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Abstract: Mechanically scanning LiDAR imaging sensors are abundantly used in appli-
cations ranging from basic safety assistance to high-level automated driving, offering
excellent spatial resolution and full surround-view coverage in most scenarios. However,
their complex optomechanical structure introduces limitations, namely limited mounting
options and blind zones, especially in elongated vehicles. To mitigate these challenges, we
propose a distributed Time-of-Flight (ToF) sensor system with a flexible hardware–software
architecture designed for multi-sensor synchronous triggering and fusion. We formalize the
sensor triggering, interference mitigation scheme, data aggregation and fusion procedures
and highlight challenges in achieving accurate global registration with current state-of-the-
art methods. The resulting surround view visual information is then applied to Spiking
Neural Network (SNN)-based object detection and probabilistic occupancy grid mapping
(OGM) for enhanced environmental awareness. The proposed system is demonstrated on a
test vehicle, achieving coverage of blind zones in a range of 0.5–6 m with a scalable and
reconfigurable sensor mounting setup. Using seven ToF sensors, we can achieve a 10 Hz
synchronized frame rate, with a 360◦ point cloud registration and fusion latency below
40 ms. We collected real-world driving data to evaluate the system, achieving 65 % mean
Average Precision (mAP) in object detection with our SNN. Overall, this work presents a
replacement or addition to LiDAR in future high-level automation tasks, offering improved
coverage and system integration.

Keywords: time-of-flight; advanced driver-assistance system; global point cloud registra-
tion; spiking neural networks; system architecture; occupancy grid maps

1. Introduction
As one of the most widely used sensors in Autonomous Driving (AD), Light Detec-

tion And Ranging (LiDAR) sensors provide excellent spatial resolution in the form of 3D
point clouds. Compared to other sensors, LiDAR systems actively illuminate the scene,
producing enough rich details to detect obstacles solely on 3D point clouds [1]. Motor-
ized optomechanically scanning LiDAR is the most common, with single rotation axis or
even dual-axis systems [2]. However, the natural issues of the scanning process include
large gaps, narrow vertical view, slow scene updating and limited placement options
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on the vehicle [3]. Additionally, despite their active illumination, LiDAR systems remain
susceptible to challenging environmental conditions like sunlight, fog or rain, which can
introduce noise.

To address these challenges, non-mechanical flash LiDAR and ToF cameras are emerg-
ing as compelling alternatives [4]. Unlike mechanically scanning LiDARs, non-mechanical
sensors have no moving actuators or mirrors, which not only improves their durability
but also enables more versatile placement around larger vehicles, such as buses or trucks,
where scanning coverage and mounting flexibility are crucial [5]. However, implementing
a distributed sensor system introduces significant design challenges, including the need for
synchronous point cloud registration, increased complexity in in-vehicle software archi-
tecture, and the development of advanced computer vision algorithms for effective scene
analysis, among other issues.

Point cloud registration from multiple sensors involves aligning and merging data
from different partial views of the environment into a unified 3D model. The latest advance-
ments employ feature-based matching and registration, identifying distinct geometrical
features in overlapping regions of the point clouds [6]. The resulting surround depth
information is critical for many computer vision and scene analysis applications, including
3D object detection [7]. While Artificial Neural Networks (ANNs) are effective in learning
complex spatial features in point cloud data, they can be computationally expensive, espe-
cially when deployed in real-time environments where energy efficiency, processing speed,
and latency are critical factors, including applications such as autonomous vehicles and
robotics [8].

Meanwhile, SNNs are attracting attention for energy-efficient object detection and
decision-making [9,10]. Their inherent ability to operate asynchronously aligns well with
real-time object detection, where incoming data streams are often irregular, as seen with
point cloud data from LiDAR and ToF sensors.

Altogether, the autonomous vehicle is an intricate software-guided application that
uses computer vision, sensors, data fusion, information communication, high-performance
computing, artificial intelligence, real-time control, and other technologies [11]. Moreover,
machine vision, which is the key entry point of AD software, must address safety-aware
design principles supporting systems ranging from Level 2+ to Level 5 fully autonomous
driving, as classified by the Society of Automotive Engineers (SAE) J3016 standard [12].

The aim of this work is to provide a coherent AD-suitable perception system archi-
tecture based on distributed non-scanning ToF sensors. Unlike many existing long-range,
low-resolution scanning LiDAR systems, we focus on a close-range, high-resolution, and
flexibly mountable sensor system designed for blind zone monitoring.

The remainder of the paper is structured as follows. Section 2 details the key topics
discussed in the introduction, highlighting technical aspects ranging from safety to sensor
working principles and algorithms. Section 3 describes the overall system architecture and
essential implementation details. Section 4 introduces the experimental setup and provides
result analysis for the system’s performance, point cloud registration, and object detection.
Finally, Section 6 summarizes the conclusions.

2. Literature Review
2.1. Assisted and Automated Driving

AD systems must comply with a set of challenges, including design complexity, safety
mechanisms, evolving standards, cyber-security, etc. The impactful ISO26262 standard [13]
documents these safety aspects and defines the Automotive Safety Integrity Levels (ASILs)
by specifying requirements for the development process and consecutive safety measures.
However, achieving a true self-driving functionality, which conforms to the fourth and
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fifth levels of driving automation [12], still requires research at the component and system
levels. Furthermore, it requires user acceptance, for which the Advanced Driver-Assistance
System (ADAS) is a natural gateway.

The stringent safety requirements conflict with the experimental nature and goals
of the innovation process. For instance, the complexity of automotive electronic and
electrical systems compelled the industry to join forces and establish the Automotive Open
System Architecture (AUTOSAR) initiative [14]. AUTOSAR strives to simplify software
management while improving its flexibility, scalability, quality and integration. It structures
software similarly to an operating system: application (platform independent), basic
software (essentially platform implementation) and runtime environment (standardized
interface between application and basic software). Notably, AUTOSAR is a relatively
low-level industry standard.

Multiple frameworks and approaches are used for prototyping AD systems. Among
the most popular are the Robot Operating System (ROS) [15], which ensures software
reusability with a universal communication mechanism. Consequently, ROS2 has sig-
nificantly improved communication characteristics [16] and an impending approach for
real-time systems. ROS is also the basis for the world’s leading open-source autonomous
driving project—Autoware [17].

Notably, industry-driven all-encapsulating AD solutions have emerged as part of the
attempt to capitalize on the growing market, including solutions from major vendors like
Intel (Mobileye, full-stack solution based on EyeQ SoC), NXP (BlueBox extensible develop-
ment platform), NVIDIA (GPU-centric Drive platform) and others. These hardware-centric
solutions present an ever-growing ecosystem with evolving software and features. How-
ever, a significant drawback, especially for research purposes, is the software’s proprietary
nature and the eventual lack of support.

2.2. Photonic Depth Imaging Principles

Three-dimensional data are important for many robotics, safety, and other applica-
tions, and have led to the development of several different approaches for depth and 3D
structure estimation.

Classic stereoscopy approaches employ multiple regular cameras observing the same
scene, representing a cost-effective solution. Depth information is obtained by matching
and triangulating homologous points across stereo image frames. Feature-based matching
algorithms extract simple geometrical elements, such as lines and corners, and perform
matching between sets of such features. In contrast, correlation-based algorithms match
directly between image fragments, which results in much denser disparity maps but is more
computationally intensive and sensitive to intensity variations. The performance of both
methods depends on the scene and is significantly reduced in the absence of features or
textures. As a result, the disparity maps become sparser in such regions. Active stereoscopy
introduces additional features by projecting a pattern onto the scene [18].

