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Definition: Enantiomers share the same chemical formula but have different chemical structures, i.e.,
type of isomers. Enantiomers are present in several drugs, perfumes, food, and are a fundamental
part of biomolecules. This subject is highly important for pharmaceutical companies. Enantiomeric
drugs present different actuation in the human body; depending on the compound, one might
combat the symptom, whereas its pair might cause damage. The separation of pairs of enantiomers
requires a chiral environment that provokes a structural imbalance that conventional methods cannot
provide. Enantioresolution is one of the most promissory studies that benefit several areas, such as
pharmaceutical, biotechnology, food industry, and fine chemistry. Its resolution is of great importance,
therefore, its main mechanisms of resolution will be explained herein.
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1. Introduction

Isomers are different compounds that share the same chemical formula but have dif-
ferent chemical structures. They are classified into structural and stereoisomers. Structural
isomers might be subclassified into function, chain, position, metamerism and tautomerism,
as exemplified in Table 1, the latter only existing in equilibrium. Stereoisomers are subclassi-
fied into diastereomers (diastereoisomers) and enantiomers (optical isomers). Isomers have
different physicochemical properties such as their melting point, boiling point, solubility,
and density. Enantiomers, unlike other isomers, share all these properties, but optical
activity. Enantiomers are analogous to a pair of hands, an enantiomer is a specular image
of the other.

Enantiomerism is present in several drugs, perfumes, food, and even in our own
body. The response of human organisms to certain enantiomeric compounds might change
dramatically depending on the enantiomer: one enantiomer in a drug might treat the
disease whereas the other might cause harmful side effect. Thalidomide’s side effect is,
perhaps, the most remarkable and unfortunate known case in the literature. It is a drug
that was used by pregnant women in the 1960’s in the United Kingdom in order to combat
morning sickness. However, the drug caused several birth defects [1]. This drug was sold
in an equimolar mixture of enantiomer in which only one of them combats the symptom
(eutomer), and the other caused side effects (deutomer) [2].

Large pharmaceutical companies aim to synthesize drugs that are quickly able to
combat symptoms or illnesses with the least number of side effects by removing the deu-
tomer. For this reason, enantioresolution is a crucial issue in the pharmaceutical industry.
Distillation, decantation, and filtration are common methods of separation for compounds
based on boiling point, density, and size, respectively. The resolution of compounds with
different physicochemical properties might be simpler in comparison to enantioresolution.
The separation of pairs of enantiomers, though, is not straightforward, and conventional

Encyclopedia 2022, 2, 151–188. https://doi.org/10.3390/encyclopedia2010011 https://www.mdpi.com/journal/encyclopedia

https://doi.org/10.3390/encyclopedia2010011
https://doi.org/10.3390/encyclopedia2010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/encyclopedia
https://www.mdpi.com
https://orcid.org/0000-0002-0963-6449
https://doi.org/10.3390/encyclopedia2010011
https://www.mdpi.com/journal/encyclopedia
https://www.mdpi.com/article/10.3390/encyclopedia2010011?type=check_update&version=3


Encyclopedia 2022, 2 152

methods are nearly ineffective. Crystallization, membrane, or chromatography are exam-
ples of processes used to separate enantiomers in a chiral environment, molecules that tend
to bind to an enantiomer instead of the other [3].

Table 1. Types of isomers and their structural formula [3].

Isomerism Chemical
Formula Structural Formula

Structural

Function C3H6O
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(S)-Lactic acid (R)-Lactic acid

Optical activity is the phenomenon of shifting in the direction of the light plane when
it passes through a compound. Light is an electromagnetic radiation that, when interacting
with electrons in a molecule, slightly diverts its direction. Some molecules, though, do not
present optical activity, i.e., for any light shift, either to the left or right, there is a molecule
that shifts it in the opposite direction, nulling the optical activity. On the other hand, when
light passes through pure there is a shift of the light; when light shifts to left, the enantiomer
is called levorotatory (receives the prefix l or (−)) and to the right it is called dextrorotatory
(receives the prefix d or (+)).
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A polarimeter is the instrument responsible for reading the light rotation in degrees of
a certain enantiomer concentration. This rotation must be converted into a specific rotation
to take in account the polarimeter length and sample concentration, as given by:

[α]Tλ =
α

lpol ·c
(1)

where [α] is the specific rotation, superscript T designates the temperature (usually 20 ◦C),
superscript λ the light wavelength (usually at 589.6 nm of Na D-lines), lpol is the polarimeter
length in dm, c is the enantiomer concentration in g·cm−3, and α is the observed rotation in
degrees in the polarimeter. It means that an l enantiomer has a negative specific rotation, a
d enantiomer a positive one, and a racemate has a [α]Tλ of zero.

A pair of enantiomers does not overlap by either transposition or rotation. The non-
overlapping of molecules is known in chemistry as chirality and these compounds are
therefore called chirals (from the Greek word χέριa [quéria], meaning hands). In order
to be considered chiral, the molecule must have at least one tetrahedral carbon bound to
four different groups, as shown in Figure 1. This carbon is known as chiral or asymmetric
carbon [4]. There is also the possibility of chirality involving other atoms such as silicon,
nitrogen, sulfur and phosphorus, coordination complexes, allenes and atropisomers, as
shown in Figure 2; however, these are less common [5].
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phosphorus, (e) cobalt complex, (f) allenes and (g) atropisomers. 

