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Abstract: Industrial visual inspection plays a crucial role in intelligent manufacturing.
However, existing anomaly-detection methods based on unsupervised learning paradigms
often struggle with issues such as overlooking minor defects and blurring component edges
in confidence maps. To address these challenges, this paper proposes an industrial anomaly-
detection method based on component-level feature enhancement. This method introduces
a component-level feature-enhancement module, which optimizes feature matching by
calculating the structural similarity between global coarse-grained confidence features
and local fine-grained confidence features, thereby generating enhanced feature maps to
improve the model’s detection accuracy for minor defects and local anomalies. Addition-
ally, we propose a region-segmentation method based on multi-layer piecewise thresholds,
which effectively distinguishes between foreground and background in confidence maps,
circumvents background interference and ensures the integrity of structural information
of foreground components. Experimental results demonstrate that the proposed method
surpasses comparative methods in both logical and structural defect detection tasks, show-
ing significant advantages, especially in fine-grained anomaly detection, with stronger
robustness and accuracy.

Keywords: industrial visual inspection; anomaly detection; component-level feature
enhancement

1. Introduction
Industrial visual inspection, as a crucial component of intelligent manufacturing, is one

of the core technologies for achieving product quality control and production automation.
The primary goal of industrial visual inspection is to detect product defects during the
production process using machine vision technology, thereby improving product quality,
reducing production costs, and enhancing production efficiency. Early industrial visual
inspection methods mainly relied on rule-based systems using handcrafted features and
traditional image processing techniques. Evaluations on the MVTec Logical Constraints
Anomaly Detection (MVTec LOCO AD) dataset showed that these methods achieved 65.8%
Area Under the Receiver Operating Characteristic curve (AUROC) for logical anomalies and
62.7% AUROC for structural defects. As shown in Figure 1, the baseline anomaly-detection
method generates heatmaps where normal components appear as complete blocks (first
row), while distinct anomalies (e.g., white paper in the second row) cause missing regions.
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However, for visually similar defects (yellow paper in the third row), the method fails to
produce clear separations, resulting in scattered low-confidence anomaly scores. These
methods exhibit significant limitations when faced with complex and variable industrial
scenarios, particularly in handling texture variations and novel defect patterns that require
more sophisticated analysis.

Figure 1. A schematic diagram of local region anomalies, where the first row represents normal
samples, and the second and third rows represent abnormal samples. The columns display (from left
to right): the original images, ground truth annotations (white squares mark defective regions) and
detection anomaly maps (red lines outline magnified views).

In recent years, with the rapid development of deep learning technologies, significant
progress has been made in anomaly-detection methods: Rudolph et al. [1] propose an
asymmetric teacher-student framework for industrial defect localization, while Wang et
al. [2] address complex industrial inspection challenges through multimodal fusion. For
anomaly detection in industrial control systems, Choi et al. [3] introduce an unsupervised
learning approach. Yao et al. [4] develop a global-local semantic bottleneck approach for
logical anomalies. The latest advancements in graph neural networks have demonstrated
advantages in structured industrial data [5]. Notably, Gao et al. [6] further improve
cross-domain generalization through feature decoupling techniques, demonstrating robust
performance under unseen operating conditions in rotating machinery diagnosis.

Industrial anomaly detection can be categorized into three machine learning paradigms:
supervised, semi-supervised, and unsupervised methods. Supervised machine learning
algorithms, such as Support Vector Machines (SVM) [7], utilize fully labeled datasets con-
taining both normal and abnormal samples to establish explicit decision boundaries. For
instance, Kent et al. [7] demonstrated SVM’s effectiveness in detecting sensor anomalies
in building automation systems. While achieving high detection accuracy, these methods
face practical limitations in industrial settings where acquiring balanced labeled anomaly
samples proves challenging. Semi-supervised approaches significantly reduce labeling
demands by primarily utilizing normal samples during training AND learning characteris-
tic feature distributions that allow identification of deviations. Unsupervised techniques,
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exemplified by Principal Component Analysis (PCA)-based methods like those developed
by Mnassri et al. [8], eliminate annotation requirements through intrinsic pattern recogni-
tion and density estimation, though often with reduced accuracy for complex anomalies.
This classification framework considers not just supervision levels but also the practical
constraints of label availability and the fundamental differences in how each paradigm
models normal and abnormal features. However, in industrial fields, abnormal samples
are often scarce and diverse, making it extremely difficult to obtain comprehensive and
balanced training data, which limits the practical application of supervised methods. In
contrast, semi-supervised methods primarily rely on normal samples for training, learning
the distribution characteristics of normal samples to identify abnormal samples that devi-
ate from the normal distribution. While this approach reduces the reliance on abnormal
samples, it still faces certain limitations in detecting unseen complex anomalies.

To address the aforementioned issues, unsupervised anomaly-detection methods have
gradually become a research hotspot. These methods do not require the involvement of
abnormal samples and can more flexibly adapt to complex scenarios and diverse anomalies
by mining latent patterns from normal samples or leveraging self-supervised learning
techniques. Unsupervised anomaly-detection methods have been proven particularly
suitable for industrial scenarios where data annotation is challenging, and anomaly features
are difficult to cover comprehensively. Recent advancements in this field include logical
constraint-based methods, as explored in [9], which extend anomaly detection beyond
simple structural defects by incorporating semantic consistency checks. Additionally, image
resynthesis techniques [10] improve anomaly localization by detecting deviations from
expected reconstructions. For efficiency in industrial applications, progressive pruning
strategies [11] and noise-guided feature aggregation [12] further enhance unsupervised
detection performance in complex environments. They have played a significant role in
enhancing industrial visual inspection capabilities and provided new technical means for
solving complex anomaly-detection problems in real production environments. Among
existing unsupervised anomaly-detection techniques, reconstruction-based methods and
feature contrast-based methods are the two most representative approaches.

Reconstruction-based methods rely on Autoencoders (AE) and Variational Autoen-
coders (VAE) [13], as well as Generative Adversarial Networks (GAN) [14], to perform
anomaly detection. Their core idea is to utilize the characteristic that the reconstruction
error of normal samples is significantly lower than that of abnormal samples. However,
these methods struggle with challenges such as overlooking minor defects and blurring
component edges in confidence maps. For example, the Memory-guided Normality for
Anomaly Detection (MNAD) [15] proposes a memory-guided anomaly-detection model
suitable for local anomaly detection in video sequences, but it inadequately expresses
boundary information of anomaly regions during feature extraction. To address the balance
between local and global information representation, the Semantic Pyramid Anomaly
Detection (SPADE) [16] employs a multi-resolution semantic pyramid to enhance feature
representation. This approach not only improves feature expression but also overcomes
the limitation of traditional K-Nearest Neighbors (KNN) methods in providing precise
anomaly segmentation. Nevertheless, in cases where anomaly regions are morphologi-
cally complex and background interference is strong, SPADE struggles to capture minor
local features, and the issue of edge blurring remains significant. Facing the challenge of
insufficient expression of boundary information in anomaly regions, the Discriminatively
Trained Reconstruction Embedding for Anomaly Detection model (DRAEM) [17] achieves
precise localization of anomaly regions without complex post-processing by jointly learn-
ing the reconstruction representations of abnormal images and normal images. Despite
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this, DRAEM’s reliance on anomaly simulation training strategies still leaves room for
improvement in its applicability to multi-component samples.