Structured light depth sensors represent another approach to optical triangulation.
A simple structured light-ranging system consists of one camera and a laser source. The
laser beam is angled in such a way that the position of the projected dot, as observed
by the camera, depends on the distance to the object it is projected on. Structured light
camera sensors range the entire scene by projecting a two-dimensional pattern. To ensure
unambiguous correspondences, the pattern either varies in colour, changes over time, or is
spatially unique [18].

In contrast with triangulation, Time-of-Flight approaches allow for more direct dis-
tance measurement, which offers higher accuracy and is not dependent on the sensor’s
spatial resolution, which greatly improves precision consistency across the distance range.
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A simple ToF ranging system consists of two components—a laser and a photodetector. To
measure the distance to a certain object, a short laser pulse is emitted, which then travels
to the object, is reflected, travels back, and finally is observed by the photodetector. Due
to the finite speed of light propagation, a short delay between the emitted and observed
pulses is present, which is equal to the round trip time of the laser pulse. The distance d to
the object of interest can then be calculated as d = (c × ∆t)/2, where ∆t is the measured
time delay and c is the speed of light [19].

In order to aid the co-existence of ToF sensors with human agents, the emitted light is
outside of the range perceived by humans. Infrared wavelengths of 850 nm and 940 nm
are the ones commonly used. 940 nm roughly corresponds to a dip in the solar irradiance
spectrum. Therefore, sensors using this wavelength are intrinsically more robust in outdoor
environments. On the other hand, just as the dip is caused by light absorption by water
vapour, performance in humid conditions is also degraded. Another advantage of the
850 nm wavelength is the greater efficiency of the photodetectors. Thus, 850 nm ToF sensors
have the potential to perform better even in sunny conditions but require additional
attention to be paid to the ambient light rejection solutions [20].

To range beyond just a single point, LiDAR sensors introduce a third component—the
scanner—which diverts the laser to scan it across the whole scene. Automotive applica-
tions usually employ separate scanners for two axes, although in some use cases, even
one scanning axis might be sufficient. Depending on the scanning method, LiDARs are
classified as mechanical, solid-state, and quasi-solid-state. In mechanical sensors, scanning
is performed by moving the entire optical assembly. In quasi-solid-state sensors, most of
the components remain stationary and only the laser beam is deflected, which is achieved
using rotary mirrors or MEMS micromirrors. Finally, solid-state sensors have no moving
parts at all, which can be achieved by using an optical phased array to form the scanning
beam [5,19].

Another way of implementing a solid-state optical ranging sensor is to forgo sequential
scanning altogether and instead illuminate the entire scene at the same time. The reflected
light is then collected by an array of photodetectors, much like in a regular camera. This
type of sensor is commonly called the Time-of-Flight camera. It is also sometimes called
the Time-of-Flight sensor, which is somewhat confusing, since LiDARs also operate on
the Time-of-Flight principle. To add to the confusion, some manufacturers also use the
term Flash LiDAR to refer to essentially the same operating principle, although certain
solutions have claimed to use multiple focused laser beams to individually illuminate areas
corresponding to each pixel of the detector array, thus offering improved efficiency [20]. To
use the most common terminology, in this paper, the term “LiDAR” refers exclusively to
scanning ranging systems, while the terms “ToF camera” and “ToF sensor” are used for
solid-state sensors with full-scene illumination.

Scanning LiDAR is currently the most prevalent depth-sensing technology in assisted
and autonomous driving applications. It is featured in most of the contemporary au-
tonomous driving solutions, both those that are commercially available and those that are
under development. In the DARPA Grand Challenge and subsequent events—competitions
for fully autonomous ground vehicles—almost all of the vehicles that made it to the fin-
ish line were using at least one LiDAR [19]. ToF cameras offer several advantages over
scanning LiDAR sensors, which all stem from the simultaneous acquisition of the entire
scene. Their mechanical construction is much simpler, which reduces the cost and increases
robustness. Using indirect ToF measurement techniques, pixel size can be shrunk down,
increasing pixel density and sensor resolution. They do not suffer from motion blur caused
by sequential scanning, although they are not completely blur-free, as a single depth frame
usually requires several sub-frames [21]. ToF cameras also offer much greater freedom
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of sensor placement due to the reduced size and wide field of view that can be achieved
depending on the chosen lens. However, there are some additional considerations. Most
importantly, the sensor should not have any objects in close proximity due to the distortions
caused by strong reflected light [21].

In addition to LiDAR and ToF cameras, other sensing modalities such as ultrasonic
sensors have been explored for perception in autonomous vehicles. Ultrasonic rangefinders,
commonly used for close-range obstacle detection, have been proposed as complementary
systems to overcome certain limitations of LiDAR, particularly when it comes to detect-
ing small or low-reflectivity objects at close distances [22]. Furthermore, sensor fusion
techniques combining LiDAR with ultrasonic sensors and wheel speed encoders have
been investigated to improve the robustness of mobile robot navigation [23]. These hybrid
approaches leverage the strengths of different sensing technologies to reduce measure-
ment errors.

2.3. Surround-View Visual Awareness

Human perception mainly processes and enhances sensory information, enabling
individuals to sense, orient, and react quickly, accurately, and efficiently. However, certain
constraints limit human perceptual capacity when driving, posing significant risks to the
vehicle driver and other road users [24]. At high speeds, drivers experience a narrowed
field of vision, known as “tunnel vision”, which limits peripheral awareness, combined
with additional distractions on the road and unpredictable actions from other drivers and
pedestrians, and the physical limitations of the vehicles worsen the circumstances, leaving
critical areas, particularly vehicle blind spots, partially or entirely out of the driver’s view.
This is especially hazardous for drivers of large vehicles, such as trucks, for which extensive
blind zones can obscure nearby road users [25].

ADAS are developed to handle the limitations mentioned above by enriching driver
awareness and safety through data fusion from multiple sources, including automotive
imaging, LiDAR, radar, computer vision, and in-cabin notifications, providing drivers with
critical situational information and, depending on the system’s level, potentially taking
partial control of the vehicle to prevent or mitigate potential threats [26].

A surround view perception system functions as an informational assistance at SAE
Level 0 and as a critical cornerstone at SAE Level 2+, providing real-time environmental
representation around the vehicle through either a LiDAR or a combined set of 3D ToF
cameras [27], as shown in Figure 1.

(a) (b)
Figure 1. Pointcloud representation of the environment using (a) LiDAR or (b) multiple ToF cameras.

Point Cloud Registration

Each ToF camera in a surround view system operates within its coordinate system,
which means that a single spatial point appears at different relative distances from the
perspective of each camera, which complicates spatial perception for the driver, as shown
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in Figure 2a, where the blue and yellow points represent the same physical points observed
from different perspectives that can be unified using a registration pipeline such as Deep
Global Registration (DGR) [28–30], where all points in both clouds are characterized by
descriptive features which are then matched to identify common correspondences, between
the pointclouds, that can be used to estimate the optimal transformation matrix to align
one pointcloud with another [31], as shown in Figure 2b.

(a) (b)
Figure 2. Point cloud pair registration: (a) Matched inlier correspondences (blue and brown points)
and (b) the aligned clouds after applying the estimated transformation matrix.

2.4. Environmental Representation

Regardless of perception type, there are multiple ways to represent the perceived
environment for both the ADAS and the user. The environment representation types can
be classified into several groups, namely raw point [32,33], feature-based [34–36], grid
map [37–40], and topological [41] representations.