Chirality in a molecule’s structural formula is represented by solid and hashed 
wedges (  and ) representing bonds that are projected out towards and retreating 
from the viewer, respectively. At least two equal bonds make up the atom achiral; there-
fore it does not form optical isomers. The number of chiral carbons determines the number 
of enantiomers of a compound, as given by: 𝑁ாே = 2௡ (2) 

where 𝑁ாே and 𝑛 are the number of enantiomers and chiral carbons, respectively, as ex-
emplified in Figure 3. However, this correlation is not always true; molecules with at least 
two chiral carbons that present a plane of symmetry are not chiral molecules. One of its 
carbons shifts the light plan to left, whereas the other nulls its effect, an internal compen-
sation. An example is illustrated in Figure 4, although the tartaric acid has two chiral car-
bons, it has only two enantiomers and one meso isomer, a diastereomer and a non-opti-
cally active stereoisomer (see Table 1). 
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) representing bonds that are projected out towards and retreating from the
viewer, respectively. At least two equal bonds make up the atom achiral; therefore it
does not form optical isomers. The number of chiral carbons determines the number of
enantiomers of a compound, as given by:

NEN = 2n (2)

where NEN and n are the number of enantiomers and chiral carbons, respectively, as
exemplified in Figure 3. However, this correlation is not always true; molecules with
at least two chiral carbons that present a plane of symmetry are not chiral molecules.
One of its carbons shifts the light plan to left, whereas the other nulls its effect, an internal
compensation. An example is illustrated in Figure 4, although the tartaric acid has two chiral
carbons, it has only two enantiomers and one meso isomer, a diastereomer and a non-
optically active stereoisomer (see Table 1).
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Figure 4. Tartaric acid presents (a) two enantiomers and (b) a meso isomer.

2. Nomenclature

A pair of enantiomers is formed by two different compounds that must have two dif-
ferent names. The Chemical Abstracts Service Registry Numbers (CAS RN or CAS Number)
is a registration system of different compounds. Chemical Abstract Service has registered
over 190 million compounds since the XIX century and thousands are registered every
day [6]. Its database includes inorganic and organic compounds; metals and alloys; poly-
mers; isotopes; protein and nucleic acids; coordination compounds and organometallics;
minerals; and even mixtures. In fact, not only the pure enantiomers, but racemates, a
mixture of compounds, have their own CAS Number. For instance, limonene racemate’s,
(+)-limonene’s and (−)-limonene’s CAS Numbers are, respectively, 138-86-3, 5989-27-5 and
5989-54-8. The CAS Number does not have a significance itself, as it is just based on the
order of registration. On the other hand, prefixes (d or +) and (l or−), mentioned in the
previous section, designates whether the compound shifts the light to the right or left, and
does not distinguish enantiomers when there are four or more enantiomers, as shown in
Figure 3b; therefore, this is not a form of naming either.

Pairs of enantiomers are named following a sequence of rules created by the chemists
R.S. Cahn, C. Ingold, and V. Prelog. This is known as Cahn-Ingold-Prelog rules or R/S
configuration, where R and S stand for rectus and sinister (right and left in Latin). The rules
for enantiomer nomenclature are detailed in Table 2.

First, it is necessary to rank the atoms directly bounded to the chiral carbon from
largest to smallest atomic number, even in the case of isotopes. When the atoms have
the same atomic number, one must follow down to the next substituent until there is a
divergence point. Then, the least atomic number substituent is posed at the rear from a 3D
perspective (a molecular modeling kit might help), as shown in Table 2. Finally, one draws
circle arrows from the first to the third position. If the arrow goes counterclockwise, the
enantiomer is S, otherwise is R. This procedure must be repeated when the molecule has
other chiral carbons.

It is worth noticing that the prefixes (R) and (S) have no correlation with the shift
of light plan, as an enantiomer might receive a prefix (R) and shifts light to left and vice
versa. For instance: (R)-limonene has a specific rotation of +12◦ whereas (R)-butanol
presents −13.5◦. Another important issue that should be noted that there is another form
of nomenclature exclusive for amino acids and monosaccharides, L and D, which have
nothing to do with prefixes (R)/(S) or (d)/(l). L-amino acids and D-monosaccharides are
by far the most common types that are present in all forms of life, with D-amino acids and
R-monosaccharides nearly inexistent. They receive the prefix L when the amine or hydroxy
group on the farthest carbon chiral from the carbonyl group is on the left side in a fisher
projection, and prefix D when is on the right, as shown in Figure 5.
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Table 2. Rules for enantiomer nomenclature.

Rule Illustration

1st

Ranking of atoms
in descending

order of atomic
number
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Figure 5. (a) Amino acids L and D -Alanine and (b) monosaccharides L and D -Fructose.

3. Enantiomers and the Human Body

Several natural compounds have two or more enantiomeric forms due to the com-
plexity of their molecules that hold one or more chiral carbons. The human body, in
turn, is essentially asymmetric; several organic molecules present chiral carbon, such as
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deoxyribonucleic and ribonucleic acid and their monosaccharides deoxyribose and ri-
bose, respectively, and monosaccharides of the natural polymer DNA and RNA, shown
in Figure 6, are present in all human cells [7]. “Chirality represents an intrinsic property
of the so-called ‘structural blocks of life’, such as amino acids and monosaccharides and,
consequently, peptides, proteins and polysaccharides” [8].
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Figure 6. Deoxyribose (a) and ribose (b) monosaccharides structural formulas from DNA and RNA
and their chiral carbons.