To address the limitations of reconstruction-based methods in feature boundary rep-
resentation and background interference, feature contrast-based methods have further
enhanced detection robustness by comparing the feature differences between normal
and abnormal samples. The Student-Teacher (S-T) anomaly-detection framework [18]
employs a student-teacher architecture, utilizing knowledge distillation to learn the fea-
ture distribution deviations of normal samples for anomaly detection. Although this
method exhibits strong robustness, its performance degrades in scenarios with limited
data or class imbalance between normal and abnormal samples. The Component-aware
Anomaly-Detection framework (ComAD) [19], based on contrastive learning and clustering
techniques, achieves component-level anomaly detection. However, ComAD demonstrates
insufficient adaptability in multi-region anomaly scenarios with complex background
interference, and its feature extraction process still requires improvement in separating
local anomalies from background information. As shown in Figure 1, the first column
displays the original unprocessed input images showing industrial components in their
natural state. The anomaly labels (second column) precisely delineate defective regions
that deviate from normal patterns, while the third column presents the ComAD-generated
anomaly heatmaps with red regions indicating detected anomalies and color intensity
representing corresponding anomaly scores. In normal samples (first row), the heatmap
of this component appears as a complete block, indicating that the model can correctly
identify component features. In the abnormal sample in the second row, a white paper
mixed into the nut causes the detection anomaly map to exhibit a significant missing region,
thereby correctly identifying it as an abnormal image. In contrast, in the abnormal sample
in the third row, a yellow paper mixed into the nut, due to its visual similarity to the nut
itself, makes it difficult for the model to distinguish it from normal features. As a result, the
detection anomaly map still appears as a complete block, with scattered and dim anomaly
distributions, leading ComAD to fail to distinguish it from normal samples and resulting
in a detection error.

In summary, the current technological approaches in the field of industrial visual
inspection encompass methods based on reconstruction, feature contrast, and knowledge
distillation, which have achieved significant progress in anomaly detection and localization.
However, numerous challenges remain in practical applications. For instance, anoma-
lies often manifest as minor local defects with blurred boundary information, making
precise extraction difficult. Additionally, interference from complex backgrounds or high-
resolution images complicates the effective separation of targets from backgrounds, thereby
affecting detection accuracy. For example, ComAD is susceptible to edge-blurring effects in
multi-region anomaly scenarios, limiting its performance in minor local anomaly detection.
These issues are more pronounced in real industrial environments, necessitating further
optimization in feature extraction and enhancement strategies to effectively improve the
overall robustness and accuracy of detection.

To address the aforementioned challenges, this paper proposes an industrial anomaly-
detection method based on component-level feature enhancement. By introducing a
component-level feature-enhancement module, the method aims to overcome the lim-
itations of traditional approaches in accurately separating targets from backgrounds in
complex scenarios, thereby enhancing the model’s capability for fine-grained anomaly de-
tection. Specifically, the method first selects multi-component feature regions and extracts
the original features, confidence features, and positional information of the components.
The original features of the components encompass visual information such as basic mor-
phology, texture, and edges, which are crucial for identifying anomalies in shape, texture,
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and other aspects. The confidence features quantify the importance of feature regions, re-
flecting the model’s attention to specific component areas, while the positional information
encodes spatial relationships to ensure consistency across different perspectives and scales.
Together, these elements provide critical support for the reliability assessment and spatial
localization of components, thereby enhancing the precise capture of target regions and
facilitating more accurate detection of fine-grained anomalies.

To further improve feature extraction accuracy, this paper also proposes a region-
segmentation method based on multi-layer piecewise thresholds, dividing the confidence
map into foreground, background, and transition regions. The transition region serves as a
supplement to the foreground, aiding the component-level feature encoder in generating
more precise features. This method not only avoids the issue of incomplete foreground
structural information but also effectively eliminates background interference and reduces
the risk of false detection. Compared to traditional methods (e.g., K-means and Otsu),
it achieves higher segmentation accuracy in detecting logical anomalies and structural
anomalies. The main contributions of this paper include:

(1) To address the limitations of traditional methods that are prone to edge-blurring effects
in multi-region anomaly scenarios, we propose an anomaly-detection method based
on component-level feature enhancement. By focusing on potential local anomalies
in images and incorporating a structural similarity analysis mechanism, the method
enhances the preservation of component details and improves performance in logical
anomaly detection. Additionally, through an effective local feature extraction strategy,
the method strengthens the model’s capability for fine-grained anomaly detection
and significantly improves the identification of anomaly patterns.

(2) Addressing the issue of background interference during detection, we propose a
region-segmentation method based on multi-layer piecewise thresholds. This method
divides the confidence map into foreground, background, and transition regions, not
only enhancing the integrity of structural information but also effectively mitigating
interference from background regions, thereby further improving detection accuracy.

(3) To address the challenge of optimizing feature matching for enhanced detection
of minor defects, we propose a feature-enhancement module based on the Peak
Signal-to-Noise Ratio (PSNR). By calculating the structural similarity between original
confidence features and deep confidence features in multi-component features, the
module optimizes the feature matching and alignment process. Using similarity scores
as a basis, it generates enhanced feature maps, effectively improving the model’s
accuracy and robustness in detecting minor defects and local anomalies.

(4) We validate the superiority of the method on public datasets. Experimental results
demonstrate that the method achieves leading performance in both logical defect and
structural defect detection.

2. Related Work
This chapter systematically reviews the technological evolution and current research

landscape in industrial anomaly detection, establishing a comprehensive academic frame-
work through three interconnected dimensions. Beginning with the fundamental principles
of unsupervised detection methods, we analyze their foundational contributions and in-
herent limitations in detecting both structural and logical anomalies. The discussion then
progresses to examine how new paradigms based on large-scale pre-trained models have
broken through traditional feature representation bottlenecks. Finally, we discuss how
feature enhancement and sample generation techniques improve detection accuracy.
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2.1. Unsupervised Anomaly-Detection Methods

Unsupervised anomaly-detection methods have achieved significant progress in the
field of industrial visual inspection in recent years, particularly in addressing the more
challenging task of logical anomaly-detection. To tackle complex anomaly scenarios in
industrial environments, researchers have introduced comprehensive datasets that include
both structural anomalies and logical anomalies. Among these, structural anomalies
manifest as significant deviations in object appearance, while logical anomalies involve
unreasonable arrangements or incorrect combinations of objects. Several methods proposed
for this dataset have demonstrated excellent performance in detecting both structural
anomalies and logical anomalies.

Logical anomaly-detection methods typically focus on modeling long-range dependen-
cies. The Template-guided Hierarchical Feature Restoration method (THFR) [20] employs
deep metric learning to select optimal normal references and performs feature restoration
through cross-attention mechanisms, quantifying anomalies via residual analysis. How-
ever, although THFR’s compensation strategy can transform residual anomaly features into
normal features, it may still underperform in detecting subtle edge-blurring anomalies in
certain scenarios. Additionally, Zhang et al. [21] proposed a Global Context Compression
Block (GCCB) to enhance the global student model’s ability to learn long-range dependen-
cies. While this method can roughly outline the shape of anomalies, it still fails to address
the issue of edge blurring in small components.