Each representation has its strengths and drawbacks, and no single solution fits all
use cases [27]. Raw point representation includes all measurement points (of depth-based
sensors) but can have large storage requirements. Additionally, these points are susceptible
to noise without filtering. Semantic information can be included in raw point representation
(e.g., point colour) [42,43] to represent object types, which can improve readability for
human operators. Point representations are a commonly used input for modern object
detection algorithms, but can be harder to interpret for humans due to 3D information
usually being displayed in 2D. Combining points into larger, more meaningful objects like
planes, lines, or other distinct features can further increase readability for humans, which
enables the feature-based representations to be more understandable to humans. However,
these representations require more complex algorithms for use in path-finding or object
detection. Topological representations further abstract the environment by combining
sections of the environment into nodes (and storing the relation between these nodes). This
approach is useful for large-scale path planning but loses detailed information on nearby
road obstacles like other traffic participants. Grid maps discretize the environment into
small sections—cells—that contain information about the state of the environment in that
section. Grid representation can be used for object detection due to its voxelizing nature
and is especially suited for obstacle representation. The cells of the grid map can contain
information on cells’ affiliation with a certain type of object (semantics), but cells most
commonly represent the state of the environment in terms of occupancy—free, occupied,
or unknown. Hence, the name of the most widespread grid map type is the OGM. This
representation is straightforward and understandable for a human operator in an ADAS
visualization and is commonly used for path-planning algorithms.

The mechanics behind OGM generation are straightforward—store the state of a
section of the world in a grid structure, which can be displayed to the user and/or used to
avoid obstacles by ADAS or the user directly. The initial approach proposed in [37] stores
the value of occupancy as a probability p from 0 to 1, where 0 stands for certainly free and
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1—certainly occupied. However, absolute certainty is rare; therefore, certain thresholds can
be introduced, e.g., 0 ⩽ p ⩽ 0.2 is considered free and 0.8 ⩽ p ⩽ 1 is considered occupied.
The range in between these states is marked as unknown. To calculate the states of the cells,
generally, binary Bayes filter [44] is used with the cell initial value of 0.5 and the use of an
inverse sensor model [37]. There have been alternative approaches that implement Random
Finite Sets [45,46] to estimate the occupancy probability (p), but the main principle remains
the same: to increase the occupancy of cells where measurements are recorded. Free space,
on the other hand, is modelled on the assumption that space up to the measurement is
free. Otherwise, the measurement would have been recorded earlier. Due to inherently
noisy sensors, both free and occupied space is estimated using either inverse or forward
sensor models, but due to complexity issues, inverse sensor models are more common [44].
For ToF-based sensors (LiDAR, RADAR, etc.), ray tracing can be used to model each
measurement point—a ray from the origin of the sensor to each measurement point in the
point cloud is produced. Along each ray, tracing can be performed, where all cells that do
not contain a measurement or are crossed by a ray have their p decreased, while all cells at
the ends of rays have their p increased.

In this work, we adapt OGM representation for environment representation based on
multiple ToF sensors. The cell occupancy probability is updated with the aforementioned
binary Bayes filter for both occupied and free cells. ToF sensors are modelled similarly
to LiDAR sensors, with an inverse sensor model. The resulting representation can then
be used to notify vehicle users of obstacles in their blind zones as part of ADAS or for
re-planning a path in case of obstacles for AD vehicles.

2.5. Current Advances in Deep Learning for LiDAR and ToF Sensors

Data-driven deep learning (DL) models, particularly convolutional neural networks
(CNNs) and, more recently, graph neural networks (GNN) and transformer-based architec-
tures, have been employed to extract complex features from sparse point clouds with high
accuracy [1,47]. Recently, autonomous driving has led to significant advancements in 3D
object detection, supported by numerous publicly available scanning LiDAR datasets such
as KITTI [48], nuScenes [49], and Waymo [50]. In contrast, datasets for solid-state flash
LiDAR and non-scanning ToF sensors in the automotive domain are far less common, with
notable examples including PixSet [51], PandaSet [52] and SimoSet [53].

Despite the limited availability of solid-state flash LiDAR and ToF datasets, many
existing 3D object detection methods designed for traditional LiDAR can still be adapted to
these sensor types. Techniques such as point cloud-based deep learning models, including
PointPillars [54] and PV-RCNN [55], can be retrained on ToF or flash LiDAR data with
minimal modifications. For instance, PV-RCNN was successfully retrained on the PandaSet
non-scanning LiDAR dataset [52]. Compared to state-of-the-art LiDAR systems, the pro-
posed non-scanning ToF approach offers key advantages in terms of latency, scalability,
and simpler integration than mechanical LiDAR, making it better suited for distributed
perception systems.

Existing deep neural networks achieve supreme accuracy, but converting point cloud
data into structured formats often results in significant data explosion. Additionally,
conventional DNN computations rely on dense multiply-accumulate (MAC) operations,
which are poorly suited for processing the inherently sparse ToF data. In contrast, human
vision-inspired neuromorphic computing captures, transmits, and processes stereo visual
information in discrete spikes, maintaining low data volumes [56]. Inspired by this efficient
approach, prior research on 3D SNN object detectors [57,58] and segmentation [59] has
utilized the KITTI Vision benchmark dataset with scanning LiDAR to explore more data-
efficient solutions. Moreover, recent advancements in direct-coupled solutions [56] are
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integrating neuromorphic computing with indirect Time-of-Flight (iToF) SPAD imaging
sensors and direct Time-of-Flight (dToF) [60]. These early prototypes demonstrate 3D
object classification and detection using efficient integrate-and-fire (IF) neurons within a
five-layer spiking convolutional neural network (SCNN). Although promising, complex
3D feature extraction requires deeper networks with more advanced adaptive-threshold
leaky integrate-and-fire (LIF) neurons to handle diminishing activity in deep hidden layers
and achieve higher accuracy [61].

In this work, we build on previous research [57,62] by adapting the described frame-
work for 3D object detection using ToF data. This approach incorporates adaptive LIF
neurons, which are crucial for maintaining stable network activity throughout deeper
layers, thereby preventing the diminishing activity often observed in conventional SNN
architectures and enabling high accuracy in object detection tasks, specifically on ToF sensor
data. This approach extends the application of neuromorphic techniques to ToF-based
perception systems, offering a more accurate SNN for reliable and power efficient AD
software architectures.

3. System Architecture and Implementation
3.1. Software Architecture

Enabling topological experimentation and simultaneously addressing the require-
ments of safety criticality and real-time control presents a substantial challenge. Although
the popular ROS framework [15] provides topological flexibility, i.e., a blackboard software
design pattern, it does not satisfy any real-time requirements or process synchronization
and also demands significant resources [63], hindering the deployment of the percep-
tion system. The limitations of ROS facilitated workarounds and an eventual ground-up
redesign, i.e., ROS2 [16]. ROS2 incorporates major advancements, including improved
communications, extended support for different operating systems, more coherent imple-
mentation, and better support for embedded systems. However, both frameworks are quite
complex, with a relatively large codebase, spawning at least five threads per process node
(except the master node in ROS1) [63].

The perception system adopts a custom non-ROS-based approach, addressing the
real-time performance requirements while providing fine-grained control and simplic-
ity. The strategy is based on the following in-house low-level system architecture
implementation frameworks.

• compage [64] is a framework for implementing component-based system architecture.
The framework provides a means of “registering” standardized software compo-
nents, which can be instantiated and configured via simple configuration files (no
re-compilation necessary). The framework is efficient, has a lightweight codebase with
minimal dependencies, and is compatible with C and C++.

