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Abstract: Disruptive events and the rapid evolution of urban energy systems highlight the
need for robust methods to reconstruct critical infrastructure networks. Comprehensive, up-
to-date power grid representations are essential for both researchers developing methods
for analysing and optimising power systems and first responders requiring approximate
data for urgent decisions. However, traditional grid reconstruction approaches often rely
on incomplete data, expert knowledge, or closed datasets, limiting their utility during emer-
gencies. This study proposes a novel automated method for reconstructing medium-voltage
(MV) power grids. The novelty of the proposed method lies in combining OpenStreetMap
energy and land-use data in a unified and automated framework, thereby reducing the
need for expert input. The proposed method employs a systematic aggregation of data, an
estimation of energy demand, and the application of algorithmic techniques to generate syn-
thetic MV grid models that functionally represent real networks, capturing key topological
features. The resulting outputs include visual representations to support decision-makers
in simulating "what-if” scenarios and ensuring rapid operational awareness. In a step
toward eliminating reliance on proprietary data, our approach broadens access to critical
infrastructure insights across diverse urban contexts, contributing to critical infrastructure
resilience and potentially supporting both energy system research and crisis management.
A case study demonstrates that a medium-sized city’s MV grid can be reconstructed in
minutes without expert knowledge or geographically constrained datasets, underscoring
the method’s deployment potential and practical value for emergency scenarios.

Keywords: automated distribution grid reconstruction; critical infrastructure; OpenStreetMap;
land use; crisis management

1. Introduction
Critical Infrastructures (CIs) are indispensable for daily life yet remain vulnerable to

crises such as natural disasters or targeted attacks, which can disrupt vital services like
energy and transportation [1–3]. Because these events often occur without warning, the
lack of reliable, up-to-date infrastructure data hinders rapid crisis management, particu-
larly in municipalities with lower levels of digitisation that lack comprehensive digital
representations of their CIs.

Although open geographic data from crowdsource and community-driven projects
like OpenStreetMap (OSM) can inform risk management [4], their varying completeness
and consistency pose significant challenges to effective decision making. Consequently,
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emergency services, healthcare facilities, and utilities can face operational delays that
jeopardise public safety and incur substantial economic losses during crises [5,6].

It is imperative for a wide range of stakeholders to bridge the data gaps in the afore-
mentioned model to reconstruct an approximate representation of existing power grids.
Such stakeholders include those who need to assess disaster impacts on grid topology,
make infrastructure decisions when up-to-date grid models are unavailable, or simulate cas-
cading failure propagation and rebalancing of power systems [7]. However, grid-mapping
approaches often rely on expert knowledge, proprietary data, or manual intervention,
which limits their scalability in dynamic emergency scenarios [8–10]. In such situations,
even an approximate grid representation can be indispensable for rapid decision making.

Recent advancements in data integration and Digital Twin (DT) technologies [11,12]
offer potential solutions to enhance CIs resilience. A DT is bidirectionally coupled through
a twinning mechanism to ensure the virtual replica is kept up-to-date. Utilising the replica,
related tools can implement smart functionalities, simulation, and control actions on the
real object, aligning with the aforementioned paradigm. This study contributes to crisis
management and infrastructure resilience in the preparing and reacting phases. Building
on our earlier work [11], we propose an automated toolbox for reconstructing the Medium
Voltage (MV) power grid, based solely on OSM.

The ubiquity of the open-source geospatial data provided by OSM renders it a preemi-
nent resource for researchers in the field of distribution grids [10,13–15]. Its extensive global
coverage and standardised format make it well suited for distribution grid research. The
database, which is collaboratively maintained, includes geo-located information on roads
and power network elements, often derived from aerial imagery, on-site surveys, or other
openly licensed data. Although completeness varies by region, two main advantages make
OSM particularly valuable for grid reconstruction. Firstly, it is actively maintained and
continuously expanding, ensuring the longevity of tools that rely on its evolving dataset.
Secondly, its worldwide coverage supports broader applicability, enabling methods to scale
across diverse urban contexts. The present study introduces an approach centred on open
data, leveraging existing power infrastructure and land-use data from OSM to estimate and
augment missing grid elements. By eschewing proprietary or expert-restricted sources, this
method provides a scalable solution for reconstructing MV power grids across multiple
urban environments.

The primary contributions of this work are as follows:

• Firstly, a fully open-data automated methodology for estimating urban energy demand
and reconstructing MV power distribution grids is presented. This method utilises
solely publicly available OSM data.

• Secondly, the elimination of reliance on proprietary or geographically specific datasets
is proposed, thus ensuring generalisability, broad applicability and scalability across
various urban contexts globally, significantly expanding the potential use cases, espe-
cially in crisis scenarios.

• The innovative integration of power and land-use data from OSM has been utilised
to estimate and identify missing secondary substations systematically, resulting in
more accurate reconstruction results. This approach differs from previous methodolo-
gies, which used either OSM power or land-use data alone without combining them,
required external expert input, or relied on incomplete OSM infrastructure mapping.

Specifically, the following steps are taken: (i) Retrieve and preprocess publicly avail-
able geospatial information. (ii) Estimate power demand and identify gaps in secondary
substations via a land-use-based approach. (iii) Position missing secondary substations.
(iv) Employ a constraint-programming solver to produce realistic MV networks. (v) Gen-
erate layered visual outputs for rapid interpretation and “what-if” simulations. (vi) The
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output consists of geo-referenced MV grids that closely follow street infrastructure, re-
sulting in highly detailed topology rather than simple straight lines. To the best of our
knowledge, no existing approach offers this level of automation in reconstructing grid mod-
els by solely utilising data from OSM without expert input or geographically constrained
datasets. This research distinctly advances previous methodologies by systematically au-
tomating previously manual tasks, addressing notable gaps in existing approaches related
to data completeness, scalability, and practical applicability, particularly in emergency
response contexts.

We evaluate our approach through a case study of Darmstadt, a medium-sized German
city. This evaluation demonstrates the processing of open geospatial data to reconstruct
representative MV grid models efficiently, identify potential discrepancies, and address
data gaps in the OSM transformer inventory, especially in commercial and industrial zones
with lower mapping completeness (data coverage and availability). Performance metrics,
visual outputs, and statistical assessments compare land use power demand estimation to
the OSM power transformer data to identify potential data gaps.