Despite the outstanding performance of the above two methods in logical anomaly
detection, they generally overlook anomalies that exhibit edge blurring and small sizes
within small components or parts. Such defects are difficult to accurately identify using
logical anomaly-detection methods that rely on long-range features. To address this chal-
lenge, some studies have attempted to integrate unsupervised detection strategies for both
structural anomalies and logical anomalies to improve the detection capability for minor
local anomalies. For instance, GCAD [22] detects both logical anomalies and structural
anomalies by fusing local and global detection results, providing a comprehensive solution
for industrial anomaly detection. EfficientAD [23] inherits the dual-branch idea of GCAD
on the MVTec LOCO AD dataset, employing two independent convolutional neural net-
work modules to handle structural anomalies and logical anomalies separately. However,
both methods have certain limitations in addressing minor local anomalies. GCAD pri-
marily focuses on overall structural changes in samples containing structural anomalies,
with limited capability in identifying minor defects within components. EfficientAD im-
proves upon GCAD in local anomaly detection but emphasizes the logical relationships
between anomalous components, failing to fully resolve the issue of minor local anomalies.
PUAD [24] combines EfficientAD’s approach to handling logical anomalies and addresses
some local anomaly issues through reconstruction. However, its method mainly focuses
on feature differences in larger regions, making it difficult to precisely locate small and
concealed defects.

In summary, while these methods excel in detecting logical anomalies and structural
anomalies, they have not sufficiently addressed the detection of extremely subtle minor
defects on product surfaces. Minor defects are often mixed within normal components,
making them difficult to capture by traditional methods or prone to being misclassified as
normal regions, thereby affecting overall detection performance. This limitation highlights
the importance of enhancing local detail detection capabilities, which is also one of the core
objectives of this study.



Electronics 2025, 14, 1613 7 of 25

2.2. Anomaly-Detection Methods Based on Large Pre-Trained Models

With the increasing complexity and diversity of industrial inspection tasks, as well as
the challenges of high annotation costs and scarce anomaly samples, traditional methods re-
lying on task-specific or dataset-specific feature extractors face limitations in generalization
capabilities. To address these issues, defect detection methods based on large pre-trained
models have demonstrated outstanding performance in various industrial applications,
particularly excelling in complex anomaly-detection tasks. For instance, architectures
such as ResNet, VGG, and EfficientNet in convolutional neural networks (CNNs) have
been widely applied to defect detection tasks. Meanwhile, the DSR method proposed by
Zavrtanik et al. [25], based on a dual-decoder structure, utilizes quantized feature space rep-
resentations and generates anomalies using latent space models pre-trained on ImageNet,
achieving superior anomaly detection and localization performance without relying on
image-level anomaly synthesis. Additionally, the DTDF [26] method employs pre-trained
networks to obtain multi-scale prior embeddings and combines a dual attention mechanism
to achieve two-stage reconstruction, effectively enhancing anomaly-detection capabilities.

To further improve the representation of local and structural features in anomaly
detection, some methods have introduced self-supervised learning and semantic segmen-
tation techniques into feature modeling. DINO [27], based on self-supervised knowledge
distillation, leverages Vision Transformers (ViTs) to extract local and global image features
and maintains multi-scale feature consistency through distillation loss, demonstrating
excellent performance in enhancing global and local feature representation. ComAD [19]
focuses on component-level anomaly detection in industrial visual inspection, dividing
images into multiple components using unsupervised semantic segmentation models and
capturing logical relationships between components to improve the detection of logical and
structural anomalies. Although both DINO and ComAD have achieved success in feature
encoding at different levels, the former has limitations in handling edge blurring and minor
anomalies, while the latter underperforms in detecting fine-grained local anomalies.

2.3. Anomaly-Detection Methods Based on Feature Enhancement and Sample Generation

In the field of defect detection, the quality of feature representation often directly deter-
mines the performance of detection methods. Effective feature enhancement can highlight
the saliency of defect regions, thereby improving detection accuracy and robustness. With
the advancement of deep learning technologies, enhancement-based methods have been
widely applied in complex industrial inspection tasks. For example, Bergmann et al. [18]
proposed a student-teacher network framework, where the student network learns to
regress the rich feature representations generated by the teacher network and the output
differences that the student network fails to generalize effectively are used to localize
anomaly regions, thereby achieving feature enhancement and improving anomaly detec-
tion and pixel-level segmentation performance. Meanwhile, Jongmin Yu et al. [28] utilized
adversarial learning to construct a mapping function from images to the frequency domain,
adaptively learning frequency domain features through generative adversarial networks
(GANs), effectively enhancing the model’s ability to express defect features. However,
these methods still face performance challenges in scenarios with scarce defect samples
and have limitations in effectively extracting complex features. To address these issues,
BLDM [29] employs a hybrid latent diffusion model to generate defect samples in latent
space, enhancing defect samples to improve anomaly-detection performance. Nevertheless,
these methods underperform in handling long-range dependencies between components.
Overall, although existing methods have made significant contributions to feature enhance-
ment and sample generation, more effective solutions are still needed for complex industrial
scenarios, especially for fine-grained defects and edge blurring in small components.
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3. Methodology
In industrial visual inspection, many anomalies typically appear in local regions of

larger normal components. Since these defects are often highly visually similar to the
normal component features, detection systems are prone to misclassifying them as normal
parts of the components. More complexly, these anomalies may occupy only a small
portion of the component, making traditional global feature detection methods ineffective
in identifying and capturing these subtle and concealed local anomalies. To address
this issue, we designed a multi-component feature region selection method, focusing on
anomalies mixed within normal components to enhance the detection capability for local
anomaly regions. As shown in Figure 2, the schematic diagram of the proposed method is
divided into the training phase (upper part of the figure) and the testing phase (lower part
of the figure).

The core innovation of this framework lies in its multi-component feature region
selection method, which first divides the image into multiple regions representing the
structural features of different components. In industrial visual inspection applications,
these regions effectively capture the unique distribution patterns and structural variations
of individual components, providing precise and fine-grained input data for subsequent
processing stages.

During the training phase, the model first divides the image into multiple local
regions and extracts component features for each region. Subsequently, based on the multi-
component feature region selection strategy, the feature-enhancement module utilizes
a self-attention mechanism to enhance the expression of key information regions in the
component features. Specifically, the model first processes the input image I through a
pre-trained encoder to generate the feature map F. A greedy sampling algorithm [30] is then
employed to extract and stack representative point features from key regions, followed by
clustering to produce the multi-kernel feature vector V. Subsequently, the tensor product
operation between feature map F and V, combined with Conditional Random Field (CRF)
interpolation, yields the component confidence map Pi. Threshold segmentation and
contour extraction are applied to obtain the component position encoding Ri, which is then
mapped back to the original image to crop the component image Ir and confidence feature
Pr. Then, the module combines feature fusion strategies to integrate weighted features from
different channels, thereby generating candidate feature images. Finally, by calculating
the similarity scores between the confidence images and the candidate feature images and
matching the feature map with the highest score, further feature enhancement is achieved.