In their composition, many drugs have enantiomeric compounds that, in an asym-
metric environment such as the human body, act completely different. There are several
cases where one of the enantiomer is the active principle, while the other might cause side
effects, prove to be toxic, ineffective or antagonist in the treatment [2,9–12]. Many drugs
must be sold in its pure enantiomer form in order to be effective and/or harmless, for
this reason, enantioresolution is one of the most important issues of the pharmaceutical
industry. There are many known cases in the literature of different behaviors of enantiomers
in pharmaceutical, agronomic and food applications, as shown in Table 3 [4,13,14].

Table 3. Difference in biological activities between enantiomers [4].

Compounds (S) Enantiomer Actuation (R) Enantiomer Actuation

Limonene
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4. Enantiomeric Drug Market 
Nearly 60% of prescribed drugs have an enantiomeric pair [16,17]. However, for a 

long time, it was a common practice to commercialize chiral drugs in their racemic mix-
ture. Regulatory authorities have put pressure on pharmaceutical companies to sell enan-
tiomeric medicaments in their pure form [2,4]. Ethambutol was the first drug to be com-
mercialized as a single enantiomer in 1961 [18]. Since then, the number of enantiomers 
sold in their pure form has increased year after year. In 1994, only 20% of the top selling 
drugs were enantiomers in their pure form [4]. In 2005 this number was already 37% [19] 
and currently it is over 50% [20]. This increase is justified to regulators that increasingly 
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The reason for the distinct actuation of virtually identical compounds is found in the
biological receptors in human cells. These are macromolecules present in cell membranes
that mediate the effects of chemical messages, hormones, and drug actions in the body [13].
They are responsible for selecting which substance from extracellular fluid may or may not
enter the cytoplasm [15]. Figure 7 illustrates this interaction between biological receptors
and chiral molecules. In Figure 7a, the enantiomer interacts perfectly with the receptor,
whereas in Figure 7b the connection is compromised, which might cause a side effect if any
effect at all. The pharmacological properties, pharmacokinetic of adsorption, distribution,
biotransformation and excretion, and drug toxicology of the enantiomeric drug must
be well known and identified [8]. It is important to define the safe degree of purity
for an enantiomeric drug before commercialization. Pharmaceutical companies are also
interested in selling safe and efficient medicaments, especially in a highly competitive
market of medicaments.
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4. Enantiomeric Drug Market

Nearly 60% of prescribed drugs have an enantiomeric pair [16,17]. However, for a
long time, it was a common practice to commercialize chiral drugs in their racemic mixture.
Regulatory authorities have put pressure on pharmaceutical companies to sell enantiomeric
medicaments in their pure form [2,4]. Ethambutol was the first drug to be commercialized
as a single enantiomer in 1961 [18]. Since then, the number of enantiomers sold in their
pure form has increased year after year. In 1994, only 20% of the top selling drugs were
enantiomers in their pure form [4]. In 2005 this number was already 37% [19] and currently
it is over 50% [20]. This increase is justified to regulators that increasingly require clinical
control and commercialization of pure enantiomers [8]. An example is the American
Federal Agency FDA (Food and Drug Administration), which requires toxicological data
of each enantiomer individually [4,21,22].

In economic terms, there was a worldwide growth of USD 30 billion to USD 100 billion
from 1992 to 2000 with about 24 companies specializing in enantiomer separation [8,23]. In
2002, this value was already USD 159 billion and in 2005 USD 225 billion [8,19,24]. Table 4
shows the top pharmaceutical companies worldwide in 2017 with regard to chiral active
ingredients, according to Pharmacompass (2019), which taken together account for almost
USD 58.4 billion.

In such a market, pharmaceutical industries increasingly require refined compounds,
which act quickly, in order to stand out in a competitive market. Due to the difference
in the performance of different enantiomers, the complexity of some compounds, and
the economic-market importance, it is crucial to efficiently and economically obtain each
compound separately, either by synthesis or separation.
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Table 4. Top seller drugs worldwide in 2017 with chiral active ingredients (PHARMACOM-
PASS, 2019).

Product
Name Chiral Active Ingredient Indication

Revenue (in
Millions of

Dollars)

Revlimid
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Table 4. Cont.

Product
Name Chiral Active Ingredient Indication

Revenue (in
Millions of

Dollars)
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Table 4. Cont.

Product
Name Chiral Active Ingredient Indication

Revenue (in
Millions of

Dollars)
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Table 4. Cont.

Product
Name Chiral Active Ingredient Indication

Revenue (in
Millions of

Dollars)
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selectivity for a given enantiomer, as shown in Figure 8a [4,8]. If the other enantiomer is
also desired, it is necessary to develop a second synthesis with a different chiral catalyst.
At first glance, the chiral route seems to be more advantageous than the racemic route
(Figure 8b); they synthesize 100% of the intended enantiomer and there is no need for
further separation and energetic expenses. On the other hand, racemic routes achieve up to
50% of the desired optically active isomer and racemic routes show inherently poor “atom
economy”, i.e., part of the raw material is wasted, and the methods are not “elegant” [25–28].
However, chiral routes usually have low overall yields and only a few of them are applied
for industrial purpose, especially at the early stages of new drugs development that requires
pure enantiomers for pharmacological tests [2]. Keith, Larrow and Jacobsen (2001) list the
following conditions that must be met in order to make the chiral route feasible: cheap
racemate; poor CSP (Chiral Stationary Phase) enantioselectivity; highly selective catalyst
for one enantiomer; inexpensive or efficiently recyclable catalyst and economical and safe
reaction. Usually, these conditions are difficult to achieve, in a way that the production of
the racemic mixture for further separation (Figure 8b) is normally favored. Furthermore,
economic interest is the driving force that boosts the development of new enantioresolution
technologies [2]. The cost of separation depends on the desired degree of purity and this
affects the separation route [29].
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Several methods for enantioresolution have been carried out in chiral environments
using CSP. Chiral stationary phases are more effective at binding to one of the enantiomers,
according to Dalgliesh’s three-point rule [30], and analogous to biological receptor in
Figure 7. This rule states that a chiral environment should have three interaction points
with the retained compound either by H-bonding, electrostatic interaction, dipole stacking,
inclusion complexion or steric bulk hindrance. When the enantiomer does not interact
perfectly with the CSP, the connection weakens and the enantiomer is less retained in the
chiral environment, promoting enantioseparation [31–33].