The structure of the paper is as follows. The subsequent section reviews related
work on grid reconstruction. Section 3 presents preliminaries and the method overview,
followed by data acquisition and preprocessing in Sections 4 and 5, respectively. Section 6
expounds upon secondary substation estimation based on land use. The generation of the
MV synthetic energy grid is delineated in Section 7. The visualisation approach is outlined
in Section 8, and the evaluation case study, discussion, implications and limitations are
presented in Section 9. Finally, Section 10 concludes and discusses future directions.

2. Related Work
The automated modelling of power grids has gained increasing attention in recent

years, driven by the need for scalable and efficient solutions to address growing urban
energy demands [16]. Traditionally, grid reconstruction relied on static assumptions and
proprietary datasets. In response, recent research has shifted towards open-data and
algorithmic approaches.

A plethora of open-source tools and initiatives [8,10,17–21] extract power grid informa-
tion from OSM, thereby demonstrating the potential for automated modelling to streamline
energy distribution network reconstruction and support adaptive urban planning [22].
However, many works have centred on High Voltage (HV) networks [23], while MV and
Low Voltage (LV) grids remain challenging due to data scarcity, sensitivity, and proprietary
restrictions. Furthermore, the incomplete mapping of underground cables and smaller-scale
components frequently restricts the applicability of these open-data-based methods [24],
emphasising the intricacy and variability of contemporary urban energy systems.

Kisse et al. [25] introduced a Geographic Information System (GIS)-based framework
that combined OSM data with Pandapower to model power and gas distribution grids in-
tegrated with heat pump systems. Although their synthetic grid models provided valuable
insights, such as investment costs and CO2 reductions, the approach still required manual
editing of transformer locations where source data were insufficient, limiting its scalability
and full automation. In a similar vein, Dierich et al. [9] and Fekete [4] integrated qualitative
stakeholder insights with GIS analyses to assess critical infrastructure interdependencies
and cascading effects during crises. While these mixed-methods approaches enhanced
situational awareness, they were dependent on localised data, expert input, and proprietary
GIS tools, which can impede generalisability.

Focusing specifically on MV grids, Gebhard et al. [10] leveraged OSM substation and
street network data, Capacitated Vehicle Routing Problem (CVRP)-based optimisation,
Voronoi diagrams, and Delaunay triangulation (a method that naturally connects points
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that are spatially close) to generate cost-optimal MV topologies. Their method incorporated
optional manual adjustments, for instance, by including proprietary or uncertain load
data as a list of custom locations. Although land use data were discussed, they were not
integrated into the automation process. Their case study demonstrated that even incomplete
OSM data for secondary substations can yield realistic grid topologies. However, the quality
of the result depends on the quality of the regional OSM data.

Tomaselli et al. [8] further advanced the field by generating ensembles of LV grid
topologies to capture uncertainty through probabilistic methods. However, their approach
relied on expert-provided substation inputs [25]. Similarly, [21] assumed secondary substa-
tions as given. In another study by Tomaselli et al. [26], external references were employed
to extract or synthesise transformer coordinates, thereby reducing manual intervention and
the reliance on external datasets, though not entirely eliminating it.

Meanwhile, Baecker et al. [13] presented a methodology that combines OSM-derived
building data with statistical information from sources like CORINE Land Cover [27] and
TABULA [28], relying on German census-based assumptions [29] for household counts
and external studies for peak loads [15,30]. Despite its innovative nature and ability to
generate highly detailed results, this approach is contingent on region-specific data for
residential and non-residential peak loads, as well as expert-derived building typologies.
This limitation raises concerns regarding its generalisability to other regions.

Beyond these approaches, land use data have proven valuable for infrastructure
modelling [31–34], providing essential spatial insights by classifying geographic areas
according to their social functions. However, most MV grid reconstruction efforts employ
land-use data to define load areas or generate virtual MV-LV stations, often without
integrating OSM-derived power infrastructure data [35–37]. For instance, the DINGO
tool [35] employs OSM-based land-use classifications to delineate load zones, followed by
clustering or Voronoi-based assignment of supply points to HV-MV stations. While some
methods use the Traveling Salesman Problem (TSP) [37] or the CVRP [35,36] to optimise
grid layouts, these approaches generally model direct point-to-point connections and have
focused on rural settings.

Whilst earlier studies such as [36,37] have also proposed methods for generating
synthetic power grids, these differ significantly from our approach in terms of application
scope, input data, and methodological philosophy as they do not consider the street net-
work, focus on rural settings, and rely on certain land-use data. The focus of [36] is on
idealised long-term planning scenarios primarily in suburban and rural settings, utilising
demographic, census, and Corine Land Cover datasets in conjunction with probabilistic
modelling techniques. In a similar manner, the study in [37] employs deterministic heuristic
methods in rural areas characterised by agriculture and forestry, relying primarily on clus-
tering and shortest-path optimisation without explicitly incorporating existing transformer
locations from OSM. In contrast, our methodology uniquely focuses on rapid grid recon-
struction for emergency or crisis scenarios in urban environments. We exclusively utilise
publicly available OSM data, explicitly leveraging actual MV-LV transformer positions,
systematically augmenting only incomplete mapping areas and reconstructing the MV grid
through deterministic constraint optimisation.

In summary, despite the significant progress that has been made in the field of auto-
mated grid reconstruction, three main challenges persist:

• Focus on HV networks: The reconstruction of MV and LV remains under-explored
and less automated.

• Reliance on manual inputs, proprietary data, expert knowledge, or geographically
constrained datasets: Many methods still require expert intervention, closed-source
datasets, or regional assumptions that limit scalability and reproducibility.
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• Underutilisation of land use data for urban demand and substation estimation: While
the use of OSM data in research is increasing, its land use layer is rarely used to
estimate missing grid elements directly in dense urban environments.

The present work addresses these gaps by presenting a synthetic grid reconstruction
methodology that integrates both OSM land use data and existing power infrastructure,
automating spatial energy demand estimation and MV grid topology generation. The
objective of the proposed approach is to deliver a scalable solution for urban environments,
with the aim of reducing reliance on proprietary sources and manual refinements. The
potential application of this approach extends to crisis management and rapid decision-
making scenarios.