In the test phase, the test image undergoes multi-component feature region selection
and feature enhancement through the feature-enhancement module. Then, an anomaly-
detection method based on region, color, and histogram features is used to calculate the
similarity between the test image and the normal image and evaluate the anomaly degree
by combining the K-Nearest Neighbors (KNN) and the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) method. Through the aforementioned component
feature extraction and optimization, the method can more precisely capture the anomalous
features of local regions. The following sections provide a detailed introduction to the
two aforementioned methods.
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Figure 2. Schematic diagram of component-level feature enhancement.

3.1. Datasets and Comparison Methods

This research employs the MVTec LOCO AD benchmark dataset [9], a publicly avail-
able collection for industrial visual anomaly detection. The dataset contains carefully cu-
rated normal and abnormal samples specifically designed to assess unsupervised anomaly
localization algorithms, featuring 3644 high-resolution images across five representative
industrial categories: breakfast box, juice bottle, pushpins, screw bag, and splicing connec-
tors. These categories were selected to mirror actual industrial inspection scenarios. The
dataset encompasses two fundamental anomaly types: structural anomalies (including
manufacturing defects like scratches, dents, and contamination) and logical anomalies
(characterized by violations of functional constraints such as incorrectly positioned or
missing components). Each anomaly is meticulously annotated with pixel-precise seg-
mentation masks. The dataset’s comprehensive coverage of diverse industrial scenarios
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and anomaly types provides a realistic testbed for assessing algorithm performance under
challenging conditions typical of industrial applications, particularly for handling complex
backgrounds and achieving precise defect localization. The selected product categories
present varying levels of complexity in terms of surface properties, object scales, and
background environments to thoroughly test algorithm robustness. This dataset serves
as an effective benchmark due to its systematic inclusion of both common defect types
and challenging inspection scenarios found in real industrial settings. The entire dataset
involves 1772 normal images for training and 304 normal images for validation. For the test
set, there are a total of 575 normal images, 432 structural anomaly images, and 561 logical
anomaly images.

MVTec AD [31] is a dataset for benchmarking anomaly-detection methods with a
focus on industrial inspection. It contains over 5000 high-resolution images divided into
15 different object and texture categories. Each category comprises a set of defect-free train-
ing images and a test set of images with various kinds of defects, as well as images without
defects. For the test set, there are a total of 467 normal images and 1258 abnormal images.
The proposed method is solely evaluated on the object categories without considering the
homogeneous texture categories.

For comparative evaluation, we compare our method with five established unsuper-
vised anomaly-detection approaches: MNAD [15], SPADE [16], DRAEM [17], S-T [18], and
ComAD [19], and MPFnet [32]. These methods represent distinct technical approaches:
MPFnet introduces a multi-scale prototype fusion mechanism for enhanced defect local-
ization; ComAD integrates the DINO [27] pre-trained model with KNN clustering for
component-based anomaly detection; MNAD implements memory-enhanced normal pat-
tern learning; SPADE employs multi-scale spatial modeling; DRAEM combines denoising
and reconstruction strategies; while S-T utilizes teacher-student knowledge distillation.
Each method offers unique advantages: MNAD excels in normal pattern memorization,
SPADE effectively captures spatial anomalies, DRAEM handles fine-grained defects well,
S-T demonstrates robustness with limited data, and ComAD specializes in component-level
anomaly identification.

3.2. Multi-Component Feature Region Selection

The core objective of the multi-component feature region selection method is to divide
an image into multiple regions, each representing the structural features of different com-
ponents in the image. In the field of industrial visual inspection, the features of individual
components often exhibit unique regional distributions and structural differences. There-
fore, this method enables the effective identification of potential anomaly regions, providing
more precise and fine-grained input information for subsequent feature-enhancement steps.

The multi-component feature region selection method not only comprehensively
considers the overall features of each component in the image but also ensures, through
fine-grained partitioning of local regions, that the detection model can focus on subtle
changes within components, such as defects, damage, or the intrusion of foreign objects.
This approach allows the model to pay greater attention to local regions that are easily
overlooked in traditional component feature detection, thereby significantly improving
the sensitivity of local anomaly detection. Figure 3 illustrates the detailed workflow of
multi-component feature region selection, including key steps such as feature encoding,
foreground and background partitioning, and positional information extraction.
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Figure 3. Schematic diagram of multi-component feature region selection.

When initiating multi-component feature region selection, the training image is first
input into an image feature encoder to transform it into a feature map. However, a crit-
ical step in processing the feature map is selecting representative points. Feature maps
typically contain a large amount of information, and directly processing all points not
only significantly increases computational load but is also susceptible to interference from
redundant information, thereby affecting the model’s efficiency and accuracy. Therefore,
it is necessary to select the most representative key points to optimize the feature map
processing. Specifically, this paper employs a greedy sampling algorithm [30] to select
the N most representative key points from the feature map. Compared to random sam-
pling [33], uniform sampling [34], or the K-means clustering algorithm [16], this greedy
sampling algorithm offers higher efficiency, particularly when the feature map is large and
computational resources are limited, as it maximizes the retention of key information in the
feature map with a limited number of representative points.

Specifically, during the training phase, given the original training image I, we generate
the corresponding feature map F using a pre-trained image feature encoder, where F is
a three-dimensional feature map represented as F ∈ RH×W×C, with H and W being the
height and width of the feature map, respectively, and C being the number of channels.
The feature vector fi,j ∈ RC at each position (i, j) can be evaluated for its expressive power
by calculating its L2-norm:

G(i, j) = ∥ fi,j∥2 =

√√√√ C

∑
k=1

f 2
i,j,k, (1)

where fi,j,k represents the value of F at position (i, j) and channel k. The greedy sampling
algorithm [30] aims to iteratively select representative points that optimally summarize
the key patterns and important regions in the feature map. A set S is defined to store the
selected representative points. Initially, S is empty. In each iteration, a point (i, j) is selected
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from the remaining candidate points and added to set S, maximizing the expressive power
gain of the component representative points. The gain is calculated as:

△G(S, (i, j)) = ∑
(p,q)∈S

∥ fp,q − fi,j∥2 (2)

The position (i, j) that maximizes the gain in Equation (2) is selected and added to the
set S. This process iterates until the number of points in set S reaches the predetermined N
representative points. The final set S contains points that consider both the component’s
expressive power and focus on local feature variations, thereby effectively capturing the
key feature information of the image. Next, the representative point features of all training
images are stacked to generate the feature stack matrix K. Each image’s representative
point set S corresponds to a feature subset of that image, and stacking them yields K, which
is the collection of representative point features from all training images. Subsequently, a
clustering algorithm (e.g., K-means) is applied to the feature stack K for cluster analysis,
dividing these features into multiple categories to obtain the multi-kernel feature vector V,
where the k-th component Vk represents the k-th component in the image.

