 3. Face recognition results.

Metric Value

True Positives (TP) 236
True Negatives (TN) 30
False Positives (FP) 2

False Negatives (FN) 9

Figure 11. Calculated metrics.

Electronics 2025, 14, 608 18 of 25

5.5. Notification and Information Delivery

Once the footage is recorded and processed, it is uploaded to the user’s Google Drive
in the .avi format. This format was selected due to its superior compressibility compared to
.mp4, resulting in smaller file sizes and reduced upload and download times.

Following the upload, an email notification is sent to the user. By default, this email is
directed to the Gmail account linked with Google Drive, but it can be easily reconfigured to
any preferred email address. An example email, as shown in Figure 12, contains a link to
the uploaded footage on Google Drive.

Figure 12. Example received email with attached link.

Additionally, the user receives a Pushbullet notification on their mobile device, alerting
them that the security system has been triggered. When facial recognition identifies
individuals, the notification includes the detected person’s identity, where applicable.
Example notifications for two recognized individuals and an unrecognized person are
displayed in Figure 13.

Figure 13. Pushbullet notifications for recognized and unrecognized persons.

The last information delivery method created was the proof-of-concept application,
developed using the React Native framework, which provides another method for users to
interact with the security system, access notifications, and view recorded footage. These
notifications would allow users to play the associated footage upon selection. Figure 14a
shows the activity tab, which, in a production version, would maintain a log of notifications.

Electronics 2025, 14, 608 19 of 25

(a) (b) (c)

Figure 14. Activity tabs. (a) App Activity Screen; (b) App Locations Screen; (c) Light-Mode screen.

Figure 14b highlights the Locations Tab, which contains buttons for accessing footage
from different areas, such as “Front Door” and “Living Room”. In an expanded system,
these buttons would correspond to additional Raspberry Pi security modules. The interface
includes features such as bottom tab icons that change color when selected and support for
light and dark mode settings, automatically adjusting header and tab colors, as illustrated
in Figure 14b,c.

When the “Front Door” button in the Locations Tab is pressed, the corresponding
Google Drive link is opened externally in a browser or the Google Drive app, as shown
in Figure 15a. In contrast, pressing the “Living Room” button passes the associated URL
to the Live Stream stack screen, where the embedded video player streams the footage, as
demonstrated in Figure 15b.

(a) (b) (c)

Figure 15. Link and video play buttons. (a) Open link button; (b) video player button; (c) video
player fullscreen.

Electronics 2025, 14, 608 20 of 25

The embedded player in Figure 15c features an external blue pause/play button,
which interacts with the player to control playback, dynamically updating its label based
on the playback state.

Finally, Figure 15c showcases the player’s full-screen functionality, which users can
toggle on and off using the icon located at the bottom-right corner of the player.

6. Discussion
One concern associated with the use of the PIR sensor in the project’s security system

is the potential for blind spots in the sensor’s field of view when it overlaps with the
camera’s field of view. This issue is mitigated by incorporating two overlapping PIR
sensors, with the monitored area divided into two distinct zones, each assigned to a specific
sensor. A centralized control algorithm, implemented on the Raspberry Pi 5, integrates the
sensor signals to ensure efficient motion detection. The algorithm dynamically activates
or deactivates specific sensors based on the detected activity within the monitored zones.
In cases where the sensor’s field of view is insufficient, additional PIR sensors could be
incorporated with minimal adjustments to the Python software, taking advantage of the
Raspberry Pi 5’s ample input pins. Despite these concerns, the PIR sensor remains the most
suitable option for the security modules in this project, and the system would benefit from
the inclusion of additional sensors of varying types to enhance its coverage.

When using artificial intelligence for footage processing, a problem arose with the
frame rate of the incoming video. This limitation is mitigated using a more capable
processing platform, i.e., Raspberry Pi 5.