3. Method
The section provides a contextual framework for the modelling approach that will

subsequently be employed. The preliminaries of the problem are introduced in Section 3.1,
and the method overview is presented in Section 3.2.

3.1. Preliminaries

Figure 1 provides a schematic representation of an electrical distribution grid, illus-
trating its integration within the broader context of the power system. For this paper, the
MV grid, including its nodes and lines, as well as the primary and secondary substations,
is relevant.

Figure 1. Illustration of a distribution grid.

Electrical grids consist of buses, substations and lines at varying voltage levels. Trans-
formers in substations facilitate voltage conversion, thereby facilitating the transmission of
electrical energy. While electrical power transmission over large distances typically occurs
at the extra-high voltage level (above 200 kV), distribution grids can be categorised into
HV, MV, and LV levels. For instance, in Germany, the MV level is commonly defined as
below 50 kV, while LV is defined as below 1 kV. Residential and commercial customers
are connected at the LV layer, while industrial ones are often connected to the MV grid.
Traditionally, power generation was exclusively connected to the transmission grid. How-
ever, due to the ongoing energy transition, distribution grids are undergoing a progressive
transformation with an increasing integration of local generation sources such as wind and
solar power.

At urban scales, two substation types are particularly relevant to this work. The
first is known as a primary substation, which contains transformers that facilitate power
conversion between the HV and MV levels. The second is known as a secondary substation
(a transformer), which converts MV to LV. Due to their network character, distribution
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grids can be modelled as undirected, weighted, geometric graphs: G = (V, E). Each node
v ∈ V corresponds to a bus or substation, connected via power lines (mostly cables in urban
areas), represented as edges e ∈ E. The edge weights can be interpreted as the cost of the
line. The network is modelled as undirected because power lines allow for a bidirectional
power flow.

3.2. Method Overview

The proposed approach, illustrated in Figure 2, provides an automated method for
reconstructing a synthetic MV power grid by leveraging land-use and power infrastructure
data from OSM. The final output of this process is a graph-based representation of the MV
network, as outlined below:

• Nodes are used to represent primary and secondary substations. Each node is associ-
ated with a specific geographic location and a set of relevant attributes, including, but
not limited to, voltage and type.

• Edges represent MV lines aligned with actual street paths, thereby ensuring spatial realism.

Figure 2. Flowchart describing the workflow of the proposed approach.

By framing the grid in this manner, the approach allows stakeholders (e.g., crisis
response teams) to identify approximate cable locations and assess which specific roads
might carry MV lines. For instance, in the event of a damaged street or compromised
primary substation, the method can be employed to gauge the potential for disruption
to the power supply rapidly. The methodology minimises total cable length subject to
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capacity constraints (via an optimisation problem detailed in Section 7.4) to yield a plausible,
cost-effective MV layout.

The approach in Figure 2 is structured around four key steps, each of which generates
outputs that are essential for subsequent analyses:

1. Data acquisition: Administrative district boundaries, land-use features, power grid
data, and street network information are retrieved from OSM.
Result: A collection of raw geospatial data layers—district polygons, land-use poly-
gons, existing substations, and street network.

2. Data preprocessing: The geospatial data are cleaned, filtered, and standardised into a
consistent coordinate system.
Result: A validated and harmonised dataset, complete with corrected geometries,
classified substations, and uniform spatial referencing.

3. Secondary substation estimation: Land-use areas are aggregated, and a specialised
workflow is applied to detect coverage gaps in the existing MV grid and estimate
where additional transformers may be required.
Result: An updated substation inventory that bridges gaps in the MV grid by incorpo-
rating newly placed secondary substations.

4. Synthetic MV grid reconstruction: Network cost is minimised subject to capacity
constraints, ensuring that cables align with realistic street paths for a plausible MV
network topology.
Result: A fully constructed synthetic MV network—modelled as a weighted graph
where edges follow the street geometry—enabling subsequent analysis or scenario-
based evaluations (e.g., identifying the impact of street closures or a primary substation
compromise on the power supply).

These steps support demand estimation, coverage validation, and optimisation of grid
layout. Algorithm 1 provides a high-level overview of the reconstruction process, while the
subsequent sections elaborate on each step in detail. Therefore, the algorithm’s product is a
spatially explicit MV grid with edges reflecting actual streets, which can serve as a practical
resource for crisis managers and municipal planners.

Algorithm 1 Steps for MV Grid Reconstruction using Land Use Estimation

1: Input: Region of interest (area name)
2: Output: Optimised placement of secondary stations and synthetic power grid topology
3: Step 1: Data Acquisition (Fetch Data from OSM)
4: Fetch district boundary data, land use data, power grid data, street network data
5: Step 2: Data preprocessing
6: Preprocess district geometries, land use polygons, and classify substations
7: Step 3: Secondary Substation Estimation (Based on Land Use Data)
8: 3.1 Assign transformer’s capacity
9: 3.2 Calculate Land Use Areas

10: 3.3 Derive state demand per square meter estimations using land use data
11: 3.4 Calculate power demand per area using land use data
12: 3.5 Estimate substations according to land use and supply–demand discrepancy
13: 3.6 Placement of synthetic transformers
14: Step 4: Synthetic MV Grid Reconstruction
15: 4.1 Generates candidate MV connections between primary substations
16: 4.2 Assignment of secondary substations to candidate MV connections
17: 4.3 Connecting substations to the street graph
18: 4.4 Generation of street network edges and calculating the actual street distances
19: 4.5 Optimise MV grid via Constraint Programming (CP) formulation
20: Step 5: Visualisation
21: Generate layered visuals to facilitate further analysis.



Electronics 2025, 14, 1414 8 of 23

The presented methodology was carefully selected and developed based on several
critical criteria to overcome the limitations identified in previous works. Specifically, the
following list provides a summary of the most important aspects of our methodology:

• Our method prioritises complete automation and scalability using solely OSM data.
• The employment of an OSM land-use transformer estimation strategy eliminates the

necessity for manual transformer input, proprietary knowledge, or geographically
constrained datasets, thereby ensuring the reproducibility and broad applicability of
the method.