The feature map F is then tensor-multiplied with the multi-kernel feature vector V
to generate region response maps related to the feature vector components. These region
response maps are interpolated to restore their resolution to the original image size. Addi-
tionally, a conditional random field (CRF) is used to further optimize the results, enhancing
the boundary accuracy and consistency of local regions. Through these operations, we
obtain M component confidence images Pi(1 ≤ i ≤ M), where i represents the component
index and M is the total number of components.

For different components, key local regions are extracted, and corresponding region
images Ir and region confidence images Pr are generated, where r represents the region
image index. To more finely distinguish different information levels in the image and
retain more details, thereby improving the recognition accuracy of anomaly regions and the
granularity of subsequent analysis, we employ a piecewise thresholding operation. Unlike
single-threshold segmentation methods, piecewise thresholding divides the component
confidence image into multiple confidence levels, enabling more precise differentiation
between high-confidence, low-confidence, and medium-confidence regions. This approach
allows independent processing of regions with different confidence levels, facilitating better
identification of potential anomaly regions. The specific steps are as follows:

Operation is performed. Specifically, the confidence value P(x, y) at each pixel position
(x, y) in the image is divided into multiple regions according to multiple thresholds T1, T2,
and T3, corresponding to different confidence levels. The formula is defined as:

P f g(x, y) =


a, if P(x, y) ≥ T3

b, if T2 ≤ P(x, y) < T3

c, if T1 ≤ P(x, y) < T2

d, if P(x, y) < T1

(3)

In this process, the foreground region P f g(x, y) represents pixel positions with higher
confidence levels. After piecewise thresholding, the foreground region is divided into dif-
ferent confidence levels based on the value of P(x, y). Through this piecewise thresholding
operation, we can more accurately partition the image into regions of different confidence
levels, providing a clear foundation for subsequent anomaly analysis. After completing
the partitioning of foreground and background, the next step is to extract the positional
encoding Ri of the components, which is used to clarify the relationship between the region
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image Ir and its corresponding region confidence feature image Pr. The model extracts
the structural information of the foreground region and combines it with a depth-first
algorithm to perform a contour search on the foreground P f g(x, y), identifying the parts
within the contour as component regions. These component regions are then converted
into positional encoding Ri. The specific approach is as follows: For a position (x, y),
its four-neighborhood N(x, y) is, If (x, y) ∈ P f g and has not been visited, a depth-first
search is initiated from this point, marking all connected foreground pixels as the same
region Ai. For each connected region Aj, its boundary Ci(Aj) is defined as: The region
growing algorithm operates as follows: For any given position (x, y), we first define its
four-neighborhood N(x, y). When encountering an unvisited foreground pixel (x, y) ∈ P f g,
the algorithm initiates a depth-first search to aggregate all connected foreground pixels
into a unified region Ai. Subsequently, for each connected region Aj, its boundary Ci(Aj)

is determined. The formal mathematical definitions are:

N(x, y) =
{
(x′, y′) | |x′ − x|+ |y′ − y| = 1 and P f g(x′, y′) = 1

}
(4)

Ci(Aj) =
{
(x, y) ∈ Aj | ∃(x′, y′) /∈ Aj, |x′ − x|+ |y′ − y| = 1

}
(5)

That is, if a position (x, y) belongs to region Aj and at least one of its neighboring
positions does not belong to Aj, then this position is considered a boundary point. The
boundary set of all regions is Ci = {Ci(A1), Ci(A2), . . . , Ci(Aj)}. The minimum and max-
imum values of all coordinates in Ci(Aj) in the horizontal and vertical directions are
calculated as:

xmin = min
k

xk, xmax = max
k

xk,

ymin = min
k

yk, ymax = max
k

yk,
(6)

where xmin, ymin, xmax, and ymax are the boundary points of the region, representing its
range. For each region set, the positional encoding Ri is determined by the four key
coordinate points that define the region set:

Ri = (xmin, ymin, xmax, ymax) (7)

Based on the positional encoding, the position data of the components in the confi-
dence map are extracted. Subsequently, using this positional information as a reference, it
is mapped back to the original image and the confidence map. The region corresponding
to the foreground region is cropped from the original image as the region image Ir. Simul-
taneously, the corresponding foreground part is extracted from the confidence map as the
region confidence feature image Pr. These two types of features serve as inputs for the
region feature enhancement in the next subsection.

3.3. Feature Enhancement

After completing the multi-component feature region selection, we obtain the region
images, region confidence features, and corresponding positional information for each
component. To enhance the model’s ability to focus on component-level features, par-
ticularly in detecting minor defects or local anomalies, we need to extract more detailed
information from local features. To this end, we introduce a feature-enhancement module,
as shown in Figure 4. The goal of the feature-enhancement module is to achieve feature
enhancement by comprehensively utilizing self-attention mechanisms, feature fusion strate-
gies, and similarity scores between features based on the output of the multi-component
feature region selection module. Specifically, the component images obtained from the
multi-component feature region selection module are input into a pre-trained image feature
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encoder to generate feature maps. Subsequently, to enable the model to better focus on
key local features, the feature-enhancement module introduces a self-attention mechanism,
which automatically adjusts the model’s attention to local information through feature
weighting. This mechanism enhances the model’s ability to express key information regions
in the image while suppressing irrelevant information in the background. Then, the feature-
enhancement module divides the feature maps into multiple groups, with each group
serving as a candidate feature image. Finally, by calculating the similarity scores between
the region confidence images and the candidate feature images, the best-matching feature
map is selected and multiplied with the positional encoding from Section 3.1, thereby
enhancing the representation of anomaly regions.

Figure 4. Schematic diagram of feature enhancement, where the region images Ir, region confidence
images Pr, and positional encoding R are all derived from the multi-component feature region
selection module.

It is important to note that the feature-enhancement module, through refined similarity
analysis and efficient region alignment, enables the model to automatically focus on regions
exhibiting high consistency in the local feature space, thereby significantly improving sen-
sitivity to minor defects and local anomalies. From a mathematical perspective, the above
process can be described as follows: Let the feature-enhancement module be E(Pr, Ir, R),
where Pr is the region confidence image, Ir is the region image, R is the positional encoding,
Φ(·) is the structural similarity score calculation function, and δ(Ir) is the candidate feature
image-generation function. The feature-enhancement process can then be expressed as:

E(Pr, Ir, R) = arg max
δ(Ir)

Φ(Pr, δ(Ir))⊙ R (8)

The following is a detailed explanation of the specific workflow of the feature-
enhancement process: The region image Ir is input into a pre-trained image feature encoder
to generate the feature map F ∈ RH×W×C. Each position in the feature map F contains
certain local information. To enhance the model’s focus on key local features, inspired by
the method of Tongkun Liu et al. [19], this paper employs a self-attention mechanism in the
feature encoder. This mechanism calculates dependencies between channels to determine
the correlation between each channel and others, adjusting the attention of different chan-
nels through weighting operations. Specifically, the input feature map F is first linearly
transformed to obtain the query (Q), key (K), and value (V) matrices:

Q = WqF, K = WkF, V = WvF (9)

The attention weights A ∈ RC×C are computed using trainable projection matrices
Wq, Wk, and Wv, where the scaled dot-product operation applies a softmax normaliza-
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tion σ(zi) = ezi /∑N
j=1 ezj that converts raw similarity scores QKT/