The object detection system implemented in this project offers several potential ap-
plications for security and smart home systems. In the context of security, the detected
location of a moving person can be used to trigger appropriate responses. For example, if
an intruder is detected moving toward another zone covered by a separate camera, that
camera can be preemptively activated to avoid gaps in footage. In larger areas, the camera
system could be mounted on an electric motor that pans to track the intruder’s location,
keeping them centered in the frame.

Additionally, object detection could be adapted for use in child monitoring systems. In
such systems, an emergency response could be triggered if a child approaches a predefined
“off-limits” area, such as near electrical outlets or wires.

A proof-of-concept app was developed; however, the goal of completing the app
to fully facilitate user interaction with the security system was not achieved. This was
primarily due to security concerns regarding video hosting.

The first video playback method, shown in Figure 15c, is secure because it relies on
Google Drive’s built-in security, requiring the user to sign in to access the video. While this
is functional, it is not an ideal solution, as it still requires video playback outside of the app.
The ideal approach would involve a built-in video player.

A security issue emerged when using the embedded video player, as the video URL
passed to the player must be of .mp4 format. Consequently, the Google Drive links used
in the email notification system and the previous video playback method do not work
with this player. Although the links can be converted to permanent .mp4 links, doing so
bypasses the Google Drive sign-in stage, thereby allowing anyone with the link to access
the files, regardless of authentication.

This issue could be resolved if the file hosting service used supports built-in secu-
rity protocols that require user authentication to access the files. Unfortunately, due to
time constraints and limited access to resources, a solution to this problem could not
be implemented.

Electronics 2025, 14, 608 21 of 25

7. Conclusions and Future Work
7.1. Conclusions

The project aim of creating a Smart Security System that can detect an intruder and
respond intelligently has been achieved with room for future development. As intended,
the user is able to access the system footage and information in a secure way using free
Google services, and a concept app to repackage this information in a way that promotes
ease of use has been created.

7.2. Future Work

As part of the ongoing development of this project, there are several potential avenues
for further enhancement. From a hardware perspective, the current project utilizes existing
off-the-shelf products, which increases both the cost and physical size of the system. A pos-
sible improvement would be to design and fabricate a custom PCB with a microcontroller,
which could significantly reduce the product’s size by eliminating unnecessary features not
required for a security system. This approach would also facilitate the creation of custom
housing tailored to the needs of a discrete security system. Additionally, a custom-built
product would likely have lower energy consumption, making the inclusion of a battery
more feasible, at least as a backup in the event of a power supply disruption. A key con-
straint in the current project was the desire to perform AI-based video processing locally
on the security modules, without relying on an external server. This approach necessitated
relatively high processing power to run OpenCV directly on the security modules. An
alternative solution could have involved offloading the video processing to an external
server. This would enable the security modules to be smaller and less complex, only
requiring them to detect an event, record it, and stream the footage to the server. The server
could then handle the OpenCV processing, allowing for more powerful video analysis
based on its computational capabilities. However, this solution would entail additional
hardware requirements for both the security modules and the server, increasing installation
and operational costs. Another area of potential improvement is the integration of smaller
wireless sensor modules. These modules, which would not use a camera, could send time
and location-based alerts upon detection of events. Combining these external sensors with
the existing security modules could expand the system’s coverage area without the high
costs and processing demands of the camera-based system. This would allow for more
comprehensive monitoring, with cameras placed in key areas while the wireless sensors
cover additional locations. There are also several features that could enhance the user
experience and system cohesion within the app. A notification system would allow users
to access a log of historical security events in one place. Ideally, these notifications would
contain valuable information, such as the date and time of the event, the location where
the event occurred, and a snapshot from the camera at the time of the incident. Another
possible direction for future development involves exploring the use of Cloud hosting
services or personal servers, but one alternative worth considering is the LoRa network.
The LoRa network enables long-range communication, allowing data to be transmitted
over distances of 5 to 15 km, depending on the environment, without requiring an internet
connection. This would be particularly beneficial for users in rural areas, such as farmers,
who are more likely to achieve the higher end of this range. Since these users typically
work within relatively close proximity to their homes, they would likely remain within
the network’s range and be able to access their security system without relying on internet
connectivity.