• The employment of K-means clustering for synthetic transformer placement provides
systematic, algorithmically derived spatial locations without the need for subjective
manual adjustments.

• Constraint-programming optimisation that ensures realistic, operationally viable MV
grid configurations are aligned with actual urban street networks, improving upon
heuristic or manual topology definitions in the literature.

These methodological choices uniquely position our approach as an innovative, open-
data automated solution for rapid and scalable reconstruction of MV power grids.

4. Data Acquisition from OSM
Our approach relies on OSM as the only source for geospatial data to obtain four

main data layers: district boundaries, land use data, power grid infrastructure, and street
networks. The OSMnx library automates data retrieval. This section corresponds to Step 1 in
Algorithm 1.

District Boundary Data: Districts are defined as municipal administrative sub-
divisions serving governance and planning functions. In this study, district bound-
aries are extracted from OSM to define the study area, thereby enabling spatially dis-
aggregated analyses of infrastructure, land use and demand. In OSM, these subdivi-
sions are tagged with boundary = administrative and a corresponding admin_level
(https://wiki.openstreetmap.org/wiki/Key:admin_level, accessed on 25 February 2025).
In this work, we focus on and retrieve the relevant polygons for admin_level = 10, as it
typically represents the smallest formally recognised administrative units.

Land Use Data: Within the extracted district boundaries, we retrieve land use features:
landuse = residential, landuse = commercial, and landuse = industrial. These cat-
egories form the basis for estimating urban energy demand as we associate each land use
type with different demand patterns.

Power Grid Data: Power grid infrastructure, including substations and transformers,
is queried using OSM tags power = substation and power = transformer. Due to their
good coverage in OSM and their manageable number for one city, primary substations
can be assumed as given. Relevant attributes such as name, voltage, and frequency are
included. Geometries are processed with the Shapely library, extracting coordinates for point
features and centroids for polygonal features.

Street Network Data: Due to the limited availability of MV power distribution lines
in OSM, they are assumed to follow street layouts, as supported by prior studies [8,10,24].
Therefore, the street network from OSM is used as the base graph for modelling possible
cable routes, assuming a radial grid topology. The street network data are retrieved
via OSMnx based on predefined modes (e.g., walk for pedestrian paths and drive for
vehicle-accessible roads). This network is used later to compute realistic distances between
substations and to model cable routes.

https://wiki.openstreetmap.org/wiki/Key:admin_level
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5. Data Preprocessing
This section corresponds to Step 2 in Algorithm 1. It refines and standardises the raw

OSM-extracted data layers—district boundaries, land use polygons, power grid elements,
and street networks—so they can reliably support the subsequent grid reconstruction. In
particular, it tackles the data inconsistencies and missing attributes often observed in OSM,
a community-driven platform. Such crowd-sourced data can contain partially overlapping
polygons, inconsistent geometric definitions, and attribute discrepancies (e.g., missing
voltages or incorrect substation tags).

District Boundaries: District polygons, extracted initially from OSM, may overlap
or extend beyond the main city area due to heterogeneous mapping inputs or different
admin_level definitions. Filtering is applied to retain districts fully contained within
the city boundary using geometry.within(). Overlapping and subsumed regions are
systematically removed using geometry.covers(). Then, we resolve invalid geometries.
Geometries are checked for errors such as self-intersections and gaps. As a topological
cleaning technique, a zero-width buffer operation (buffer(0)) in Shapely is applied to
reconstruct invalid polygons, enforcing topological consistency. This step aims to pre-
vent computational errors in area calculations and spatial analysis. Next, each district is
transferred into a uniform coordinate system suited for distance and area measurements.
This ensures that the polygons do not double-count or omit any city areas and are com-
parable and measurable on the same spatial scale. In this study, EPSG:32632 is used, as
it is well suited for regions such as Germany, where UTM Zone 32 provides accurate
spatial measurements.

Land Use Geometries and Areas: Although we initially extracted residential, com-
mercial and industrial land use features in the acquisition step, these polygons are stored
in OSM’s global latitude–longitude format. For more precise local-area calculations, ge-
ometries are transformed to EPSG:4326, the coordinate reference system used by OSM for
geospatial data representation. Relevant land use features are extracted using OSMnx’s
features_from_polygon() function and clipped to district boundaries using the GeoPan-

das’ clip() function. As a result, each district ends up with its own clearly defined land
use category data, which can then be analysed independently for energy demand or
other purposes.

Primary and Secondary Substations: Only a few features have assigned voltage and
frequency values in OSM for the power grid. Therefore, retrieved power grid features must
be preprocessed.

• Features with a frequency value that differs from the main grid frequency (50 Hz in
Europe) are excluded, for example, to avoid elements from the railway power system.

• Substations without names are assigned placeholder identifiers based on OSM IDs.
• Due to inconsistencies in OSM tagging (e.g., interchanging power = substation and

power = transformer), a voltage-based strategy ensures consistent classification.
• Features with voltage above 50 kV are categorised as primary substations, while those

below 50 kV or with missing voltage values are classified as secondary substations. A
default voltage of 20 kV is assigned to elements with undefined voltage.

• Each substation is then spatially attributed to its corresponding district and land use
category, enabling a quantitative assessment, i.e., determination of substation counts
per land use within each district.

Street Graph: For computational efficiency, the static street network graph is cached
using the pickle library, which can be reloaded while validating it against a predefined
freshness period. This allows quick reloading for further processing or distance computa-
tions, avoiding redundant online queries and reducing runtime in repeated simulations.
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This two-step acquisition–preprocessing arrangement helps ensure that OSM-extracted
features are both comprehensive (broadly acquired) and accurate (cleaned, consistently
measured, and clipped) before moving to the next step in the grid reconstruction process.

6. Secondary Substation Estimation Based on Land Use
This section corresponds to Step 3 in Algorithm 1 and details an open-data automated

method based solely on OSM to estimate and position the missing secondary substations.