√
d into probability

distributions, yielding the final formulation:

A = σ

(
QKT
√

d

)
=

exp
(

QKT/
√

d
)

∑N
j=1 exp

(
QKT

j /
√

d
) (10)

Next, the feature map f ′ = AV is weighted according to the attention relationships
between channels, capturing and enhancing the similarity and dependencies between chan-
nels. To further enhance the model’s focus on key local features, clustering is introduced
to help the model concentrate on the local features represented by each channel group.
Specifically, cosine similarity is used to calculate the correlation between channels in the
weighted feature map f ′. Let f̃ ′ = f latten( f ′) be the flattened feature of the channels.
The similarity matrix M ∈ RC×C between channels in the weighted feature map can be
calculated as:

M(i, j) = cos
(

f̃ ′i , f̃ ′j
)

, (11)

where f̃ ′i and f̃ ′j are the feature vectors of the i-th and j-th channels in f̃ ′. Using the calculated
similarity matrix M, the channels are clustered. Based on the clustering results, the channels
are divided into k groups {Gi}k

i=1. Each group Gi contains N channels and is treated as a
feature group. In order to obtain the set of candidate feature images {Di}k

i=1, each candidate
feature image Di is generated by averaging all channels within its corresponding group Gi:

Gi = {g1, g2, . . . , gN}, gj ∈ RN (12)

Di = δ(Ir) =
1
N

N

∑
j=1

gj (13)

In this way, the candidate feature image Di effectively represents the deep structural
information of the current component, providing reliable input for subsequent feature
matching, particularly aiding in the detection of minor defects or local anomalies. The
region confidence image Pr is mapped to each candidate feature image Di to ensure
alignment in the same space. Based on the mapping results, the structural similarity
between the two is calculated. The structural similarity is defined as follows:

For the region confidence image Pr and the candidate feature image Di, we define
a similarity metric function Φ(Pr, Di). Φ(·) can be implemented using candidate metric
functions such as MSE, COS, SSIM, and PSNR. In this paper, PSNR is selected as the
similarity metric function, specifically defined as:

Φ(Pr, Di) = PSNR(Pr, Di) = 10 × log10

(
I2
max

MSE(Pr, Di)

)
(14)

MSE(Pr, Di) =
1

H × W

H

∑
h=1

W

∑
w=1

(Pr(h, w)− Di(h, w))2 (15)

where Imax = 255 represents the maximum pixel value of the confidence image in our
implementation. H × W is the size of the region confidence image Pr and the candidate
feature image Di. For the k candidate feature images {Di}k

i=1, we obtain k corresponding
structural similarity scores {Sr

i }k
i=1. Specifically, we calculate structural similarity score Sr

i
between the region confidence image Pr and the candidate feature image Di. The structural
similarity score Sr

i is calculated as:

Sr
i = Φ(Pr, Di) (16)
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All candidate feature images are sorted in descending order based on their similarity
scores, where:

Sr
1 ≥ Sr

2 ≥ . . . ≥ Sr
k (17)

The candidate feature image Dbest with the highest similarity is selected as the best
match for the current component, Pr

new = Dbest. The best match confidence image Pnew is
then multiplied with the positional encoding R using element-wise multiplication:

Pnew = Pr
new ⊙ R (18)

Pnew is the enhanced confidence map, which retains the information of the best match
confidence image while enhancing the representation of anomaly patterns through similar-
ity optimization.

4. Experiments
This section verifies the effectiveness of the proposed component-level feature-

enhancement method in industrial visual inspection tasks, evaluating its precision and
robustness in fine-grained anomaly detection.

4.1. Results of Anomaly Detection

In this experiment, we explore the performance of the proposed anomaly-detection
method, including tasks for logical anomaly and structural anomaly-detection. Addi-
tionally, we investigate the impact of the two modules of the proposed method on detec-
tion performance, namely the component-level feature enhancement and the piecewise
thresholding module. In our implementation, the multi-kernel feature vector V uses
K = 4 kernels, while the feature groups G are set to k = 3 groups.

Table 1 summarizes the experimental results of all methods on the MVTec LOCO
AD dataset. From the results in the table, it can be seen that the S-T method signifi-
cantly outperforms previous methods such as MNAD, SPADE, and DRAEM in terms of
the overall score (i.e., the average AUROC values for logical defect and structural defect
detection), with a score 3.75% higher than DRAEM. The latest ComAD method further
optimizes the S-T method, improving the score by 2.39%. However, our method outper-
forms all other comparison methods in both logical defect and structural defect detection,
achieving an overall score of 81.73%, which is 1.99 percentage points higher than ComAD.
In logical defect detection, the ComAD method ranks second with a detection score of
86.38%, demonstrating its excellent detection performance. In contrast, MNAD, SPADE,
and DRAEM achieve scores of 60.00%, 70.90%, and 72.80%, respectively, significantly lower
than ComAD. The proposed method, by integrating component-level feature enhancement
and multi-layer piecewise thresholding, achieves a detection score of 87.92%, which is
1.54 percentage points higher than ComAD, significantly surpassing other comparison
methods and showcasing its superior performance in logical defect detection. In structural
defect detection tasks, the proposed method demonstrates significant performance advan-
tages over traditional methods such as MNAD and SPADE. Specifically, SPADE achieves a
score of 66.80% in structural defect detection, while ComAD leads with a score of 73.10%,
an improvement of 6.30 percentage points. In contrast, the proposed method performs even
better in structural defect detection, achieving a score of 75.53%, which is 2.43 percentage
points higher than ComAD. Considering both logical defect and structural defect detection
capabilities, the proposed method achieves the highest overall score of 81.73%, leading the
second-best method by nearly 2%.
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Table 1. Comparison of results of different anomaly-detection methods on the MVTec LOCO
AD dataset.

Method Logical Structured Overall Score

MNAD 60.00 70.20 65.10
SPADE 70.90 66.80 68.85

DRAEM 72.80 74.40 73.60
S-T 66.40 88.30 77.35

ComAD 86.38 73.10 79.74
MPFnet 73.90 84.80 79.40

Ours 87.92 75.53 81.73

Our experimental evaluation covers two distinct industrial inspection benchmarks:
MVTec LOCO AD for logical and structural anomalies and MVTec AD for object-level defect
detection. The results in Table 2 demonstrate consistent performance improvements across
both datasets. On MVTec LOCO AD, our method achieves 87.92% AUROC for logical
anomaly detection and 75.53% AUROC for structural defects. For MVTec AD’s object
categories, we obtain 74.94% AUROC. These results represent an average improvement of
2.07 percentage points over ComAD, confirming the effectiveness of our multi-scale fusion
approach across diverse industrial inspection scenarios.

Table 2. Performance comparison on industrial inspection benchmarks (AUROC%).