Funding: This research received no external funding.

Data Availability Statement: Included within the paper as well as in [66].

Electronics 2025, 14, 608 22 of 25

Acknowledgments: I sincerely thank my students Thit Tun, Sabai Phuchortham, Luke Stainthorpe,
and Fatehjit Singh for their participation in this research project and Auckland University of Technol-
ogy for the materials used for experiments.

Conflicts of Interest: The author declares no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
AI Artificial Intelligence
PIR Passive Infrared

References
1. Touqeer, H.; Zaman, S.; Amin, R.; Hussain, M.; Al-Turjman, F.; Bilal, M. Smart Home Security: Challenges, Issues and Solutions at

Different IoT Layers. J. Supercomput. 2021, 77, 14053–14089. [CrossRef]
2. Jose, A.C.; Malekian, R.; Ye, N. Improving Home Automation Security: Integrating Device Fingerprinting into Smart Home. IEEE

Access 2016, 4, 5776–5787. [CrossRef]
3. Majumder, A.J.; Izaguirre, J.A. A Smart IoT Security System for Smart-Home Using Motion Detection and Facial Recognition.

In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain,
13–17 July 2020; pp. 1065–1071. [CrossRef]

4. OpenCV. About OpenCV. Available online: https://opencv.org/about (accessed on 27 November 2024).
5. Prathaban, T.; Thean, W.; Sobirin Mohd Sazali, M. A Vision-Based Home Security System Using OpenCV on Raspberry Pi 3. AIP

Conf. Proc. 2019, 2173, 020013. [CrossRef]
6. Haque, S.; Sarker, B.; Mawla, A.R.; Reza, M.N.; Riya, A.S. Development of a Face Recognition Door Lock System with OpenCV

Integration for Securing Residential Properties. In Proceedings of the 2024 15th International Conference on Computing
Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–4. [CrossRef]

7. Deshmukh, D.; Nakrani, G.; Bhuyar, M.L.; Shinde, U.B. Face Recognition Using OpenCV Based on IoT for Smart Door. In
Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM),
Jaipur, India, 26–28 February 2019. Available online: https://ssrn.com/abstract=3356332 (accessed on 27 November 2024).

8. Hasan, T.H.; Sallow, A.B. Face Detection and Recognition Using OpenCV. J. Soft Comput. Data Min. 2021, 2, 86–97. Available
online: https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8791 (accessed on 27 November 2024).

9. Tawsik Jawad, K.M.; Rashid, M.B.; Sakib, N. Targeted Face Recognition and Alarm Generation for Security Surveillance Using
Single Shot Multibox Detector (SSD). Int. J. Comput. Appl. 2019, 177, 8–13. Available online: https://ijcaonline.org/archives/
volume177/number22/31027-2019919652/ (accessed on 27 November 2024).

10. Vignesh Baalaji, S.; Sandhya, S.; Sajidha, S.A.; Nisha, V.M.; Vimalapriya, M.D.; Tyagi, A.K. Autonomous Face Mask Detection
Using Single Shot Multibox Detector, and ResNet-50 with Identity Retrieval through Face Matching Using Deep Siamese Neural
Network. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 11195–11205. [CrossRef] [PubMed]

11. Han, H. A Novel Single Shot-Multibox Detector Based on Multiple Gaussian Mixture Model for Urban Fire Smoke Detection.
Comput. Sci. Inf. Syst. 2023, 20, 1819–1843. [CrossRef]

12. Zhang, L.; Gui, G.; Khattak, A.M.; Wang, M.; Gao, W.; Jia, J. Multi-Task Cascaded Convolutional Networks Based Intelligent Fruit
Detection for Designing Automated Robot. IEEE Access 2019, 7, 56028–56038. [CrossRef]

13. Zou, X.; Zhou, L.; Li, K.; Ouyang, A.; Chen, C. Multi-Task Cascade Deep Convolutional Neural Networks for Large-Scale
Commodity Recognition. Neural Comput. Appl. 2020, 32, 5633–5647. [CrossRef]