Enantioresolution methods have existed since the early works of Louis Pasteur, who
was able to separate tartaric acid manually by crystallization [4]. Currently, there are several
methods for enantioresolution, such as chromatography, crystallization, and membrane.
Figure 9 summarizes the main methods for enantiomer separation that might be Crystalliza-
tion, Membrane, and Chromatography. The latter can be divided into Gas Chromatography
(GC), Supercritical Fluid Chromatography (SFC), and Liquid Chromatography (LC). The
latter can be further classified into High Pressure Liquid Chromatography (HPLC), True
Moving Bed (TMB) and Simulated Moving Bed (SMB) chromatography. All these methods
have advantages and drawbacks and choosing the best one among numerous technologies
is not straightforward; therefore, there is no single resolution method suitable for all race-
mate [8,29,34,35]. The main mechanisms for enantioresolution are going to be detailed in
the following sections.
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5.1. Crystallization

Crystallization is a stochastic phenomenon of molecular dynamics based on many
variables such as temperature, pressure, glass-forming ability of liquids, among other
not well understood [36]. Table 5 presents some examples of enantiomers resolved by
crystallization methods in the literature. Crystals might be formed by either conglomerates
or racemic crystals [37]. Conglomerates are mechanical mixtures of crystals macroscopically
distinguished from the pure enantiomers. The first enantiomeric resolution was carried
out by Louis Pasteur in 1848, who manually separated conglomerate crystals of sodium
ammonium tartrate [37,38]. In racemic crystals, the two enantiomers crystallize together
forming a one-phase crystal containing the same amounts of each enantiomer, as shown in
Figure 10.
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Conglomerate crystal separations are generally straightforward; during the process
of crystallization, enantiomers separate spontaneously into two stable crystal-phases, this
mechanism is called preferential (or direct) crystallization and it is a non-expensive and
efficient method, even on large scales [39,40]. Unfortunately, crystals from conglomerates
are rather rare, comprising only 5–10% of all racemate crystals [38,40–42].

Table 5. Experimental studies of enantioresolutions applying crystallization.

Enantiomers Ref.

Ketoprofen [36]

5-ethyl-5-methylhydantoin [39]

Threonine [42]

Aspartic acid and glutamic acid [43]

Propranolol [44]

N-methylamphetamine [45]

Threonine [46]

Mandelic acid [47]

Chiral microspheres based on poly(N-vinyl a-L-phenylalanine) [48]

Benzo-(c)phenanthrene, 3,4-dehydroproline anhydride, and 2,6-dimethylglycoluril [49]

2-(2-oxopyrrolidin-1-yl)butanamide [50]

Allenyl-bis-phosphine oxides [51]

Leucine [52]

Ibuprofen lysine [53]

Racemic crystals, in turn, require suitable resolving agents, which are optically active
compounds that aid in their non-spontaneous separation. Resolving agents convert the
enantiomeric pair into two different diastereomers (geometric isomers, see Table 1) with
different Physico-chemical properties, as they are different compounds, such as solubility,
thus, facilitating their separation [44,54]. This mechanism is the so-called Classical Resolu-
tion [38]. The main idea is to break the symmetry between enantiomers by adding a chiral
agent in an achiral solvent, possibly forming non-covalent and covalent diastereomers. The
former involves salt formation by adding acidic or basic substrates and is the most common
resolution method and the latter is applied for molecules unable to form salt [40,54,55].

5.2. Membrane

Membranes for enantiomer separation have advantages over other methods because
they tend to be low energy consuming, can work in continuous operation, even in large
scales, can be scaled up and down, have higher throughput than other methods and are
eco-friendly [31,40,56–58]. The membranes provide good a transport rate, high selectivity,
stability in wide range of pH among different solvents and might be produced from
different polymeric materials [59]. Enantioselective membranes work as barriers with chiral
recognition sites that selectively transport one of the enantiomers based on affinity between
the enantiomer and chiral selectors. Table 6 presents some examples of enantiomers
resolved by membrane methods in the literature.
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Table 6. Experimental studies of enantioresolutions applying membranes.

Enantiomers Membrane Ref.