• icom [65] is a complementary framework that provides abstract routines for the imple-
mentation of different Inter-Process Communication (IPC) techniques. icom enables a
set of features, including non-invasive switching between different underlying com-
munication mechanisms, zero-copy communication (currently supported only for
multithreaded, single-process scenarios), and acknowledgments.

• rtclm [66] is a framework for real-time control-loop monitoring. The tool facilitates the
aggregation of performance metrics for software loops in real-time control systems.
The code inside these loops (embedded within the software components) emits mini-
malistic packages over a UDP communications protocol aggregated and stored by a
server, often deployed on a separate machine to minimize interference. The collected
performance metrics are available via a shared memory IPC mechanism, which is
usable for real-time visualization, fault monitoring and alarm generation.
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Figure 3 illustrates the overall software architecture of the proposed perception system.
Every node represents a compage component, while intra-process communication is imple-
mented using icom. The whole system (i.e., parameters, number and type of components,
communication) can be configured using a simple .ini file. Here, frame grabbers receive
data from different ToF sensor camera types. These nodes can be substituted with “fake”
camera components that replay pre-recorded data for simulation and testing. Further, each
3D point cloud is processed separately using spatial transformation nodes. Transformed
3D data are further registered into a single-coordinate system while executing a runtime
registration fidelity check. If the camera configuration has changed, the runtime calibration
node attempts to calculate a new configuration for the transformations. Finally, the regis-
tered data are provided to conventional (CNN) and modern (SNN) inference nodes and
an environment representation block, which converts 3D data into a grid map handoff for
further collision avoidance and path-planning algorithms.
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Figure 3. Software architecture of the 360-degree full-surround perception system. Note that most
boxes represent processes with shared memory space (threads); therefore, zero-copy transfers are
used where possible.

The modular and configurable software architecture enables external connections
anywhere between the different nodes using TCP/IP-based communication. Nonetheless,
the system generates multiple streams of data.

• Joined (registered) 3D point cloud—can be used for an intuitive display of the vehicle’s
surroundings. In our setup, this information directly streams into the GUI.

• Per-frame list of detected objects—can be used to enhance the surrounding display and
implement safety-critical functionalities. Notably, if the inference server is deployed
on a computationally weaker machine, frames may be dropped out.

• Two-dimensional Occupancy Grid Map—provides a 2D representation of the sur-
rounding environment. It can be used for safety-critical functionalities and by path-
planning algorithms.

• System’s component execution monitoring information—data characterizing the sys-
tem’s node performance, which is provided via a shared memory mechanism. The
information can be used for overall performance monitoring and fault detection. For
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example, it is possible to detect component performance degradation and, consequen-
tially, detect faults.

3.2. Synchronous Triggering and Frame Grabbing

Since ToF sensors are active devices that provide their own scene illumination, si-
multaneous operation of multiple sensors in the same area is likely to cause interference.
Manufacturers of both sensors used in the system have taken different steps to mitigate
this issue. Monstar cameras employ Spread Spectrum Clock (SSC) technology, which
continuously shifts the modulation frequencies over time, thus minimizing the probability
of several sensors that share the same frequency [67]. Blaze cameras are synchronized using
the Precision Time Protocol (PTP), and can operate in either interleaved or consecutive
acquisition modes. In the interleaved mode, a slight acquisition delay is inserted for one of
the sensors so that only one sensor is illuminating the scene at any given time. This mode
allows for simultaneous operation but only supports up to two sensors. Alternatively,
in the consecutive mode, each sensor begins acquisition only after the previous one has
completed its cycle. This way, there is no limit on the number of sensors at the cost of
reduced frame rate [68]. If the sensors are not in the same network, it is also possible to
assign each sensor to one of the seven frequency channels that do not interfere with each
other [69].

To achieve seamless stitching of individual point clouds, simultaneous data acquisition
between the sensors must be ensured. Sensor synchronization can be achieved using the
external trigger input, and both of the sensors used here provide such a capability. As
previously described, simultaneous operation of active sensors can be non-trivial and prone
to interference. Interference techniques vary between manufacturers, may depend on the
number of cameras, and may not perform equally well in all conditions. Some of the
issues encountered during testing are further described in Section 4.1. Evidently, truly
synchronous acquisition may not always be achievable; nevertheless, the stitching results
can still be enhanced by improving acquisition consistency.

The triggering system providing the necessary flexibility, implemented in pro-
grammable logic to ensure consistent deterministic behavior, is shown in Figure 4. The
black arrows represent the flow of the trigger signal, which starts at the pulse generator. A
set of delay units offset the trigger pulse by different period for each of the cameras, thus
allowing a precisely controlled simultaneous or staggered sensor acquisition. Pulse shapers
are inserted after the delay units to ensure the necessary trigger pulse width. All of the
parameters are adjustable within the software through the configuration interface to allow
users to choose the desired frame rate and set the delay for a particular sensor family. The
configuration interface, drawn in purple, consists of configuration registers containing the
variables used by individual components and configuration logic to make the registers
externally accessible through a specific interface. In this system, a USB interface was used.

Pulse
generator

Delay

Pulse shaper

Pulse shaper

Pulse shaper

...

..
.

Configuration
logic

USB Interface
Camera 1

Camera 1

Camera n

...

Figure 4. Generalized multi-camera trigger timing scheme for offset trigger pulse generation.

3.3. Unified Surround-View Point Cloud

The presented system uses ToF cameras positioned in a circular arrangement in
clockwise or counterclockwise order, with overlapping fields of view between adjacent
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cameras to achieve surround-view spatial coverage of the environment. The layout can be
modeled as a directed graph as shown in Figure 5, where the nodes represent individual
cameras, each working within a local coordinate system, and the edges encode the rigid
transformations required to align neighboring pointcloud pairs.

Figure 5. End-to-end software architecture of point cloud registration from multi-scan input to
unified model.

Raw point clouds captured by the ToF cameras undergo a multi-stage preprocess-
ing pipeline to improve the data quality and computational efficiency. For each pair of
adjacent point clouds, the depth range is constrained to the minimum value observed
between the two clouds, eliminating distant points that fall outside the overlapping region
of interest, focusing computational resources on relevant spatial features, and minimizing
ambiguities during feature matching, as nonessential data points are excluded from align-
ment calculations. Voxelization is a technique that discretizes the 3D space into uniformly
sized volumetric grids. The points within each grid are averaged to produce a represen-
tative centroid, effectively reducing noise, outliers, and redundant measurements while
standardizing the density of the data.

A noteworthy challenge arises from the presence of ground surfaces, which often
introduce alignment artifacts, as the practical observations revealed that retaining such
surfaces led to erroneous registrations, where floor planes were incorrectly matched with
unrelated structural features in adjacent point clouds. The Random Sampling Consensus
(RANSAC) algorithm is used to detect and remove planar regions corresponding to the
ground, automatically or upon user input, by iteratively fitting planar models. RANSAC
isolates and eliminates these surfaces, minimizing misalignment risks. When passing the
pre-processed clouds to the DGR pipeline to compute transformation matrices between
adjacent camera pairs, DGR extracts high-dimensional geometric features from overlapping
regions. The correspondences are then used to estimate optimal rotation and translation
parameters, forming the active transformation matrix that changes the source pointcloud
coordinate system basis into the target basis. The estimated transformation matrices are
stored as edges in the directed graph, which encapsulates the spatial relationships between
all pairs of adjacent nodes.

A reference camera, typically the first in the sequence, is selected as the global coor-
dinate system to unify all local point clouds. Propagating across the entire set, all data
converge into a single coordinate system, a globally consistent 3D model, then the centroid
of all camera locations is computed and the main camera’s coordinate system is trans-
formed to the centroid at the ground level which is detected using the RANSAC algorithm,
as shown in Figure 6.
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Figure 6. A 360◦ point cloud of a garage with the origin at the centroid of the capturing ToF cameras.