Datasets ComAD Ours

MVTec LOCO AD Logical 86.38 87.92
MVTec LOCO AD Structural 73.10 75.53

MVTec AD Object 72.70 74.94

Average 77.39 79.46

4.2. Validation of the Effectiveness of Component-Level Feature Enhancement

To further validate the effectiveness of the proposed method, this paper conducts abla-
tion experiments to evaluate the performance of the component-level feature-enhancement
module in logical defect and structural defect detection tasks. Specifically, the paper com-
pares the effects of including the component-level feature-enhancement module versus
removing it, analyzing its impact on overall performance. Table 3 presents a comparative
analysis of the experimental results for component-level feature enhancement. Using the
ComAD method as a baseline, the performance differences of the proposed module under
various test scenarios are analyzed. It can be observed that in logical defect detection,
after incorporating the component-level feature-enhancement module, the model can more
accurately capture the details of logical defects, especially in samples with complex log-
ical anomalies (e.g., connectors), where the improvement is significant (increasing from
the baseline of 84.51% to 92.30%). This demonstrates its advantage in handling complex
anomaly patterns.

In structural defect detection, the addition of the component-level feature-enhancement
module shows relatively stable advantages across most samples. To more intuitively demon-
strate the effectiveness of the component-level feature-enhancement method, we provide
visual results of its effects, as shown in Figure 5. The left side displays the original images
from the MVTec LOCO AD dataset, the middle shows the component confidence images
before enhancement, and the right side shows the component confidence images after
enhancement. Taking the pushpin sample in the second row as an example, the confidence
map generated by the baseline method suffers from edge blurring, and the grayscale val-
ues of non-component regions around the target area are significantly higher, indicating
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limitations in component feature representation. In contrast, the proposed component-
level feature-enhancement method can more precisely capture component-level structural
anomalies, and the generated component confidence images exhibit clearer local feature
representation. According to the data in Table 3, the component-level feature-enhancement
method achieves a structural defect detection score of 98.05% on the pushpin dataset, a
significant improvement of 4.97 percentage points over the baseline method (ComAD) at
93.08%, demonstrating stronger local anomaly-detection capabilities. Although in some
samples, such as the Juice Bottle dataset, the proposed method achieves a structural defect
detection score of 69.22%, slightly lower than the baseline method (ComAD) at 77.07%,
overall, the proposed method shows clear advantages in structural defect detection.

Table 3. Experimental results of component-level feature enhancement (CLE).

Method Breakfast Box Juice Bottle Pushpins Screw Bag Splicing Connectors Total

Baseline Logical 94.53 84.40 88.52 79.97 84.51 86.38
Structured 69.95 77.07 93.08 61.46 63.92 73.10

CLE Logical 93.68 82.73 87.18 79.57 92.30 87.09
Structured 65.82 69.22 98.05 63.25 77.79 74.83

Figure 5. Demonstration of the effectiveness of local feature enhancement. The left side shows
the original images from the MVTec LOCO AD dataset, the middle shows the component confi-
dence images before enhancement, and the right side shows the component confidence images
after enhancement. The red dashed boxes indicate magnified views of specific components.

Additionally, we conducted a visual analysis of the tendency of unsupervised anomaly-
detection tasks to overlook minor defects. As shown in Figure 6, taking the sample in the
second row as an example, a pill is mixed into the nuts. After optimizing the feature map
using the component-level feature-enhancement method, the experimental results show
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significant differences. Before enhancement, the differences between normal components
and defects in the image are small, and the feature distinction between the pill defect region
and the normal component region is low, causing the detection algorithm to fail to identify
the defect location accurately. The defect region is not annotated in the detection results,
leading to detection errors. In contrast, in the enhanced feature map, the defect region is
clearly delineated, and the pill location appears as a distinct gap in the confidence map.
Through comparison with normal images, this gap is accurately identified as an anomaly
region, effectively avoiding misjudgment of normal regions and significantly improving
detection accuracy and reliability. This indicates that the proposed method can effectively
enhance the detection capability for fine-grained defects.

Figure 6. Demonstration of the effectiveness of component-level feature enhancement in detecting
minor defects. The left side shows the original image, the middle shows the confidence map and
detection results before enhancement, and the right side shows the confidence map and detection
results after enhancement. The red dashed boxes indicate magnified views of abnormal part.

4.3. Validation of the Effectiveness of Multi-Layer Piecewise Thresholding

The multi-layer piecewise thresholding strategy proposed in this paper divides the
confidence map into three regions: foreground, background, and transition region, and
selects the transition region along with the foreground as input to the component-level
feature encoder. This dual-region collaborative input approach effectively enhances the
accuracy of component-level feature encoding, avoiding the potential issue of structural
incompleteness when using only the foreground. Unlike previous methods that solely rely
on the foreground region, the proposed method significantly improves region-segmentation
accuracy by introducing the transition region. As shown in Figure 7, the left side displays
the confidence map of a pushpin sample, while the right side shows an enlarged image of
a single pushpin, where different colors represent different region divisions: red for the
foreground, blue for the background, and green for the transition region. The first row on
the right shows the original image and its corresponding segmentation diagram, while
the second row shows the confidence image and its corresponding segmentation diagram.
Through this color-coding method, different regions in the image (foreground, background,
and transition region) are clearly distinguished, thereby reducing the risk of misjudgment.



Electronics 2025, 14, 1613 20 of 25

Figure 7. Effect of applying multi-layer piecewise thresholding to a pushpin sample. The red dashed
boxes highlight magnified views of individual pushpins.

To further validate the role of the transition region, as shown in Figure 8, this paper
uses a breakfast box sample to demonstrate the segmentation results before and after
introducing the transition region. Before introducing the transition region, the model mis-
takenly identified the cereal region in the upper right corner as part of the target component
when extracting the “fruit” component. After introducing the transition region, the model
further segmented the confidence map, effectively excluding non-target component regions
and ensuring the correct division of the target component. This allows for more precise
localization and identification of defect regions in subsequent defect detection processes,
thereby improving detection accuracy.

Figure 8. Comparison of component segmentation results before and after introducing the transi-
tion region.

4.4. Validation of the Effectiveness of Multi-Layer Piecewise Thresholding

To further validate the effectiveness of the proposed multi-layer piecewise thresh-
olding method, two commonly used region-segmentation methods in the field of image
segmentation—K-means and Otsu (maximum inter-class variance method)—are intro-
duced for quantitative comparison. Table 4 summarizes the AUROC (Area Under the
Receiver Operating Characteristic Curve) comparison results of these region-segmentation
methods in logical anomaly and structural anomaly detection. As shown in Table 4, the
multi-layer piecewise thresholding method outperforms both K-means and Otsu in both
logical anomaly and structural anomaly detection.
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Table 4. Comparison of segmentation accuracy (AUROC) across different methods (All values in %).

Methods Logical Structured

K-means 86.47 72.49
Otsu 87.58 72.27

Multi-threshold 87.92 75.53

To further verify the applicability and performance of the method across different
defects, Table 5 presents the region-segmentation accuracy evaluated by the AUROC met-
ric between the multi-layer piecewise thresholding method compared to other methods.
The data in Table 5 show that the multi-layer piecewise thresholding method significantly
improves segmentation accuracy, especially in structural anomaly detection, further demon-
strating its robustness and effectiveness in different environments.

Table 5. Comparison of segmentation accuracy (AUROC) across different categories (All values in %).