Phenylalanine Immobilized DNA membranes [57]

Phenylalanine DNA-immobilized chitosan membranes [58]

Phenylalanine Polyaniline [60]

Tryptophan, tyrosine, and
phenylalanine poly(γ-methyl-l-glutamate) membranes [61]

Lactic acid and alanine Polypropylene hollow-fiber module
liquid membrane [62]

Naproxen Poly(4-vinylpyridine)
/polypropylene membranes [63]

Propranolol Chiral derivatized polysulfone [64]

Tryptophan, henylglycine and
phenylalanine Immobilized DNA membranes [65]

1-phenylethanol (R,R)-TADDOL [66]

N-protected amino acid
derivatives

Adamantyl-carbamoyl-11-
octadecylthioether-quinine/-quinidine [67]

Tryptophan Chitosan/-cyclodextrin
composite membranes [68]

Tryptophan Cellulose dialysis membranes [69]

2-phenyl-1-propanol Glutaraldehyde-crosslinked
chitosan membranes [70]

Tryptophan
BSA-Immobilized and

BSA-Interpenetrating Network
Polysulfone Membranes

[71]

Ketoconazole Hydrophobic l-isopentyl tartrate and
hydrophilic sulfobutylether–cyclodextrin [72]

Amlodipine Hollow fiber supported liquid membrane [73]

Phenylalanine Hollow fiber supported liquid membrane [74]

Atenolol Nano-sized chiral imprinted polymers [75]

Ibuprofen L-tartaric acid derivatives [76]

DOPA L-Glutamic acid-Graphene oxide
based membranes [77]

Tyrosine, phenylalanine
and tryptophan

D-penicillamine-modified membrane and
N-acetyl-L-cysteine-modified membrane [78]

Phenylalanine Regenerated cellulose membranes [79]

Arginine Chiral channel protein (FhuAF4) [80]

Baclofen Silica-based vancomycin-chiral
stationary phase [81]

Methadone Chiral (2-hydroxypropyl)-β-cyclodextrin [82]

Enantioselective membranes might be either liquid or solid [2,56]. Liquid membranes
are formed by organic liquid with Chiral Selectors (CS) dissolved or suspended in it, such
as cyclodextrins, crown ethers, chiral copper complexes, DNA, polypeptides, and en-
zymes. Solid membranes for enantiomer separation use chiral polymers as enantioselective
compounds that interact to a specific enantiomer, as shown in Figure 11 [62]. They are
either matrices of molecularly imprinted chiral polymers or membranes with the chiral
polymeric selector immobilized (by impregnation, esterification, or grafting) on porous
membranes [33,40,56,68,71].
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5.3. Chromatography

Chromatographic processes are largely applied in several fields such as chemistry,
pharmacy, and bioprocesses either for purification or recovery of different compounds [83].
Its separation is based on a physico-chemical phenomenon whereby a compound in a
mobile phase known as the eluent, liquid or gaseous phase, is adsorbed onto the surface of
a solid phase, usually a porous adsorbent. Chromatography displays some advantages over
crystallization and membrane separations once it may be applied for a mixture of more
than two chiral compounds and it can run with samples of small amount for analytical
purposes [84]. Its separation is based on the chemical affinity of each compound to a
stationary phase. In a chromatography equipment there are a solid stationary phase,
generally porous, and a liquid or gaseous (solvent) mobile phase, which contains the
mixture to be separated. Chromatographic methods have been the most effective for
obtaining enantiomers with very high purity [4,8].

There are different chromatographic techniques for chiral resolution that are able to
separate virtually all racemic compounds, that includes GC, SFC, and LC, as shown in
Figure 9. Regardless of the chromatographic method applied, a Chiral Stationary Phase
is applied, according to Dalgliesh’s three-point rule [30]. Figure 12 depicts adsorption of
Enantiomer 1 (E1) onto chiral environment, following Dalgliesh’s three-point rules, whereas
Enantiomer 2 (E2) has a compromised interaction to the surface, not fixing on it. CSPs
are adsorbents usually based on cellulose such as the commercial products Chiralcel OD,
CHIRALCEL OZ, CHIRALCEL OJ and CHIRALPAK AD, whereas common eluents are
hexane, ethanol, and methanol. The enantiomers commonly resolved are pharmaceutical
drugs such as Praziquantel and Guaifenesin.

All chromatographic techniques addresed to enatioresolution have their advantages
and disadvantages. The next sections detail the differences among these chromatographic
techniques, their functionalities and particularities.

5.3.1. GC—Gas Chromatography

Gas chromatography can be used by indirect or direct mechanisms [85]. In the former,
enantiomers are converted into diastereomers by a resolving agent, analogous to a crys-
tallization in racemic crystals, then they are separated in an achiral filling CG. The latter
uses CSP that separates one of the enantiomers preferentially in a straightforward way by
means of chemical affinity based on the three-point rule dismissing a pretreatment [86]. For
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the direct mechanism, GC requires the use of volatile and thermally stable compounds and
the choice for a CSP is of paramount importance in order to resolve racemic mixtures [87].
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The first GC with a Chiral Stationary Phase was applied to resolve 2-nalkanols [85].
Since this achievement, GC has been extensively used in academia and industry due
to its advantages of being high efficient, simple, and sensitive in comparison to other
methods [85,86,88,89]. On the other hand, GC has the drawbacks of being very difficult
to scale up and their CSPs usually racemize, decompose and bleed at high temperatures,
thereby diminishing its separation factor [87,90]. Table 7 presents some examples of
enantiomers resolved by gas chromatography methods.

Table 7. Experimental studies of enantioresolutions applying gas chromatography.

Enantiomers CSP Gas
Carrier Ref.

β-Blockers (-)-α-methoxy-α-(trifluoromethyl)
phenylacetyl chloride Helium [91]

β-pinene, sabinene, limonene, linalool,
terpinen-4-ol, α-terpineol, linalyl acetate EtTBS-βCD and DB-5 Hydrogen [92]

Chiral alcohols, chiral sulfoxides,
chiral epoxides and acetylated amines

Chiral
ionic liquid stationary phases Helium [93]

Flurbiprofen and ketoprofen Agilent 6890
gas chromatograph Helium [94]
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Table 7. Cont.