14. Zhuang, N.; Yan, Y.; Chen, S.; Wang, H. Multi-Task Learning of Cascaded CNN for Facial Attribute Classification. In Proceedings
of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2069–2074.
[CrossRef]

15. Zhang, H.; Wang, X.; Zhu, J.; Kuo, C.-C.J. Fast Face Detection on Mobile Devices by Leveraging Global and Local Facial
Characteristics. Signal Process. Image Commun. 2019, 78, 1–8. [CrossRef]

16. Zhang, C.; Xu, X.; Tu, D. Face Detection Using Improved Faster RCNN. arXiv 2018, arXiv:1802.02142. [CrossRef]
17. Liu, X.; Zhang, S.; Hu, J.; Mao, P. ResRetinaFace: An Efficient Face Detection Network Based on RetinaFace and Residual Structure.

J. Electron. Imaging 2024, 33, 043012. [CrossRef]
18. Wibowo, M.E.; Ashari, A.; Subiantoro, A.; Wahyono, W. Human Face Detection and Tracking Using RetinaFace Network for

Surveillance Systems. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society,
Toronto, ON, Canada, 13–16 October 2021; pp. 1–5. [CrossRef]

http://doi.org/10.1007/s11227-021-03825-1
http://dx.doi.org/10.1109/ACCESS.2016.2606478
http://dx.doi.org/10.1109/COMPSAC48688.2020.0-132
https://opencv.org/about
http://dx.doi.org/10.1063/1.5133928
http://dx.doi.org/10.1109/ICCCNT61001.2024.10725897
https://ssrn.com/abstract=3356332
https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8791
https://ijcaonline.org/archives/volume177/number22/31027-2019919652/
https://ijcaonline.org/archives/volume177/number22/31027-2019919652/
http://dx.doi.org/10.1007/s12652-023-04624-7
http://www.ncbi.nlm.nih.gov/pubmed/37360778
http://dx.doi.org/10.2298/CSIS221218032H
http://dx.doi.org/10.1109/ACCESS.2019.2899940
http://dx.doi.org/10.1007/s00521-019-04311-9
http://dx.doi.org/10.1109/ICPR.2018.8545271
http://dx.doi.org/10.1016/j.image.2019.05.016
http://dx.doi.org/10.48550/arXiv.1802.02142
http://dx.doi.org/10.1117/1.JEI.33.4.043012
http://dx.doi.org/10.1109/IECON48115.2021.9589577

Electronics 2025, 14, 608 23 of 25

19. Hu, J.; Hou, J.; Chen, Y.; Li, W.H.; Shi, D.H.; Yi, J.; Huang, X.L. Rapid Face Detection in Complex Environments Based on the
Improved RetinaFace. In Proceedings of the ACM Conference; Association for Computing Machinery: New York, NY, USA, 2023;
ISBN 9781450397933. [CrossRef]

20. Thottempudi, P. Face Detection and Recognition Through Live Stream. In Sustainable Science and Intelligent Technologies for Societal
Development; Mishra, B., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2023; pp. 167–177. [CrossRef]

21. Chauhan, R.; Dhyani, I.; Vaidya, H. A Review on Human Pose Estimation Using Mediapipe. In Proceedings of the 2023 3rd
International Conference on Innovative Sustainable Computational Technologies (CISCT), Dehradun, India, 8–9 September 2023;
pp. 1–6. [CrossRef]

22. Dewi, C.; Manongga, D.; Hendry; Mailoa, E.; Hartomo, K.D. Deep Learning and YOLOv8 Utilized in an Accurate Face Mask
Detection System. Big Data Cogn. Comput. 2024, 8, 9. [CrossRef]

23. Vemulapalli, N.S.; Paladugula, P.; Prabhat, G.S.; Abhishek, S.; Anjali, T. Face Detection with Landmark Using YOLOv8. In
Proceedings of the 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET),
Patna, India, 21–22 December 2023; pp. 1–5. [CrossRef]