6.1. Transformer Capacities

As noted by [13], LV transformer capacities are scarcely available in OSM. Due to the
unreliability of OSM metadata, their study employed building density as a proxy to select
standard transformer sizes conforming to standard utility practices. Since our approach
deliberately does not incorporate buildings to avoid reliance on external, geographically
constrained datasets for building-area-dependent peak load estimations and instead relies
solely on OSM land use data, we adapt their methodology to determine transformer
capacities. Specifically, we select 160 kVA for residential areas (low to medium demand),
250 kVA for commercial zones (medium to high demand) and 400 kVA for industrial areas
(high demand).

6.2. Land Use Area Calculation

Each land use category is aggregated within each district to obtain cohesive polygons
(e.g., all residential polygons unified). We then compute these unified polygons’ total
area (in square meters). This step effectively yields each district’s final land use areas,
forming the spatial foundation for subsequent demand estimation.

6.3. Demand per Square Meter Using OSM Land Use

This subsection describes an open-data automated method to derive demand per
square meter for various land use types using OSM data.

We gather transformer data and land use areas from multiple cities to estimate energy
demand for each land use category. This ensures that derived demand values reflect
state-level conditions. In this study, 25 counties and independent cities in Hesse, Germany,
encompassing 299 districts, are employed for this purpose. The input data can be readily
extended to include additional cities, enabling a broader application of the proposed
methodology. Moreover, the approach exhibits high scalability, as incorporating further
cities requires minimal effort—simply adding their names to the input list. Our process
follows these steps:

1. Gather Data from Other Cities: We collect district-level OSM data (transformers, land
use areas) for a set of cities.

2. Compute Capacity per Land Use: In each district, we multiply the number of OSM
transformers (attributed to that land use) by their standard capacities (see Section 6.1),
yielding a total transformer capacity.

3. Obtain Demand per Square meter: We divide the total capacity by the district’s land
use area (in square meters), obtaining a “demand density” (kVA/m2) for that land
use type.

4. Average Across Districts and Cities: Each city’s data are aggregated to produce a
city-level average for each land use type. We then compute the state-level average
by merging these city-level values, effectively deriving a baseline demand per square
meter for each land use category.
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This open-data automated approach bypasses reliance on geographically constrained
or proprietary datasets, instead leveraging freely available OSM. It is parallelised for
efficiency, taking under two minutes (93.34 s in our setup) to process hundreds of districts.

6.4. Power Demand per Area and Number of Secondary Substation Estimation

We obtain the total load for each land use by multiplying the baseline demand per
square meter (Section 6.3) by the land use area. Next, we divide this load by the trans-
former’s effective capacity (adjusted for future growth and conservative loading) and round
up to the nearest whole number, revealing the required count of secondary substations.
Comparing this estimate with the actual OSM-based substation inventory highlights any
deficit, i.e., the missing transformers needed to meet the estimated demand.

Because OSM data can be incomplete, our method may estimate fewer transformers
than OSM indicates (as shown in the discussion in Section 9 for residential areas with
multi-story buildings). In such cases, we do not remove existing substations; rather,
we focus on bridging deficits. To mitigate possible underestimation, we apply a 10%
growth factor (aligned with forecasts projecting load increases [38–40]) and an 80% loading
threshold to account for thermal stress [41]. These measures ensure we do not drastically
under-represent real-world demand conditions and possibly reflect common planning
assumptions that may have been considered in the grid’s original design.

6.5. Transformer Placement

This subsection outlines how missing transformers are added to areas where our land
use-based estimation indicates deficits. We employ a grid-based approach to represent
demand as discrete “load zones” (Section 6.5.1), then apply K-means clustering to identify
suitable transformer locations (Section 6.5.2).

6.5.1. Load Zone Generation

A spatially explicit representation of energy demand is required to guide the placement
of new transformers. A “load zone” is a small, discrete portion of a land use polygon,
essentially a point representing some fraction of the total demand in that area. To create
these zones, we overlay a regular grid on each district’s land use polygon wherever the
estimated number of needed transformers exceeds what OSM currently shows. Each
grid cell within the polygon is assigned a portion of the total demand, producing a set
of load zones with associated load values. By distributing demand uniformly among
these generated grid points, we avoid lumping all consumption into a single location and
using external, geographically constrained peak load estimations or proprietary datasets.
Although this approach does not capture accurate variation, it provides a transparent and
scalable way to represent spatial demand patterns using only OSM. The result is a set of
load zones with associated load values.

6.5.2. K-Means Clustering for Synthetic Transformer Placement

We combine these load zones with the coordinates of existing transformers in the same
district and land use. For each district and land use category with missing transformers,
we create one cluster per missing transformer using K-Means clustering. Each cluster
centre (the centroid of a group of zones and existing transformer points) becomes a new
synthetic transformer location. This ensures new transformers are placed in areas with
loads, are respectful of existing transformer positions, and are likely to reduce the distance
between load pockets and transformer sites (helping lower technical losses). An optional
post-processing step can be applied to “snap” each new transformer to the nearest valid
street node to ensure realistic siting and viable locations.
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Although we do not visualise these intermediate steps here, Section 9 of the evaluation
presents a map illustrating how newly placed transformers align with the identified load
zones and existing infrastructure. Transformer placement is implemented utilising Shapely

and scikit-learn libraries for spatial operations and K-Means clustering, respectively. The
outcome of this step is a list of new transformer locations to cover previously unmet
demand, which is then added to the secondary substation inventory for the synthetic MV
grid reconstruction.

7. Synthetic MV Grid Reconstruction
This section outlines the method for generating a synthetic MV grid and corresponds

to Step 4 in Algorithm 1. The process involves generating candidate MV connections and
the geometric assignment of secondary substations to candidate MV connections between
primary substations (HV-MV) in Section 7.1, connecting substations to the street graph in
Section 7.2, generating street distances and street network edges between substations in
Section 7.3, and finally, the optimisation of MV grid topology in Section 7.4.

7.1. Candidate MV Connections and Assignment of Secondary Substations

We assume that each MV line is treated as a direct link between two distinct primary
substations. This configuration permits each point to be served by two separate sides and
from different primary substations, and all secondary substations are connected to the grid
by exactly one line, not consisting of junctions. This keeps the network model focused on
primary substations and their attached secondary substations.