3.4. Occupancy Grid-Based Environment Representation

The OGM representation is chosen in this work to combine data from multiple sensors
and inform the user of possible dangers or obstacles around the vehicle. Traditionally, a
LIDAR is used to generate the OGMs in the majority of cases because of its 360◦ coverage.
An example of this usecase is illustrated in Figure 7. However, due to the LIDAR mounting
location and its limited vertical field of view (FoV), there is a blind zone right next to the
vehicle, which can be multiple meters in diameter. Additional sensors are required to cover
blind spots close to the vehicle in this case. Using multiple ToF sensors can mitigate this
problem, due to the sensor placement and their wide vertical FoV. In addition to reducing
the blind zones around the vehicles, use of multiple sensors allows the system to view
obstacles in the environment from different angles, reducing the OGM cell uncertainty
regarding the space behind them and providing more information about the obstacle shape.
However, point clouds from multiple ToF sensors have to be transformed into a single
reference frame. Additionally, ray tracing from the origin to measurement points, which is
often used for calculating grid cell occupancy values, has to take into account the sensor’s
position and orientation with respect to the reference frame origin.

Figure 7. OGM generated from KITTI dataset LIDAR measurements.

The registration process described in Section 3.3 is used to determine the sensor’s
relative orientation and generate combined point clouds. OGM is then updated by the
measurements obtained from all sensors. The base for grid map representation framework
introduced in [70] is used, which allows creation of multiple layers of grids. One of these
layers is used to store the 2D occupancy values, while multiple other layers are used to
store intermediate values. A cell size of 10 cm is chosen, which represents a good balance
between memory requirements and environmental representation granularity. In this
work, the OGM update is split in two parts, but prior to the update, measurements are
filtered to remove points which are of no threat to the vehicle (those higher than the vehicle
or lower than the acceptable height relative to vehicle tires). After such filtering, any
occupied cell can be considered an obstacle regardless of its height, and the environment
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can be represented in 2D. Then, all cells containing measurements have their occupancy
probability increased by a binary Bayes filter update and their positions marked in an
intermediate layer. A decrease in occupancy probability is achieved with the same filter
update, but the cell selection is different. Ray tracing is used to traverse cells up to each
measurement point. At each cell, during this traverse, the cell index is cross-checked with
the intermediate layer, which contains all cells that had their occupancy increased in this
iteration. If a match is found, the current ray is terminated without updating the cell’s
value and the next one is started. This solves the issue of marking cells as free (in 2D
space) behind occupied cells or reduction of occupancy probability for cells containing
measurements by consecutive rays passing above or below said cell in 3D space. This
update process is repeated at each iteration (time step) for each sensor when new sensor
measurement data are received.

3.5. ToF Object Detection with DNN

In the realm of object detection, neural networks are integral to processing and inter-
preting sensor data. The PointPillars network is a notable architecture designed for efficient
3D object detection using LiDAR point cloud data. It segments the point cloud into vertical
columns, termed “pillars”, and employs PointNets [71] to learn representations of these
pillars. This approach enables the network to effectively handle the spatial structure of
point clouds, facilitating accurate object detection with minimal computing resources [54].
At the expanse of higher computing resources, even higher precision can be achieved with
PV-RCNN [55], which combines a voxel-based approach with point-based methods, adding
more distinctive point cloud features.

Pretrained PointPillars networks are originally trained on datasets such as KITTI,
which provides annotated LiDAR point clouds and corresponding RGB images. The KITTI
dataset is a benchmark in autonomous driving research, offering a diverse set of real-world
scenarios for training and evaluating detection algorithms. However, transitioning from
LiDAR to non-scanning ToF sensor data introduces challenges due to differences in sensor
operation. The ToF sensor captured depth information results in dense point clouds with
unique characteristics compared to LiDAR data. This discrepancy necessitates careful
consideration when applying models like PointPillars to ToF data.

To address these challenges, preprocessing steps are essential for aligning ToF data
with the input requirements of the PointPillars network. Techniques such as voxelization or
normalization can be employed to adjust the density and distribution of ToF point clouds,
making them more compatible with models trained on LiDAR data. This preprocessing
stage is crucial for maintaining detection accuracy when adapting neural networks across
different sensor modalities.

3.6. ToF Object Detection with SNN

The pipeline for our custom 3D spiking convolutional neural network (3D-SCNN)
depicted in Figure 8 involves spatiotemporally sparse ToF signal processing with convolu-
tional SNN algorithms. The resulting point-cloud processing pipeline performs efficient
information transmission and processing, overcoming conventional processing limitations
on graphical processors (GPUs). To facilitate non-rate-based spike encoding, the temporal
voxel coding (TVC) preprocessing step applies latency encoding on multiple ToF camera
outputs, combining them into a single, coherent data frame. This time-domain spike en-
coding improves information sparsity retention, which can be leveraged for processing
efficiency with specialized neuromorphic neural processing units (NPUs), such as the
Brainchip Akida [72] or custom FPGA accelerators.



Electronics 2025, 14, 1375 14 of 27

Temporal Voxel 
Coding (TVC)

3D-SCNN
Input Binary
Spike Time

Intervals

D
et

ec
tio

ns
 p

er
 c

la
ss

ToF Point Cloud
Registration

Output Binary
Spike Time

Intervals [pc, bx, by, bw, bl, bθ, c]
[pc, bx, by, bw, bl, bθ, c]

[pc, bx, by, bw, bl, bθ, c]

Figure 8. Temporal voxel coding (TVC) used in the point cloud processing pipeline. Continuous
point cloud space is downsampled into multiple time steps of discretized lattices for object detection
with 3D-SCNN.

Given the original continuous point cloud in the 3D space P = {(xi, yi, zi) | xi, yi, zi ∈ R},
we define the voxel grid as a discrete mapping of these points into a 3D lattice
V = {(xv, yv, zv) | xv, yv, zv ∈ Z}. The transformation from continuous space to voxel space
is given by

xv =

⌊
x − xmin

VSx

⌋
, yv =

⌊
y − ymin

VSy

⌋
, zv =

⌊
z − zmin

VSz

⌋
, (1)

where (xmin, ymin, zmin) and (xmax, ymax, zmax) define the bounding box of the original point
cloud and [VSx, VSy, VSz] is the voxel size. These bounding box values establish the
spatial limits of the voxel grid and influence the resolution of the voxelized representation.
Since the voxel size has particularly noticeable effects on the XY-plane resolution, the
bounding box extent is minimized wherever possible to balance computational efficiency
and spatial accuracy.

With this TVC representation, the network can process a small number of C × H ×W-
shaped bird’s-eye-view (BEV) pseudo-images per time step, significantly reducing compu-
tational costs. The number of time steps T are expressed as

T =
zmax − zmin

VSz
. (2)

Additionally, to efficiently utilize GPU parallel operations, the voxels are binned into
multiple channels C per time step using the following integer index:

tbin =

⌊
(z − zmin) mod VSz

Q

⌋
, Q =

VSz

C
, (3)

where Q is the quantization size of the channels and [T × C × H × W] is the resulting
discretized algebraic object shape.