24. Sohan, M.; Sai Ram, T.; Reddy, C.V.R. A Review on YOLOv8 and Its Advancements. In Data Intelligence and Cognitive Informatics;
Jacob, I.J., Piramuthu, S., Falkowski-Gilski, P., Eds.; Springer: Singapore, 2024; pp. 1–10. [CrossRef]

25. Vasantha, S.V.; Kiranmai, B.; Hussain, M.A.; Hashmi, S.S.; Nelson, L.; Hariharan, S. Face and Object Detection Algorithms
for People Counting Applications. In Proceedings of the 2023 2nd International Conference on Automation, Computing and
Renewable Systems (ICACRS), Pudukkottai, India, 11–13 December 2023; pp. 1188–1193. [CrossRef]

26. Ansy, S.N.; Bilal, E.A.; Neethu, M.S. Emotion Recognition Through Facial Expressions from Images Using Deep Learning
Techniques. In Data Science and Applications; Nanda, S.J., Yadav, R.P., Gandomi, A.H., Saraswat, M., Eds.; Lecture Notes in
Networks and Systems; Springer: Singapore, 2024; Volume 819, pp. 25–36. [CrossRef]

27. Li, S.Z. Face Detection. In Handbook of Face Recognition; Springer: New York, NY, USA, 2005; pp. 47–84. [CrossRef]
28. Ghadekar, P.; Pradhan, M.R.; Swain, D.; Acharya, B. EmoSecure: Enhancing Smart Home Security With FisherFace Emotion

Recognition and Biometric Access Control. IEEE Access 2024, 12, 93133–93144. [CrossRef]
29. Ho, H.T.; Nguyen, L.V.; Le, T.H.T.; Lee, O.J. Face Detection Using Eigenfaces: A Comprehensive Review. IEEE Access 2024, 12,

118406–118426. [CrossRef]
30. Cardona-Pineda, D.S.; Ceballos-Arias, J.C.; Torres-Marulanda, J.E.; Mejia-Muñoz, M.A.; Boada, A. Face Recognition—Eigenfaces.

In Handbook on Decision Making: Volume 3: Trends and Challenges in Intelligent Decision Support Systems; Zapata-Cortes, J.A.,
Sánchez-Ramírez, C., Alor-Hernández, G., García-Alcaraz, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2023;
pp. 373–397. [CrossRef]

31. Pienaar, J.P.; Fisher, R.M.; Hancke, G.P. Smartphone: The Key to Your Connected Smart Home. In Proceedings of the 2015 IEEE
13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 999–1004. [CrossRef]

32. Ahonen, T.; Hadid, A.; Pietikäinen, M. Face Recognition with Local Binary Patterns. In Computer Vision—ECCV 2004; Pajdla, T.,
Matas, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3021, pp. 469–481.
[CrossRef]

33. Pietikäinen, M. Local Binary Patterns. Scholarpedia 2010, 5, 9775. [CrossRef]
34. Ahonen, T.; Matas, J.; He, C.; Pietikäinen, M. Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier

Features. In Image Analysis; Salberg, A.B., Hardeberg, J.Y., Jenssen, R., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5575, pp. 62–71. [CrossRef]

35. Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Local Binary Patterns for Still Images. In Computer Vision Using Local Binary
Patterns; Computational Imaging and Vision; Springer: London, UK, 2011; Volume 40, pp. 13–30. [CrossRef]

36. Cai, C. Utilizing Multi-Task Cascaded Convolutional Networks and ResNet-50 for Face Identification Tasks. Master’s Thesis,
University of Northern British Columbia (UNBC), Prince George, BC, Canada, 2021. Available online: https://unbc.arcabc.ca/
islandora/object/unbc%3A59248 (accessed on 27 November 2024).