Enantiomers CSP Gas
Carrier Ref.

Alanina, prolina, serina, asparagine, glutamine,
lisine, ornitina Chirasil-l-Val capillary columns Helium [95]

Obuprofen, fenoprofen
and ketoprofen methyl esters

Heptakis-(2,3-di-Omethyl-
6-O-t-butyldimethyl-silyl)-β-cyclodextrin Hydrogen [96]

Chiral epoxides Cyclodextrin derivatives Nitrogen [97]

α-amino acids Modified Linear Dextrins Hydrogen [98]

Methyl branched compounds 2,3-Di-O-methoxymethyl-6-O-tert-
butyldimethylsilyl-γ-cyclodextrin Hydrogen [99]

Hydrocarbons, underivatized alcohols, ketones,
and proteinogenic amino acid

derivatives

Permethylated-βcyclodextrin
and resorcinarene with pendant L- or D-valine

diamide groups
Hydrogen [100]

β-Blockers DB-5 and DB-17 dual-columns Helium [101]

2,2-dimethylcyclopropane-carboxamide g-cyclodextrin Helium [102]

12 amino acids N-Ethoxycarbonylation was combined with
(S)-1-phenylethylamidation Helium [103]

β-amino acid CP-Chirasil-Dex CB and CP-Chirasil L-Val Nitrogen [104]

1-phenylethanol Permethylated -cyclodextrin Nitrogen [105]

3-methylhexane, 2,3-dimethylpentane,
3-methyl-heptane, 3,4-dimethylhexane,

2,4-dimethylhexane, 2,3-
dimethylhexane, 2,2,3-trimethylpentane

octakis(6-O-methyl-2,3-di-O-pentyl)-g-
cyclodextrin Hydrogen [106]

Amino acid derivatives (l)- or (d)-Valine tert-butylamide grafted on
permethylated -cyclodextrin Helium [107]

2,4-dimethylhexane octakis(6-O-methyl-2,3-di-O-pentyl)-γ-
cyclodextrin Nitrogen [108]

α- and β-pinene, cis- and trans-pinane, 2,3
butanediol, γ-valerolacton,

1-phenylethyl-lamine, 1-phenylethanol,
2-ethyl-exanoic acid

Derivatized cyclodextrins Helium [109]

Methylamphetamine γ-cyclodextrin Helium [110]

Citronellal, camphor,
alanine, leucine, valine, isoleucine,

1-phenyl-1,2-ethandiol, phenylsuccinic
acid, and 1-phenyl-ethanol

Chiral Metal-Organic Frameworks Nitrogen [111]

Cathinone- and amphetamine-related
designer drugs Trifluoroacetyl-l-prolyl chloride Helium [112]

Galaxolide, tonalide, phantolide, traseolide
and cashmeran

Chiral heptakis(2,3- di-O-methyl-6-O-t-butyl
dimethylsilyl)–cyclodextrin Helium [113]

Citronellal, 1-phenyl-1,2-ethandiol,
1-Phenyl-ethanol, 2-amino-1-butanol, limonene,

methionine, proline
Porous Chiral Metal-Organic Framework Nitrogen [114]

2-hexanol, linalool, citronellal, methyl
l-b-hydroxyisobutyrate,

limonene, rose oxide, dihydrocarvyl
acetate, menthol, valine, and leucine

Metal–Organic Framework on a Chiral
Cyclodextrin Nitrogen [115]

30 amino acids Press-Tight© connected Varian-Chrompack
Chirasil-l-Val Helium [116]
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5.3.2. SFC—Supercritical Fluid Chromatography

Supercritical fluids display transient properties between liquid and gas phases; there-
fore SFC works as an intermediate between GC and LC [117]. At the supercritical condition,
the substances are above its critical temperature and pressure [118,119]. Supercritical fluid
was firstly used as an eluent for chromatographic separation in 1962 by Klesper, Iiber and
Clark using chlorofluoromethanes at 140 bar and 150–170 ◦C [120,121]. Supercritical fluids
have advantages over liquid and gas states and they are a better solvent due to their higher
density in comparison to gas states as they are faster (shorter run times), require lower
pressure across column and require lower volume due to its lower viscosity and higher
diffusivity over liquid states [118–120,122–127]. The most commonly applied supercritical
fluid is carbon dioxide; however, the mentioned features are not exclusive to fluids over the
critical point, and equal properties are seen in subcritical regions, since there are no abrupt
changes of properties in the transition to a supercritical phase. This means that the fluid
must not be at a supercritical condition to perform an SFC [118]. Table 8 presents some
examples of enantiomers resolved by SFC methods reported in the literature.

Table 8. Experimental studies of enantioresolutions applying Supercritical Fluid Chromatography.

Enantiomers CSP Ref.