The model processes pulse-encoded TVC information through sparse spike-based
convolution and neuronal thresholding units. We expand upon recent research [57,62] to
enable direct ToF data processing. The 3D-SCNN architecture employs interchangeable
convolutional network backbones with basic hardware-compatible topologies such as VGG
and ResNet. Instead of traditional activation functions, these layers use temporal multi-step
adaptive LIF neurons. Additionally, the backbone is coupled with a Single-Shot Detector
(SSD) head customized for latency-based information processing, which efficiently predicts
object geometric features and heading based on neuron spiking activity.
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4. Results
4.1. Experimental Setup

Two types of ToF sensors were used in the 360◦ perception system to achieve a
predetermined data rate in frames per second (FPS). Their key characteristics can be seen
in Table 1. During the measurement, when choosing between the quality of the obtained
data, frame rate, and sensing range, the MODE_9_10FPS_720 configuration was selected as
the optimal mode for the Pmd Pico Monstar [73] sensors. The Basler Blaze 101 [74] sensors,
which offer more flexible configuration options, were adjusted to match these settings as
closely as possible. Both sensors have different advantages and limitations. The Monstar
sensors provide a wider FoV but have a shorter range and operate at 850 nm part of the
spectrum, which is more affected by sunlight interference. In contrast, the Blaze 101 sensor
has a longer sensing range and operates at 940 nm, which corresponds to a spectral dip in
solar radiation, reducing interference. However, it has a narrower FoV. These trade-offs
were considered when assembling the system to balance coverage, range, and robustness
against interference.

Table 1. ToF camera characteristics during measurement.

Sensor FPS Range (m) Resolution FoV (H◦ × V◦) Wavelength (nm)

Pmd Pico Monstar [73] 10 0.5–6.0 352 × 287 100 × 85 850
Basler Blaze 101 [74] 10 0.3–10.0 640 × 480 67 × 51 940

The number of sensors was determined by modeling their respective FoV in a 3D
environment and obtaining sufficient overlap between them. An overview of the sensor
FoV overlap is displayed in Figure 9a. The goal to achieve at least a 10 % overlap in
sensor horizontal FoV was set to improve the point cloud registration process described
in Section 3.3. To minimize blind spots, two higher-resolution Basler sensors were placed
in critical areas where multiple sensor FoVs do not overlap sufficiently. For the mounting
of sensors on a physical vehicle, a frame was designed and produced using extruded
aluminium profiles (20 mm × 20 mm), which allowed for sensor placement modification
and adjustments to further reduce the blind spots around the vehicle. The resulting frame
with sensors installed is depicted in Figure 9b. KIA Soul was used as a test vehicle which
determined the frame size and sensor placement. The resulting frame dimensions are
1.89 m × 1.31 m and sensors are placed in the corners and in the middle of all side profiles
except for the front of the vehicle. All sensors are rotated 20◦ downwards, which provides
a balance between having too much measurement reflection from the vehicle body and
observing too much of the sky due to the wide vertical FoV of the sensor.

The connection diagram of the experimental setup is shown in Figure 9c. Due to
the interfaces for the sensor types being different, their trigger connections also differ.
Blaze 101 sensor triggering signals and power share the same 8-pin M12 (IEC 61076-2-109)
connector, while Monstar sensors require a separate 4-pin Molex SL connector (Mfr. No:
50-57-9404) used solely for triggering. Additionally, Blaze sensors require separate 24 V DC
power supplies, while Monstar sensors are powered through the USB 3.0 interface.

As described in Section 3.2, both camera manufacturers also employ different algo-
rithms for mitigating interference between multiple sensors. During testing, it was observed
that while the SSC algorithm used in Monstar cameras performed well for free-running
cameras, devices synchronized via an external trigger signal are much more susceptible
to interference, with as much as 10 % of the captured frames showing major artifacts.
However, as shown in Figure 10, image quality could be drastically improved by insert-
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ing a delay between trigger signals, with as little as 10 µs, enough to avoid interference
almost completely.

(a) (b)
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Figure 9. (a) Overview of modeled multiple ToF sensor FoV overlap; (b) 360-degree perception
system frame for installation on a test vehicle; (c) experimental setup hardware connection diagram.
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Figure 10. Percentage of frames with interference for different trigger delay value offsets between
cameras.

All of the reported performance measurements were conducted using a host data
collection and processing unit with Ubuntu 20.04 OS, Intel(R) Xeon W-2245 CPU @ 3.90 GHz
amd Quadro RTX 4000 GPU [75]. The data collection process for model evaluation was
conducted along a test route located in Riga, Teika district, and included a variety of urban
driving scenarios, including residential streets, intersections, and an enclosed parking
area to ensure a diverse dataset, encompassing different conditions and potential blind
zones. The enclosed parking location was particularly relevant for assessing the sensor’s
performance in low-light conditions and detecting pedestrians in occluded regions. The ToF
sensors continuously recorded depth data, which were accurately synchronized between all
of the sensors. The training and comparisons were performed using both proprietary and
publicly available datasets, such as KITTI LiDAR and Pandaset front-facing non-scanning
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LiDAR datasets [52]. These datasets provided a benchmark for evaluating the ToF sensor
data against widely used LiDAR-based perception models. The Pandaset non-scanning
LiDAR was relevant, since it more closely resembled ToF sensor data, which allowed for a
more direct comparison between the datasets, emphasizing the advantages and limitations
of ToF sensors in real-world scenarios.

4.2. Performance Analysis

Figure 11 shows the execution time of each component of the experimental setup in
milliseconds, averaged over 10,000 iterations. In total, 17 components have been used,
including 7 sensor–transformation pairs, an aggregator that combines the obtained data,
dynamic object inference module, and a visualizer to display the result. The grabber
module, which is responsible for reading sensor data with fixed FPS settings, is the most
time-consuming process, with an average execution time of 106.41 ms across all sensors.
The spatial transformation process, which converts sensor data into a common reference
frame, averages just 1.52 ms per frame. The Blaze sensors require a slightly longer 2.67 ms
processing time on average due to higher resolution, whereas the Monstar sensors require
a shorter 1.05 ms per transformation.
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Figure 11. Average execution time of components over 10,000 iterations.

The registration process, which acts as an aggregator, combines the point clouds from
all sensors into a unified space, ensuring that all incoming frames are combined only
when all sensors have provided their latest data. The average execution time of 38.65 ms
suggests that registration does not significantly add to the overall latency. Unlike fully
parallel execution, the system components operate in a synchronous pipeline, where each
stage waits for the previous step to respond with a notify signal before processing the
next frame. The zero-copy pointer sharing mechanism in the IPC reduces unnecessary
memory transfers and reduces latency. Overall, the results demonstrate the scalability of
the proposed system. The modular design ensures that additional sensors and processing
components can be integrated without significantly overloading the processing system.

The environment representation with OGM was developed as a separate component
for modularity; hence, it is evaluated separately. Due to the limited range of ToF sensors,
the usual OGM limitations of required memory and cell probability update count are not
the main limiting factors. Instead, processing and ray tracing the number of measurement
points (∼1.1 M for seven ToF sensors) becomes challenging. We analyzed the performance
in an enclosed space (see Figure 12a), which provided the most measurement points with
a good balance of ray-casting distance. The OGM size was set to 15 m × 15 m with the
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commonly used cell size of 10 cm × 10 cm. After preprocessing the point cloud to remove
the ground reflections and points high above the vehicle, approximately ∼350 k points
remain in our static scenario. The resulting OGM is displayed in Figure 12b. The occupancy
update for the resulting point cloud takes ∼89 ms on Intel® Xeon® CPU E3-1245 v6 @
3.70 GHz [76], with all measurements processed sequentially. To further improve the
performance, a point cloud voxelization can be used to decrease the size of the dense
point clouds produced by the ToF sensors, but the loss of precision should be investigated.
Additionally, generating a separate OGM for each sensor (in parallel) and combining them
into a single representation (e.g., max pooling occupancy value), could be explored for
further performance gains.