37. Sampaio, E.V.B.; Lévêque, L.; Perreira da Silva, M.; Le Callet, P. Are Facial Expression Recognition Algorithms Reliable in the
Context of Interactive Media? A New Metric to Analyse Their Performance. In Proceedings of the EmotionIMX: Considering
Emotions in Multimedia Experience (ACM IMX 2022 Workshop), Aveiro, Portugal, 22 June 2022. Available online: https:
//hal.archives-ouvertes.fr/hal-03789571 (accessed on 27 November 2024).

38. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823.
[CrossRef]

39. William, I.; Ignatius Moses Setiadi, D.R.; Rachmawanto, E.H.; Santoso, H.A.; Sari, C.A. Face Recognition Using FaceNet (Survey,
Performance Test, and Comparison). In Proceedings of the 2019 Fourth International Conference on Informatics and Computing
(ICIC), Semarang, Indonesia, 16–17 October 2019; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1145/3573834.3574552
http://dx.doi.org/10.4018/979-8-3693-1186-8.ch010
http://dx.doi.org/10.1109/CISCT57197.2023.10351240
http://dx.doi.org/10.3390/bdcc8010009
http://dx.doi.org/10.1109/ICEFEET59656.2023.10452204
http://dx.doi.org/10.1007/978-981-99-7962-2_39
http://dx.doi.org/10.1109/ICACRS58579.2023.10405114
http://dx.doi.org/10.1007/978-981-99-7820-5_3
http://dx.doi.org/10.1007/0-387-27257-7_2
http://dx.doi.org/10.1109/ACCESS.2024.3423783
http://dx.doi.org/10.1109/ACCESS.2024.3435964
http://dx.doi.org/10.1007/978-3-031-08246-7_16
http://dx.doi.org/10.1109/INDIN.2015.7281871
http://dx.doi.org/10.1007/978-3-540-24670-1_36
http://dx.doi.org/10.4249/scholarpedia.9775
http://dx.doi.org/10.1007/978-3-642-02230-2_7
http://dx.doi.org/10.1007/978-0-85729-748-8_2
https://unbc.arcabc.ca/islandora/object/unbc%3A59248
https://unbc.arcabc.ca/islandora/object/unbc%3A59248
https://hal.archives-ouvertes.fr/hal-03789571
https://hal.archives-ouvertes.fr/hal-03789571
http://dx.doi.org/10.1109/CVPR.2015.7298682
http://dx.doi.org/10.1109/ICIC47613.2019.8985786

Electronics 2025, 14, 608 24 of 25

40. He, M.; Zhang, J.; Shan, S.; Kan, M.; Chen, X. Deformable Face Net for Pose Invariant Face Recognition. Pattern Recognit. 2020,
100, 107113. [CrossRef]

41. Cahyono, F.; Wirawan, W.; Rachmadi, R.F. Face Recognition System Using FaceNet Algorithm for Employee Presence. In
Proceedings of the 2020 4th International Conference on Vocational Education and Training (ICOVET), Malang, Indonesia,
19 September 2020; pp. 57–62. [CrossRef]

42. King, D.E. Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. Available online: http://jmlr.org/
papers/v10/king09a.html (accessed on 27 November 2024).

43. Boyko, N.; Basystiuk, O.; Shakhovska, N. Performance Evaluation and Comparison of Software for Face Recognition, Based on
Dlib and Opencv Library. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing
(DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 478–482. [CrossRef]

44. Xu, M.; Chen, D.; Zhou, G. Real-Time Face Recognition Based on Dlib. In Innovative Computing; Springer: Singapore, 2020; p. 177.
[CrossRef]

45. Suwarno, S.; Kevin, K. Analysis of Face Recognition Algorithm: Dlib and OpenCV. J. Inform. Technol. Eng. Sci. 2020, 4, 1.
[CrossRef]

46. Mohanty, S.; Hegde, S. V.; Prasad, S.; Manikandan, J. Design of Real-time Drowsiness Detection System using Dlib. In Proceedings
of the 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Bangalore, India, 15–16
November 2019; Volume 1–4. [CrossRef]