Ibuprofen
Kromasil CHI-TBB, Kromasil

CHI-DMB, Chirobiotik T, Chiracel OBH
and Chiralpal AD

[128]

Dioxolane compounds Chiralpak AD and Chiralcel OD [129]

Enantiomeric pharmaceuticals Chiralpak AD [130]

Enantiomeric pharmaceuticals Chiralcel OD, Chiralcel OJ and
Chiralcel AD [131]

A set of 111 chiral compounds Chirobiotic T, Chirobiotic TAG and
Chirobiotic R [132]

Albendazole sulfoxide Chiralpak AD and Chiralcel OD [133]

Triadimefon and triadimenol Chiralpak AD [134]

Albendazole sulfoxide Chiralpak AD [135]

Omeprazole and several
related benzimidazoles Chiralpak AD [136]

Triazole pesticides Chiralpak AD [137]

Enantiomeric pharmaceuticals Chirlapak AD and AS, and Chiralcel
OD and OJ [138]

Antiulcer drugs Chiralpak AD [139]

Naproxen Kromasil CHI-TBB [140]

Warfarin Chiralpak AD-H [141]

Chiral sulfoxides Chiralpak AD [142]

Antimycotic azole drugs Chiralpak AD [143]

Nutlin-3 Chiralcel OD, Chiralcel AD, Chiralcel
OJ, Chirobiotic T, Chirobiotic V [144]

Phospine-Containing α-Amino
Acid Derivatives Lux Cellulose-1 and -2 [145]

Acetamide intermediate Chiralcel OD-H, Chiralpak AD, Lux
Cellulose-2 and Lux Amylose-2 [146]

Tris-(3,5-dimethylphenylcarbamate)
of amylose Chiralcel OD-H and Chiralpak AD-H [147]

Mianserin Chiralcel OJ [148]
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Table 8. Cont.

Enantiomers CSP Ref.

Chiral fluoro-oxoindole-type
compounds

Lux Cellulose-1, Lux Cellulose-
2 and Lux Amylose-2 [149]

Flutriafol Chiralpak IA-3 [150]

Enantiomeric pharmaceuticals Chiralpak IC and Chiralpak AD-3 [151]

Troeger’s base, binaphthol, mandelic
methylester, trans-stilbene oxide,

flavanone and guaifenesine
Chiralcel AD-H and Chiralpak IC [152]

Additionally, CO2 is the most used eluent in SFC due to its relatively low critical point
(304.12 K and 73 atm), and it can be purified and reused after analysis; moreover it is inert,
non-toxic, non-flammable cheap and relatively safe gas, therefore being considered a green
solvent [118,119]. Due to its low critical temperature point, operating CO2 in SFC reduces
the likelihood of CSP racemization, improving enantioselectivity [124,153].

5.3.3. LC—Liquid Chromatography

Liquid chromatography has been growing in importance in the last decade due to
the variety of enantioseparation modalities [5,154,155]. In LC, the eluent and compounds
cross the fixed bed column (adsorber) by means of gravity and this can prove to be lengthy
in some procedures. The time-consumption of LC can be overcome by means of a pump,
low-dead-volume injectors, and detectors. An enhancement of LC is the so-called High-
Performance Liquid Chromatography (HPLC—also known as High-Pressure Liquid Chro-
matography). HPLC is suitable for a wide range of applications, such as pharmaceuticals
and food analysis. HPLC has the advantage of running a fast analysis and high resolution;
however, in HPLC (and LC) the adsorber must be constantly regenerated, once it will
be contaminated by the more retained enantiomer. Table 9 presents some examples of
enantiomers resolved by HPLC methods.

Table 9. Experimental studies of enantioresolutions applying HPLC Chromatography.

Enantiomers CSP Eluent Ref.

Antifungal chiral drugs Polysaccharide derivatives Hexane-ethanol and
hexane-2-propanol [133]

Fungicide Enantiomers Amylopectin Based Chiral n-hexane and isopropanol [144]

Oxazepam, lorazepam, and
temazepam Derivatized cyclodextrin-bonded Acetonitrile [156]

1,4-Dihydropyridines Vancomycin Methanol/acetic acid/TEA [157]

Linezolid Amylose based Hexane, 2-propanol and trifluoro
acetic acid [158]

Tangutorine Chiralcel OD and Chiralpak AD n-hexane/2-propanol [159]

β-blockers (R)-1-naphthylglycine and
3,5-dinitrobenzoic acid

n-hexane, 1,2-dichloroethane
and methanol [160]

Tolterodine tartarate Chiralcel OD-H n-hexane and isopropyl [161]

1,4-dihydropyridinemonocarboxylic
acid Tert-butylcarbamoylquinine Methanol and ammonium

acetate buffer [162]

Naringenin and other flavanones Chiralcel OD-H and Chiralpak
AS-H n-hexane/alcohol [163]

Piperidine-2,6-dione analogues Chiralpak IA and Chiralpak IB Methyl-tert-butyl ether-THF [164]

Bambuterol Chiralpak AD Hexane/2-propanol [165]
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Table 9. Cont.

Enantiomers CSP Eluent Ref.

β-Lactams Cyclodextrin-Based Chiral Isopropanol-heptane [166]

Ruthenium(II) Polypyridyl
Complexes Cyclodextrin Chiral Methanol and acetonitrile [167]

Chiral acids, bases, and amino acids Zwitterionic ion-exchange-type
Acetic acid, formic acid,

diethylamine, and ammonium
acetate

[168]

10 β-adrenergic blockers CelluCoat column n-heptane–ethanol–diethylamine [169]

Triazole Fungicides Chrialcel OD and Chrialcel OJ Hexane/2-propanol [170]

2-arylpropionic
acid nonsteroidal anti-infl

ammatory drugs
Hydroxypropyl-β-cyclodextri Methanol and NaH2PO4 buffer [171]

4 β-adrenergic blockers SPE-Chiral n-Heptane:ethanol:diethylamine [172]

Ofloxacin Ionic liquid-assisted
ligand-exchange Methanol/water [173]

Chiral Pesticides
Cellulose tris-(3,5-dimethylphenyl-

carbamate)-coated
chiral

Ethanol, n-propanol, iso-propanol,
n-butanol, and iso-butanol [174]