(a) (b)
Figure 12. Environment representation from multiple ToF sensor data—(a) combined point cloud
and (b) occupancy grid map (white—free, dark—occupied, gray—unknown).

4.3. Point Cloud Registration Analysis

The fidelity of the combined 360◦ point cloud is evaluated by analyzing the discrep-
ancies between direct and indirect transformation matrices, which are decomposed into
their constituent translation (x, y, z) and rotation (roll, pitch, yaw) parameters. Figure 13
illustrates this comparison, where the indirect transformation (derived via chained pairwise
registrations from Camera 6 to Camera 0) is represented in red, and the direct transfor-
mation (computed in a single step between Camera 6 and Camera 0) is shown in green.
Camera 0, the global coordinate system, is plotted in blue. Visual inspection of the red
(indirect) and green (direct) point clouds reveals observable misalignments, reflecting accu-
mulated registration errors across the sequential alignment process quantified in Table 2,
which compares the decomposed parameters of both transformations.

Table 2. Relative absolute error between directly and indirectly obtained registration matrices for the
last cloud to the first cloud transformation.

Direct Indirect RAE

Translation
X-Axis 1.26 m 1.04 m 0.17
Y-Axis 0.18 m 0.06 m 0.68
Z-Axis 0.57 m 0.48 m 0.17

Rotation
Roll 0.24 rad 0.21 rad 0.18
Pitch 0.93 rad 0.84 rad 0.09
Yaw 0.52 rad 0.45 rad 0.15
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Figure 13. Indirectly registered cloud from Camera 6 (in Red) vs. Directly registered one (in Green)
alongside the global target cloud from Camera 0 (in Blue).

The error metrics, calculated as the Relative Absolute Error (RAE) between these
values, highlight a significant drift in the Y-axis translation (0.68 m). This asymmetric prop-
agation of errors emphasizes the limitations of sequential pairwise alignment, particularly
in systems with closed-loop geometries, where minor registration inaccuracies compound
disproportionately.

4.4. Object Detection Analysis

The predictions with the 3D-SCNN model in recordings collected with ToF sensors
are depicted in Figure 14a. With the test vehicle located in the middle of the scene, it is
visible that the distributed sensor system could capture a 360 degree view and the object
detection model could distinguish pedestrians in vehicles’ blind zones. Input temporal
voxel coding was performed, taking the scene limits of 0 m to 50 m for the X axis, −25 m
to 25 m for the Y axis, and −2 m to 1 m for the Z axis. For optimal voxelization sizes
[VSx, VSy, VSz], the VSx, VSy and VSz were set to 0.5 m, 0.12 m, and 0.12 m, respectively.
VSz equally divides the space into five BEV cross-sections, while setting two channels C
per cross-section preserves detailed features without increasing the time step count. For
consistent comparison the same parameters were used on KITTI, Pandaset and collected
validation ToF datasets. Since the model was originally trained on LiDAR datasets, these
voxelization parameters were selected to suit the LiDAR range while also remaining well
suited for ToF data, which have a shorter range. Figure 14b depicts a point cloud from the
Pandaset front-facing LiDAR dataset used in training and predicted object bounding boxes.

(a) (b)
Figure 14. The 3D-SCNN object predictions: (a) on ToF data from multiple sensor fusion; (b) on a
Pandaset non-scanning LiDAR dataset scene.

The results of model training on different datasets are summarized in Table 3. For
comparison, the VGG-11 and VGG-13 models were trained separately on KITTI and Pan-
daset and then evaluated on both their respective training datasets and the collected ToF
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data. The goal was to assess their generalization ability across different sensor modalities.
Additionally, the models were compared against state-of-the-art LiDAR-based SNN percep-
tion models [58,62]. The KITTI-trained models performed well when evaluated on KITTI
itself, with VGG-13 achieving a higher mAP (75.3%) than VGG-11 (70.7%). However, when
they were tested on ToF data, a substantial performance drop was observed, especially
on VGG-11 (40.0% for VGG-11, 65.0% for VGG-13), highlighting the domain gap between
LiDAR-based KITTI data and ToF point clouds. This suggests that models trained solely
on LiDAR data struggle to adapt to the characteristics of ToF signals. In contrast, the
Pandaset-trained models demonstrated a more consistent performance across datasets.
The Pandaset-trained VGG-11 and VGG-13 achieved 69.0% and 71.0% mAP on Pandaset,
respectively. More importantly, they exhibited better transferability to ToF data (55.0% and
60.0%), suggesting that the front-facing non-scanning LiDAR in Pandaset is more similar to
ToF-based perception than the 360-degree KITTI LiDAR.

Although the prediction averages at around 35 FPS running on conventional GPU
even without dedicated NPU, the main intention of SNNs is to cut power consumption. For
instance, Quadro RTX 4000 utilizes 160W TDP, whereas the developed SNNs are designed
to run efficiently on specialized hardware. FPGAs such as the AMD Kintex UltraScale
consume no more than 13W, while neuromorphic NPUs like BrainChip operate at just 1W,
making them more suitable for low-power edge applications.

In complementary experiments, the combined Blaze 101 and Pico Monstar ToF camera
sensor 360 degree point clouds, which exceed one million points per frame compared to
around one hundred thousand points in the KITTI LiDAR dataset, can still be used with
pretrained networks for object detection, despite their inherent differences. The denser
ToF data provide a more detailed spatial representation; however, their higher density and
distinct noise characteristics introduce unique challenges when applying models originally
optimized for the sparser LiDAR data. Further discussed results are summarized in Table 3.
Using PV-RCNN, raw ToF data yielded an mAP of approximately (52%). Remarkably,
by applying a double voxelization preprocessing step—first with a voxel size of 0.005,
then with 0.01—the mAP improved to roughly (59%), suggesting that such preprocessing
can effectively mitigate the domain gap without requiring network retraining. Figure 15
depicts predictions for raw ToF pintcloud and preprocessed using double voxelization.
In contrast, the PointPillars network exhibited a decline in performance from an mAP of
about (17%) on the raw data to around (14%) after preprocessing. This disparity likely
reflects the different sensitivities of network architectures to voxel-based smoothing, where
the PV-RCNN architecture benefits from the enhanced structural representation of objects,
while the pillar-based representation in PointPillars might lose critical geometric details.
These findings indicate that carefully chosen preprocessing steps can enhance detection
precision for certain network architectures when transferring between sensor modalities.

Both the SNN and DNN model analyses indicate that achieving optimal performance
requires a larger, high-quality dataset specifically dedicated to ToF sensors. A potential
route for improvement is the development of simulated scenarios that accurately model
ToF sensor characteristics and combine them with real-world data for training. For the
SNN model, further refinements are needed to match the accuracy of conventional DNNs.
Exploring architectures such as spiking MS-ResNet [62] could enhance feature extraction
compared to the currently used VGG-based model. Additionally, integrating point-voxel
methods could improve spatial representation. Finally, deploying the model on dedicated
neuromorphic NPUs would allow for real-time operation with lower power consumption,
making the system more practical for system integration.
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(a) (b)
Figure 15. PV-RCNN object predictions in BEV: (a) on raw ToF data from multiple-sensor fusion.
(b) on voxelized ToF data from multiple-sensor fusion.

Table 3. Comparison of model parameters, sparsity, and mAP on different datasets.