47. Murat, K.; Topyła, D.; Zdulski, K.; Marz̨ecki, M.; Bieniasz, J.; Paczesny, D.; Szczypiorski, K. Security Analysis of Low-Budget IoT
Smart Home Appliances Embedded Software and Connectivity. Electronics 2024, 13, 2371. [CrossRef]

48. Kim, S.; Bang, J.; Shon, T. Forensic Analysis for Cybersecurity of Smart Home Environments with Smart Wallpads. Electronics
2024, 13, 2827. [CrossRef]

49. Shah, K.; Jadav, N.K.; Tanwar, S.; Singh, A.; Ples, C.; Alqahtani, F.; Tolba, A. AI and Blockchain-Assisted Secure Data-Exchange
Framework for Smart Home Systems. Mathematics 2023, 11, 4062. [CrossRef]

50. Wang, Z.; Liu, X.; Shao, X.; Alghamdi, A.; Alrizq, M.; Munir, M.S.; Biswas, S. An Optimized and Scalable Blockchain-Based
Distributed Learning Platform for Consumer IoT. Mathematics 2023, 11, 4844. [CrossRef]

51. Rahim, A.; Zhong, Y.; Ahmad, T.; Ahmad, S.; Pławiak, P.; Hammad, M. Enhancing Smart Home Security: Anomaly Detection and Face
Recognition in Smart Home IoT Devices Using Logit-Boosted CNN Models. Sensors 2023, 23, 6979. [CrossRef] [PubMed]

52. Asghar, I.; Khan, M.A.; Ahmad, T.; Ullah, S.; Mansoor ul Hassan, K.; Buriro, A. Fortifying Smart Home Security: A Robust and
Efficient User-Authentication Scheme to Counter Node Capture Attacks. Sensors 2023, 23, 7268. [CrossRef]

53. Ashibani, Y.; Kauling, D.; Mahmoud, Q.H. Design and Implementation of a Contextual-Based Continuous Authentication
Framework for Smart Homes. Appl. Syst. Innov. 2019, 2, 4. [CrossRef]

54. Wang, J.; Amos, B.; Das, A.; Pillai, P.; Sadeh, N.; Satyanarayanan, M. Enabling Live Video Analytics with a Scalable and
Privacy-Aware Framework. ACM Trans. Multimed. Comput. Commun. Appl. 2018, 14, 64. [CrossRef]

55. Cavailaro, A. Privacy in Video Surveillance [In the Spotlight]. IEEE Signal Process. Mag. 2007, 24, 166–168. [CrossRef]
56. Malm, S.; Rönnbäck, V.; Håkansson, A.; Le, M.; Wojtulewicz, K.; Carlsson, N. RAD: Realistic Anonymization of Images Using

Stable Diffusion. In Proceedings of the 23rd Workshop on Privacy in the Electronic Society (WPES ’24), New York, NY, USA,
14–18 October 2024; pp. 193–211. [CrossRef]

57. Kim, T.; Yang, J. Selective Feature Anonymization for Privacy-Preserving Image Data Publishing. Electronics 2020, 9, 874.
[CrossRef]

58. Karie, N.M.; Sahri, N.M.; Yang, W.; Valli, C.; Kebande, V.R. A Review of Security Standards and Frameworks for IoT-Based Smart
Environments. IEEE Access 2021, 9, 121975–121995. [CrossRef]

59. Greengard, S. Internet of Things. Encyclopedia Britannica, 1 October 2024. Available online: https://www.britannica.com/science/
Internet-of-Things (accessed on 31 October 2024).

60. Sudakov, O.; Malenko, A. Realistic Mathematical Model of Passive Infrared Sensor’s Signal. In Proceedings of the 2019 10th
IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), Metz, France, 18–21 September 2019; pp. 757–760. [CrossRef]

61. Viola, P.; Jones, M. Rapid Object Detection Using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December 2001; Volume I, p. I.
[CrossRef]

62. Thakurdesai, N.; Raut, N.; Tripathi, A. Face Recognition Using One-Shot Learning. Int. J. Comput. Appl. 2018, 182, 35–39.
[CrossRef]

63. Ageitgey, A. Face_recognition. Available online: https://github.com/ageitgey/face_recognition?tab=MIT-1-ov-file (accessed on
19 November 2024).