• Generating Candidate MV Connections: To identify potential MV routes, we adopt
the proximity-based approach [10]. First, we gather the geographic coordinates of all
primary substations. Next, we apply Delaunay triangulation, which connects points
so no substation lies inside the circumcircle of any triangle, resulting in line segments
between spatially close substations. We collect each segment to form a set of candidate
MV connections. A visualisation of the Delaunay triangulation is shown in Figure 4a.

• Assigning Secondary Substations: Each secondary substation is assigned to the nearest
candidate line based on Euclidean distance. This ensures every secondary node
attaches to exactly one MV connection, providing the basis for subsequent integration,
where realistic street network edges, distances and operational constraints will be
incorporated to refine the synthetic grid topology.

7.2. Connecting Substations to the Street Graph

The electrical grid can be modelled as a graph, with nodes representing supply points
(primary and secondary substations) and edges corresponding to cable lines following the
street network. This process connects each substation to its nearest node within the street
graph, aligning the grid with actual urban infrastructure.

7.3. Generating Street Distances and Street Network Edges Between Substations

With candidate connections established, we next integrate these with real street net-
work data to ensure the grid’s alignment with urban infrastructure. To model realistic
MV grid topologies, we compute the shortest path distances between the connected sub-
stations (Section 7.2) based on the street network rather than geodesic distances using
the NetworkX library. This generates the required distance matrix for optimisation while
ensuring cost-effective grid reconstruction.
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7.4. Optimisation of MV Grid Topology via Constraint Programming

Reconstructing an efficient MV grid topology requires minimising total cable length
while ensuring that transformer capacities and physical cable limits are not exceeded. We ad-
dress this routing challenge by formulating it as a constraint-programming problem [42,43]
that explicitly encodes route continuity, capacity, and load distribution constraints.

7.4.1. Problem Formulation Using Constraint Programming

We model the grid as a sequence of nodes where primary substations serve as terminal
nodes (node 0 for the start and node (n − 1) for the end), and secondary substations
(each with a capacity requirement ψl in kVA) occupy intermediate positions. The cost of
connecting any two nodes i and j is defined by the street-network distance dij (computed
in Section 7.2), and the total load along the route must not exceed a cable capacity B (e.g.,
10,000 kVA). Formally, we define:

Variables: Binary decision variables xij for all i ̸= j, where xij = 1 if the route travels
directly from node i to node j, and auxiliary variables ui (for i = 1, . . . , n − 1) that track the
accumulated load at node i.

Constraints: (i) Route continuity: Each node (except the last) must have exactly one
outgoing edge, and each node (except the first) exactly one incoming edge:

∑
j ̸=i

xij = 1 and ∑
i ̸=j

xij = 1.

(ii) Capacity and subtour elimination: For all i, j ∈ {1, . . . , n − 1} with i ̸= j, if the route
travels from node i to node j (i.e., xij = 1), then the cumulative load at node j must be at
least the cumulative load at node i plus the demand at node j (i.e., ψj), without exceeding
the cable capacity:

ui + ψj ≤ uj + B (1 − xij),

Finally, the (iii) overall capacity constraint limits the total load of secondary substations
in the route:

∑
l∈secondary

ψl ≤ B

The objective function: We aim to minimise the total cable length:

min ∑
i ̸=j

dij xij,

where dij are the street-network distances between nodes i and j. These definitions yield a
constraint-programming model that enforces route continuity, capacity restrictions, and load
distribution while minimising total cable length.

7.4.2. Solver Utilisation

We assemble a distance matrix from precomputed street-network paths and a demand
vector {ψl} for each secondary substation. The solver then uses the variables {xij} and
{ui} to find a sequence of nodes (primary-to-primary) that satisfies all constraints while
minimising total cable length. The final solution includes the ordered route, total distance,
and auxiliary outputs (e.g., the street segments).

7.4.3. Computational Time and Data Requirements

We selected CP due to its capability to handle spatially explicit optimisation problems,
enforcing detailed operational constraints (e.g., route continuity, sub-tour elimination, and



Electronics 2025, 14, 1414 14 of 23

cable capacity) simultaneously. CP provides feasibility checks and flexible integration of
street-network distances, transformer capacities, and explicit grid topology constraints.

The computational time in our scheme is primarily determined by the complexity
of each candidate instance. For each candidate, the number of nodes (i.e., the primary
substations plus assigned secondary substations) directly affects the size of the distance
matrix and the number of decision variables and constraints in the CP model.

A maximum time of (90 to 300) seconds per candidate instance is set, which ensures
that the solver terminates even if an optimal solution is not found. In practice, many
instances converge faster than this limit. The CP solver is designed to handle combinatorial
problems efficiently within these time constraints.

To further manage computational time, we run candidate instances in parallel using
a ThreadPoolExecutor, provided by the concurrent.futures python package to launch parallel
tasks. This parallelisation helps to scale the process when dealing with multiple candidates
simultaneously, effectively reducing the overall processing time.

Unlike machine learning or deep learning methods that require large datasets for
training to achieve acceptable accuracy, our approach is based on constraint programming.
There is no training phase; rather, the “accuracy” of our solution is about feasibility and
optimality, given the constraints. The CP model relies on input data such as candidate
connections, street distances, and substation information. Acceptable solution quality is
achieved if the street distance data accurately reflect the real-world network, the candidate
connection data correctly capture the possible configurations, and the assignment mapping
(secondary substations to primary pairs) is appropriately defined.

8. Visualisation
An interactive map presents the grid model as distinct, toggleable layers for clarity

and analysis using Folium. Administrative boundaries are outlined in black dashed lines
with an orange fill, while land use categories are colour-coded for differentiation. Primary
and secondary substations are marked with ID, voltage, and classification, with additional
secondary substations appearing as black markers. Each substation is linked to the nearest
street node, and demand clusters are visualised as filled polygons. MV grid routes are
displayed using actual street paths, allowing interactive exploration of network expansion
scenarios. The colour-coded, toggleable layers ensure clear differentiation and can support
decision-makers analysing the grid.

9. Evaluation and Discussion
9.1. Case Study for a German City

We apply our methodology to Darmstadt, a medium-sized city with a population of
over 168,457 (https://www.darmstadt.de/standort/statistik/statistik-aktuell, accessed on
25 February 2025).