Model Dataset Input # Params (M) Sparsity (%) mAP (%)

Related work—SNN
E-3DSNN [62] KITTI Voxel 8.5 - 84.10
Zhou et al. SNN [58] KITTI Voxel - - 68.27

Related work—ANN
PointPillar [54] KITTI Pillar 18 - 77.28
PV-RCNN [55] KITTI PV 50 - 83.61

This work—SNN

SVGG-11 (Trained on KITTI) KITTI TVC 12.8 55.73 70.7
ToF TVC 12.8 35.10 40.0

SVGG-13 (Trained on KITTI) KITTI TVC 13.1 63.67 75.3
ToF TVC 13.1 45.05 65.0

SVGG-11 (Trained on Pandaset) Pandaset TVC 12.8 50.26 69.0
ToF TVC 12.8 20.15 55.0

SVGG-13 (Trained on Pandaset) Pandaset TVC 13.1 42.15 71.0
ToF TVC 13.1 32.67 60.0

This work—ANN

PointPillar (Trained on KITTI)
ToF raw Pillar 18 - 17.45

ToF voxel Pillar 18 - 13.7

PV-RCNN (Trained on KITTI)
ToF raw PV 50 - 51.88

ToF voxel PV 50 - 59.02

4.5. Effects of Environmental Conditions

While the effects of adverse weather conditions on ToF sensors were not studied in
diverse driving conditions, preliminary tests and literature analysis were carried out to
determine the limitations of ToF sensors. From qualitative observations, it was deduced
that Pmd Pico Monstar ToF sensors were more susceptible to strong sunlight compared
to Basler Blaze 101 sensors, which, in addition to their lower working range, proved
to be poorly suited for outdoor use. Basler Blaze 101 ToF sensors, while still affected by
direct sunlight, showed a much lower reduction in usable measurement points compared to
indoor lighting (a 2–6% drop depending on the Sun’s orientation), and nighttime conditions.
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Tests in direct sunlight (from the front and back of the sensor) showed that while the quality
of the measurement point clouds was reduced in the sunlight, pedestrians could still be
recognized, as depicted in Figure 16.

(a) (b)
Figure 16. Basler Blaze 101 sensor operation in strong sunlight: (a) Facing sunlight, sensor orientated
~20◦ downwards with Sun elevation at ~30◦. Closest person at a ~3 m distance from sensor; furthest
at a ~7 m distance. (b) Facing away from sunlight; same orientation and Sun elevation. Person’s
distance from sensor was ~7 m.

Additionally, the distance from the sensor and surface material reflectivity played a
more significant role, which should be explored further. Regarding other adverse weather
conditions, the performance of LIDAR and ToF sensors is similar in foggy conditions due
to similar sensor wavelengths [77]. Although this was not specifically tested and should be
addressed in future work, due to the limited working range, there is a reason to believe
that ToF sensor performance should not suffer in foggy and rainy conditions.

5. Discussion
In this work, we implement and analyze the potential advantages of a distributed

ToF sensor system for close-range blind zone monitoring. While ToF sensors offer benefits
in certain scenarios, their advantage over modern scanning and solid-state LiDAR is less
evident in other use cases. Taking cost as a key consideration, mid-range scanning LiDAR
systems, such as those from Ouster, range between €15,000 and 20,000, which is significantly
higher than a single Basler ToF sensor at approximately €1500. However, when scaling to
a seven-sensor ToF system, the cost difference narrows, making the financial advantage
less pronounced. Expanding an existing LiDAR setup with additional ToF sensors would
further increase costs.

On the other hand, emerging solid-state LiDAR technologies, priced between
€2000 and 5000, are more cost-effective than mechanical LiDAR while sharing some of
ToF’s advantages, such as ease of mass production and integration. Both solid-state and
mechanical LiDAR offer excellent range (~150–200 m) and angular resolution (~0.3◦), while
ToF cameras excel with higher angular resolution (~0.1◦) at a much shorter working range
(<10 m). Given these factors, a hybrid modular system that combines solid-state LiDAR
and ToF sensors could offer a more cost-efficient and flexible solution for mass production.
The acquisition system demonstrated in this work is adaptable to different sensor tech-
nologies, allowing for future upgrades to more advanced sensors as they become available
and affordable.

6. Conclusions
The flexible software architecture presented in this paper demonstrates adaptation

to different distributed ToF sensor configurations. The system combines a hardware
triggering scheme, 3D point cloud registration with a continuous fidelity check, probabilistic
occupancy grid mapping, SNN-based object detection, and runtime execution monitoring.
Notably, by integrating up to seven cameras, the system scales effortlessly, preserving
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low average latency (<107 ms acquisition, <40 ms fusion, 29 ms inference, and 39 ms
real-time visualization).

The introduced external trigger scheme and the synchronization analysis show sig-
nificant improvements in interference mitigation by applying only a 10 µs delay between
staggered triggers. Through point cloud registration accuracy analysis, we highlight the
challenges of maintaining global alignment in closed-loop geometries, observing a notable
drift up to 0.68 m in direct versus indirect pairwise sequential transformations, which
reveals that future refinements could include registration methods to mitigate indirect
error propagation.

The custom event-based SNN inference model demonstrated competitive precision
of 65 % mAP while benefiting from inherently sparse ToF data, making it well suited
for real-time, low-power applications. Further optimizations could include SNN model
quantization for neuromorphic hardware acceleration to enhance computational efficiency.
While the pretrained networks detected objects in high-density ToF sensor point clouds,
the LiDAR-to-ToF domain gap requires careful preprocessing, evidenced by PV-RCNN’s
improved performance with double voxelization (52% to 59% improvement). Likewise,
retraining models on the non-scanning LiDAR dataset showed improvements due to the
closer similarity to ToF data. Future work could boost accuracy by incorporating synthetic
ToF sensor data from the CARLA [78] simulator into the training set to better bridge this
gap and enhance generalization.

In terms of the ToF system technology transfer to real-world automated driving so-
lutions, identifying vulnerable road user (VRU) object categories with ToF sensors and
data-driven models could offer unique advantages regarding technology acceptance, pri-
marily due to the ability to capture dense depth data instead of recognizable visual details,
removing the privacy concerns related to facial identification. Additionally, prioritizing a
safe zone around the vehicle and achieving demonstrable reliability in reducing accidents
would gain trust and bolster societal acceptance of AD safety systems.

Lastly, despite the notable limitations we observed with the chosen current generation
sensors, such as occasional visible distance reduction in bright sunlight, hardware improve-
ments could address these constraints and thorough characterization against environmental
conditions could be conducted. By refining the sensor setup—for example, by incorporating
higher range sensors in critical blind spots—the system could be further adapted for specific
applications, making the approach adaptable to a wide range of autonomous perception
tasks. Moreover, the simplistic low-level software architecture allows for deployment on
embedded heterogeneous RISC architectures (AArch64, RISV-V) with neuromorphic NPU
integration for low-power operation on resource-constrained platforms.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Autonomous Driving.
ADAS Advanced Driver Assistance Systems.
ANN Artificial Neural Networks.
BEV Bird’s-Eye-View.
DGR Deep Global Registration.
DL Deep Learning.
FoV Field Of View.
FPS Frames per Second.
GPU Graphical Processing Unit.
IF Integrate and Fire.
IPC Inter-Process Communication.
LD Linear dichroism.
LiDAR Light Detection And Ranging.
NPU Neural Processing Unit.
OGM Occupancy grid maps.
PTP Precision Time Protocol.
PV Point-Voxel.
RAE Relative Absolute Error.
RANSAC Random Sampling Consensus.
SCNN Spiking Convolutional Neural Network.
SNN Spiking Neural Networks.
SSC Spread Spectrum Clock.
TVC Temporal Voxel Coding.
ToF Time-of-Flight.
VRU Vulnerable Road User.
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