64. Kazemi, V.; Sullivan, J. One Millisecond Face Alignment with an Ensemble of Regression Trees. In Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1867–1874. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2019.107113
http://dx.doi.org/10.1109/ICOVET50258.2020.9229888
http://jmlr.org/papers/v10/king09a.html
http://jmlr.org/papers/v10/king09a.html
http://dx.doi.org/10.1109/DSMP.2018.8478556
http://dx.doi.org/10.1007/978-981-15-5959-4_177
http://dx.doi.org/10.31289/jite.v4i1.3865
http://dx.doi.org/10.1109/WIECON-ECE48653.2019.9019910
http://dx.doi.org/10.3390/electronics13122371
http://dx.doi.org/10.3390/electronics13142827
http://dx.doi.org/10.3390/math11194062
http://dx.doi.org/10.3390/math11234844
http://dx.doi.org/10.3390/s23156979
http://www.ncbi.nlm.nih.gov/pubmed/37571762
http://dx.doi.org/10.3390/s23167268
http://dx.doi.org/10.3390/asi2010004
http://dx.doi.org/10.1145/3209659
http://dx.doi.org/10.1109/MSP.2007.323270
http://dx.doi.org/10.1145/3689943.3695048
http://dx.doi.org/10.3390/electronics9050874
http://dx.doi.org/10.1109/ACCESS.2021.3109886
https://www.britannica.com/science/Internet-of-Things
https://www.britannica.com/science/Internet-of-Things
http://dx.doi.org/10.1109/IDAACS.2019.8924246
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.5120/ijca2018918032
https://github.com/ageitgey/face_recognition?tab=MIT-1-ov-file
http://dx.doi.org/10.1109/CVPR.2014.241

Electronics 2025, 14, 608 25 of 25

65. Sagonas, C.; Antonakos, E.; Tzimiropoulos, G.; Zafeiriou, S.; Pantic, M. 300 Faces In-The-Wild Challenge: Database and Results.
Image Vis. Comput. 2016, 47, 3–18. [CrossRef]

66. Li, J. LFW Dataset. Available online: https://www.kaggle.com/datasets/jessicali9530/lfw-dataset (accessed on 24 January 2025).
67. Ryngaert, C.; Taylor, M. The GDPR as Global Data Protection Regulation? AJIL Unbound 2020, 114, 5–9. [CrossRef]
68. Edemekong, P.F.; Annamaraju, P.; Afzal, M.; Hydel, M.J. Health Insurance Portability and Accountability Act (HIPAA) Compliance.

In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/
books/NBK500019/ (accessed on 24 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.imavis.2016.01.002
https://www.kaggle.com/datasets/jessicali9530/lfw-dataset
http://dx.doi.org/10.1017/aju.2019.80
https://www.ncbi.nlm.nih.gov/books/NBK500019/
https://www.ncbi.nlm.nih.gov/books/NBK500019/

	Introduction
	Related Work
	Face Detection Algorithms and Libraries
	Face Recognition Models
	Security Vulnerabilities and Privacy in Smart Home AI
	Privacy Concerns and Mitigation Strategies for Home Security Cameras
	Encryption Standards
	Anonymization Techniques
	Compliance with Regulations Such as ENISA/ETSI

	The Proposed Security Model
	IoT Technology
	PIR Sensor
	Camera

	AI-Driven Video Processing
	Facial Recognition
	Information Delivery
	Risk Evaluation of Using Google Drive to Store Sensitive Data

	Security System App
	Results
	Hardware
	Experimental Procedure
	AI Processing
	Quantitative Analysis of the Face Recognition System
	Notification and Information Delivery

	Discussion
	Conclusions and Future Work
	Conclusions
	Future Work

	References