Methods Breakfast
Box Juice Bottle Pushpins Screw Bag Splicing

Connectors Total

Logical
K-means 92.79 77.84 88.17 86.22 87.32 86.47

Otsu 91.06 84.94 89.54 86.26 86.08 87.58
Multi-threshold 92.85 84.48 87.21 86.70 88.34 87.92

Structured
K-means 69.51 62.98 96.28 65.10 68.57 72.49

Otsu 62.78 73.65 94.28 62.80 67.82 72.27
Multi-threshold 65.26 78.45 95.74 64.92 73.25 75.53

4.5. Efficiency Analysis of Similarity Calculation Methods

In the feature-enhancement module, the similarity calculation between the confidence
image and the candidate feature image is a critical step. To evaluate the efficiency of
different similarity measurement methods, we compared and analyzed four commonly
used similarity calculation methods: MSE (Mean Squared Error), SSIM (Structural Similarity
Index), COS (Cosine Similarity), and PSNR (Peak Signal-to-Noise Ratio). The experimental
summary is as follows:

According to the data in Table 6, the AUROC values represent the average performance
in logical anomaly and structural anomaly-detection tasks. The AUROC in the table reflects
the overall performance of the model under different segmentation methods in logical
anomaly and structural anomaly detection. PSNR consistently performs best in logical
anomaly detection and achieves near or the highest scores in structural anomaly detection,
demonstrating its stable performance.

Table 6. Performance comparison of detection accuracy at logical and structural levels (AUROC %).

Methods Breakfast Box Juice Bottle Pushpins Screw Bag Splicing Connectors Total

Logical

MSE 86.03 74.33 72.84 57.89 60.69 72.65
COS 95.54 81.53 80.88 84.31 69.43 84.66
SSIM 94.76 81.53 80.58 84.23 72.07 83.94
PSNR 95.12 81.65 89.60 84.29 69.79 86.54

Structured

MSE 66.97 60.97 61.49 60.69 54.92 61.01
COS 71.25 67.09 87.31 69.43 67.53 72.52
SSIM 68.83 67.09 84.27 72.07 66.80 71.81
PSNR 70.38 67.09 85.89 69.79 68.33 72.30
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Across different defects, PSNR exhibits stable performance, indicating its ability to
effectively meet the detection requirements of various scenarios. In addition to accuracy,
we also compared the computational efficiency of different methods, primarily measured
by FPS (Frames Per Second). The FPS data only include the time required for similarity
calculation, so the FPS differences between methods are significant, mainly due to the varying
complexity of similarity calculations. As summarized earlier, the AUROC in the table reflects
the overall performance of the model under different segmentation methods in anomaly
detection. Table 7 shows the comparison of efficiency (FPS) and accuracy (AUROC).

Table 7. Comparison of efficiency (FPS) and accuracy (AUROC%).

Criteria MSE COS SSIM PSNR

FPS 1901.93 57.19 24.81 448.25
AUROC 66.83 78.59 77.88 79.42

Based on the experimental data, PSNR achieves a slight improvement in AUROC
(approximately 1.67%) while maintaining a relatively high FPS compared to COS and SSIM
methods. PSNR not only provides high accuracy but is also suitable for scenarios requiring
both precision and performance, demonstrating balanced overall performance. Therefore,
this paper adopts PSNR as the default method for calculating the similarity between the
confidence image and the candidate feature image.

4.6. Ablation Experiments

To further evaluate the effectiveness of the method, we conducted an in-depth analysis
of the specific contributions of each module. In this ablation experiment, the ComAD
method is used as the baseline to evaluate the performance of the component-level
feature-enhancement method and its combination with the multi-layer piecewise thresh-
olding method.

According to the experimental results in Table 8, the proposed method achieves a
stable overall score of 87.09% in logical defect detection when only the component-level
feature-enhancement module is retained. In structural defect detection, the overall score
is 74.83%, an improvement of 1.73 percentage points over the baseline method. The
component-level feature-enhancement module focuses more on detecting minor defects
and local anomalies, demonstrating clear advantages in identifying fine-grained defects,
especially on the “Splicing Connectors” and “Pushpins” datasets. Additionally, when the
multi-layer piecewise thresholding method is introduced on top of the component-level
feature-enhancement module, the logical defect detection score increases to 87.92%, and
the structural defect detection score increases to 75.53%, an improvement of 0.7 percentage
points compared to using the component-level feature-enhancement method alone. This
may be because the transition region introduced by the multi-layer piecewise thresholding
method enhances the accuracy of component-level feature encoding, further optimizing
region segmentation and anomaly region identification in structural defect detection. Our
method achieves strong logical defect detection but shows varied structural detection per-
formance across categories, excelling with Pushpins while under-performing on Breakfast
Box and Screw Bag. We acknowledge that while the component-level feature-enhancement
method demonstrates strong overall performance, there remains room for improvement in
handling highly diverse anomalies. Specifically, the structured anomaly-detection scores
of 65.26% AUROC for the Breakfast Box and 64.92% AUROC for the Screw Bag indicate
potential limitations when dealing with particularly complex defect patterns.
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Table 8. Comparison of anomaly-detection results between component-level feature enhancement
(CLE) and multi-layer piecewise thresholding (MLPT) methods and the baseline method (All values
in %).

Methods Breakfast Box Juice Bottle Pushpins Screw Bag Splicing Connectors Total

ComAD Logical 94.53 84.40 88.52 79.97 84.51 86.38
Structured 69.95 77.07 93.08 61.46 63.92 73.10

CLE Logical 93.68 82.73 87.18 79.57 92.30 87.09
Structured 65.82 69.22 98.05 63.25 77.79 74.83

CLE + MLPT Logical 92.85 84.48 87.21 86.70 88.34 87.92
Structured 65.26 78.45 95.74 64.92 73.25 75.53

5. Conclusions
This paper proposes an industrial anomaly-detection method based on component-

level feature enhancement, achieving efficient detection of fine-grained anomalies through
the selection and optimization of multi-component feature regions. Experimental results
demonstrate that the proposed method outperforms existing mainstream methods in both
logical defect and structural defect detection tasks, significantly improving detection accu-
racy and robustness. Specifically, the method can more precisely capture semantic logical
consistency between components and component-level anomaly features, demonstrating
its applicability to multi-component samples in complex industrial scenarios and its ability
to effectively avoid background interference.

To further enhance the adaptability and robustness of industrial anomaly detection,
future research will focus on developing self-adaptive feature evaluation frameworks capa-
ble of dynamically adjusting to diverse defect characteristics. This includes: (1) Developing
lightweight defect detection architectures through neural network pruning techniques [11],
where we will adapt progressive filter pruning methods to preserve critical defect features
while improving inference speed; (2) few-shot anomaly-detection protocols to improve
recognition of rare defects by learning from limited examples; and (3) context-aware metric
optimization to ensure that different defect types are evaluated using the most appropriate
criteria. Additionally, we will explore cross-domain generalization techniques to enhance
model performance in varying industrial environments, as well as automated threshold
adaptation to reduce manual calibration efforts. These advancements aim to bridge the
gap between controlled experimental settings and real-world deployment, where defects
exhibit high variability in appearance and frequency.
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