Figure 3 illustrates the study area in Darmstadt, showing its administrative division
into nine distinct districts. It includes detailed land-use categories derived from OSM data:
residential zones indicated in cyan, commercial zones in yellow, and industrial zones in
magenta. These land-use classifications form the basis for subsequent demand estimation,
allowing accurate identification of potential areas requiring additional substations due to
gaps in existing infrastructure mapping.

Figure 4a presents an intermediate visualisation of the power grid’s primary sub-
stations and the triangles generated via the Delaunay triangulation. The figure depicts
candidate MV connections as blue polylines linking HV-MV substations, which are shown
as larger blue circle markers.

https://www.darmstadt.de/standort/statistik/statistik-aktuell
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Figure 3. Darmstadt: district administrative boundaries and land use data: residential zones (cyan),
commercial zones (yellow), and industrial zones (magenta).

(a) (b)

Figure 4. (a) Primary substations with the Delaunay triangulation for MV connections. (b) Darmstadt
OSM power data: primary (large circles) and secondary (small circles) substations.
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Figure 4b visualises power infrastructure elements extracted directly from OSM, high-
lighting six primary substations (larger blue-outlined circles) and 258 secondary substations
(smaller filled blue circles). Each marker is labelled explicitly with the substation ID, voltage
level, and classification (HV-MV for primary and MV-LV for secondary substations). This
detailed visualisation enables immediate differentiation between substations, clearly reflect-
ing their roles and spatial distribution within the grid structure. Using this infrastructure
data, we subsequently construct a complete street-network graph and precompute the
shortest paths between all substation pairs, caching the results for computational efficiency.

Figure 5 demonstrates the augmentation procedure for addressing transformer cov-
erage gaps, specifically for the Darmstadt-Nord district. Existing MV-LV transformers
extracted from OSM are marked in blue, whereas newly added synthetic transformer
locations, determined via K-Means clustering based on estimated demand from land-use
data, are marked in black. The visual overlay explicitly illustrates how the automated
placement integrates with existing transformer distributions, ensuring comprehensive
spatial coverage.

Figure 5. K-Means clustering: the new transformers’ placement (black circles) in Darmstadt-Nord,
overlaid with existing transformers (blue).

Figure 6 shows the resulting synthetic MV grid topology generated by our constraint-
programming solver for the entire Darmstadt area. The optimised grid, consisting of
realistic cable routes aligned along street paths, has a total computed cable length of
163,836 m. This figure highlights the reconstructed MV grid’s practical usability and
spatial realism, supporting rapid interpretation, operational scenario analysis, and decision
making for crisis management and infrastructure resilience purposes.

Although our primary goal is to evaluate the model’s reliability and to demonstrate
the behaviour for city-level scenario analyses rather than optimise speed, we note that
the method runs efficiently using a standard laptop with an Intel i7-12700H CPU (Intel
Corporation, Santa Clara, CA, USA). For instance, processing district boundaries and land
use features required a few seconds, while estimating loads took roughly 3 s. Fetching and
processing substations took 0.12 s. The initial computation of street-network distances,
including footpaths (664 s), is a one-time cost; after caching, subsequent runs complete in a
fraction of this time (14.18 s). Substation connections to the street graph are established in
8.35 s. Applying the transformer placement algorithm took about 37 s, and the solvers had
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a max search time limit of 300 s per solution where satisfactory solutions are obtained in
0.32 s, while an optimal solution is obtained in approximately 96 s for a medium-sized city,
as shown in the case study.

Figure 6. The Resulting MV synthetic grid for Darmstadt has a total cable length of 163,836 m. Cables
are highlighted in red, existing OSM substations are shown in blue, and newly added substations are
indicated in black.

9.2. OSM Data Quality Assessment

Table 1 summarises the results of a comparison for Darmstadt between the esti-
mated required number of secondary substations according to land use and the actual
number retrieved from OSM data to estimate the missing number needed to cover the
estimated demand.

We then summarise these discrepancies across residential, commercial, and industrial
land uses in Table 2, computing mean difference, mean absolute deviation (MAD), root
mean square error (RMSE), and coverage. We report the mean difference primarily to
indicate whether our approach tends to over- or underestimate transformer counts overall.
However, large positive and negative errors may offset each other, making the mean
difference appear smaller. To address this, we also provide the MAD and the RMSE, both
of which are less sensitive to sign and reflect the true scale of discrepancies.
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Table 1. Comparison of estimated transformers from our land-use approach and OSM data.

District Metric OSM # Estimated # Net

Eberstadt Residential 24 38 −14
Eberstadt Commercial 2 3 −1
Eberstadt Industrial 2 3 −1
Eberstadt Total 28 44 −16

Darmstadt-West Residential 19 19 0
Darmstadt-West Commercial 16 18 −2
Darmstadt-West Industrial 1 3 −2
Darmstadt-West Total 36 40 -4

Darmstadt-Mitte Residential 17 6 +11
Darmstadt-Mitte Commercial 4 2 +2
Darmstadt-Mitte Industrial 0 0 0
Darmstadt-Mitte Total 21 8 +13

Darmstadt-Ost Residential 18 19 −1
Darmstadt-Ost Commercial 3 1 +2
Darmstadt-Ost Industrial 2 1 +1
Darmstadt-Ost Total 23 21 +2

Arheilgen Residential 28 27 +1
Arheilgen Commercial 2 5 −3
Arheilgen Industrial 0 5 −5
Arheilgen Total 30 37 −7

Bessungen Residential 31 24 +7
Bessungen Commercial 0 2 −2
Bessungen Industrial 0 2 −2
Bessungen Total 31 28 +3

Darmstadt-Nord Residential 25 18 +7
Darmstadt-Nord Commercial 15 17 −2
Darmstadt-Nord Industrial 16 43 −27
Darmstadt-Nord Total 56 78 −22

Wixhausen Residential 9 10 −1
Wixhausen Commercial 4 9 −5
Wixhausen Industrial 8 1 +7
Wixhausen Total 21 20 +1

Kranichstein Residential 11 9 +2
Kranichstein Commercial 1 1 0
Kranichstein Industrial 0 0 0
Kranichstein Total 12 10 +2

Table 2. Summary statistics of transformer comparison.

Land Use Mean Difference MAD RMSE Coverage (%)

Residential +1.33 4.89 6.85 107.1
Commercial −1.22 2.11 2.47 81.0
Industrial −3.22 5.00 9.51 50.0

The reported coverage percentages reflect the completeness of OSM data relative to
our land-use-based estimations. Specifically, coverage greater than 100% indicates that the
existing OSM dataset contains more substations than our approach estimates necessary,
likely due to local conditions (e.g., multi-story residential buildings). Conversely, lower
coverage percentages, such as 81% for commercial and 50% for industrial zones, indicate
substantial data gaps in OSM compared to our estimates, highlighting areas where our
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synthetic reconstruction contributes the most significant practical value. Overall, residential
areas show slight overrepresentation in OSM (107% coverage), possibly reflecting higher
mapping activity, or our approach does not capture multi-story buildings. Commercial
areas are underrepresented by about 19%, while industrial zones (50% coverage) reveal
the most significant gaps in OSM’s inventory. These discrepancies underscore the need for
robust estimation methods (like ours) that can supplement incomplete OSM data, especially
when assessing power infrastructure in crisis scenarios. The reported coverage percentages
reflect the completeness of OSM data relative to our land-use-based estimations.

9.3. Implications and Limitations

In practice, overrepresentation of residential OSM transformers may result from
community-driven mapping. At the same time, underrepresentation in commercial and
industrial districts may stem from partially mapped private substations subject to industry-
internal handling or restricted-access facilities. Although our land-use-based approach
mitigates these gaps, it also relies on simplifying assumptions—such as uniform load
distribution across each land-use area.

The assumption of uniformly distributed loads preserves model generality and cir-
cumvents reliance on proprietary or region-specific consumption data; however, it may
not accurately capture local variations within a single land use. Similarly, our methodol-
ogy depends solely on OSM land-use data, foregoing occupant-level coincidence factors,
detailed building footprints, and explicit kW-to-kVA conversions. This strategy enhances
scalability and ensures applicability in regions lacking high-resolution datasets, yet it can
underestimate demand when OSM data are incomplete. To counter this, we incorporate
conservative margins via a growth factor and a loading threshold.

Another aspect is that, since our method relies solely on OSM data (both existing
energy infrastructure and land use), it can leverage comparable cities—within the same
country or even abroad—to derive global-state demand estimates. This is particularly
advantageous where OSM data are absent for secondary energy infrastructure (e.g., trans-
former counts). However, it also underscores the need for research on data-absent contexts
that avoid reliance on proprietary or highly localised inputs.

Where apparent excesses arise (e.g., a district with more OSM transformers than
estimated), local factors such as multi-story buildings or incomplete neighbour data may
be at play. Consequently, we focus on bridging deficits rather than redistributing surplus
units. Future investigations could explore inter-district supply dependencies or integrate
occupant-level/building-height data where freely available.

Our open-data automated approach offers robust, scalable solutions but may under-
mine local precision. Higher-accuracy methods can incorporate occupant profiles and
floor areas to refine load estimations, though they typically rely on geographically con-
strained or proprietary data. This trade-off underscores how purely OSM-based models
minimise external dependencies and facilitate large-scale implementations, albeit with
certain simplifying assumptions. For even greater fidelity, future work might refine these
margins or incorporate new open datasets (e.g., nighttime satellite imagery, population
density) to capture demand patterns more accurately. To further demonstrate the practical
effectiveness and applicability in real-world emergency scenarios, future work would
include explicit scenario analyses, such as simulations of infrastructure disruptions (e.g., a
primary substation failure or major road blockages), to highlight the synthetic grid’s utility
in rapid operational decision making. Moreover, obtaining feedback from domain experts
(e.g., emergency responders, urban planners, distribution system operators) regarding the
synthetic grids’ usability and accuracy would strengthen confidence in their value. Such
qualitative validation would complement our quantitative evaluations and help demon-
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strate the broader operational effectiveness and decision support capabilities enabled by
our open-data automated approach.

10. Conclusions
This paper presents an open-data automated approach for reconstructing MV power

grids exclusively leveraging publicly available OSM infrastructure and land-use data.
Unlike traditional methods relying on proprietary datasets and manual input, our scalable
and deterministic approach facilitates rapid grid reconstruction, particularly for crisis
management in urban contexts.

Through a detailed case study in Darmstadt, our method demonstrated its effective-
ness by reconstructing a realistic synthetic MV grid topology aligned with street paths,
totalling approximately 163,836 m of cable. An analysis comparing our transformer es-
timates to existing OSM infrastructure revealed varying degrees of data completeness;
residential zones exhibited slight surplus coverage (107%), commercial zones moderate
coverage (81%), and industrial zones showed significant mapping gaps (50%). This high-
lights areas where our approach adds substantial value. Computationally, our model
efficiently performs demand estimation within seconds and synthesises representative
grids in minutes, confirming its practical applicability for rapid operational decision making
during emergencies.

While our methodology incorporates simplifying assumptions—such as uniform
load distribution—these choices ensure scalability and independence from proprietary
datasets. To enhance accuracy further, future research may refine these assumptions,
explore inter-district dependencies, and integrate additional open datasets like nighttime
satellite imagery and population density maps, capturing more nuanced demand variations.
Integrating real-time smart meter and sensor data with open-source grid models is a
promising future direction to boost model accuracy and responsiveness. Such data-enabled
digital twins could perform on-the-fly load calibration, anomaly detection, and adaptive
network reconfiguration in response to live conditions, greatly enhancing the value of
synthetic grid models for both researchers and practitioners. Nonetheless, achieving this
broadly will require overcoming data accessibility challenges, so developing methods that
gracefully incorporate live data when available—while still functioning with open data
alone—is key to scalable adoption.

The present approach to routing and cost efficiency can be extended in multiple
directions. Future work could incorporate local power plants and end users (e.g., residential
houses) to encompass the medium- and low-voltage grid comprehensively. In addition,
exploring different optimisation techniques, cost parameters, and varying algorithmic
settings such as load balancing would refine the routing methodology further and adapt
the network design for diverse real-world scenarios.
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