Dihydropyridine derivatives Polysaccharide-based chiral Formic acid [175]

Arylpropionic acid derivatives Chiralpak AD n-hexane modified either with
2-propanol or ethanol [176]

Illicit drugs Cyclofructan-based and cyclobond I
2000 RSP

Heptane with ethanol or
isopropanol [177]

Ruthenium (II) Polypyridyl
Complexes Cyclofructan Acetonitrile and methanol [178]

True Moving Bed (TMB) is an attempt to develop a continuous liquid chromatography
based on the counter-current movement of eluent and solid. Its separation is maximized by
a constant flow of solid and liquid phases counter-currently. In this chromatography, the
CSP adsorber retaines one of the compounds due to its enantioselectivity nature. This leads
to different velocities of displacement of enantiomers along the column. The more retained
enantiomer takes longer to reach the end of the column than the less retained compound
and, for better separation, the column must be long enough [83]. In TMB chromatography,
the adsorber is constantly being regenerated by the eluent. In TMB chromatography, there
is constant liquid and solid recirculation, as shown in Figure 13. The liquid stream leaves
the top of the column at Section IV and is recycled to Section I, while the solid stream
(adsorbent) moves in the opposite direction, being recycled from Section I to Section IV.
The eluent and racemate feed the system (respectively, streams E and F in Figure 13). As
shown in Figure 13, the more retained compound leaves the system in the Extract Stream
(X), whereas the less retained compound is removed in the Raffinate Stream (R). The
system has four sections with different functions [83], as explained in Table 10. Due to the
counter-current flows, TMB should reach higher purity, even if the adsorbent (solid phase)
presents low selectivity, in contrast to conventional chromatography where high selectivity
is crucial [83]. However, from an engineering perspective, solid movement is difficult to
attain and can cause mechanical erosion in the adsorbent phase, equipment abrasion, and
difficulties in maintaining plug flow for the solid [4,83]. The TMB system is a theoretical
concept and to solve such problems, an SMB chromatographic unit was developed.
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Table 10. Cont.

Section Function Illustration

II

The more retained compound moves
downward and is adsorbed on the solid
whereas the less retained compound is
desorbed with the eluent. This prevents

contamination of the less retained compound
in the Extract stream (X); the less retained
compound moves upward to the Raffinate

stream (R).
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A Simulated Moving Bed is a powerful technology for the preparative and analytical
scale in laboratory or in industry [83]. SMB chromatography was first presented by UOP
(Universal Oil Products) through a United States Patent [4,179–181], known as the Sorbex
Process, which was designed for oil refining purposes [4]. The technology soon found
other industrial applications, such as in biotechnology, pharmaceutical and fine chemistry,
as it is a separation system with advantages over batch chromatographic systems and
traditional processes (PAIS, 1999). Negawa and Shoji (1992) were the first authors to carry
out an enantioresolution in an SMB chromatography, they resolved 1-phenylethanol on
CHIRALCEL OD as CSP. Since then, there have been several enantioresolutions reported
in the literature, as summarized in Table 11.
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Table 11. Experimental studies of enantioresolutions applying SMB chromatography.

Enantiomers CSP Eluent Ref.

Tramadol CHIRALPAK AD 20 2-propanol, hexane and
diethylamine [182]

EMD 53986
Cellulose-tri-(p-methyl-

benzoate) and polymeric
silica based

Ethylacetate and ethanol [183]

Guaifenesin,
aminoglutetimida, and

formoterol

CHIRALCEL OJ and
CHIRALCEL OD Heptane/ethanol [184]

1,1′-bi-2-naphthol
3,5-dinitrobenzoyl

phenylglycine bonded to
silica gel

Heptane and isopropanol [185]

1,1′-bi-2-naphthol
3,5-dinitrobenzoyl

phenylglycine bonded to
silica gel

Heptane and isopropanol [186]

Guaifenesin CHIRALCEL OD Heptane/ethanol [187]

1-phenoxy-2-propanol CHIRALCEL OD Hexane and isopropanol [188]

1,1′-bi-2-naphthol
3,5-dinitrobenzoyl

phenylglycine bonded to
silica gel

Heptane and isopropanol [189]

1-phenyl-1-propanol CHIRACEL OB Ethyl acetate and heptane [190]

Trans-stilbene oxide and
Tröger’s Base

CHIRALPAK AS and
CHIRALPAK AS-V Hexane/isopropanol [191]

N-carbobenzoxy-tert-
leucine and

N-Boc-tert-leucine-
benzylester

CHIRALCEL OD and
CHIRALPAK AD

Heptane/ethanol and
Heptane/2-propanol [192]

Phenylpropanolamine CHIRALPAK AD Methanol [193]

Guaifenesin CHIRALCEL OD Ethanol [194]

Bupivacaine Kromasil CHI-TBB Iso-propanol, hexane,
and acetic acid [195]

DL-methionine Eremomycin Methanol and water [196]

Tröger’s base CHIRALPAK AD Methanol [197]

α-Tetralol CHIRALPAK AD Heptane/2-propanol [198]

(RS,RS)-2-(2,4-
difluorophenyl)butane-

1,2,3-triol

CHIRALCEL OJ and
CHIRALPAK AD

Hexane, ethanol, and
methanol [199]

Tröger’s base CHIRALPAK AD Ethanol [200]

Mandelic acid Kromasil TBB Hexane and
ter-butylmethylether [201]

Tröger’s Base CHIRALPAK AD Ethanol [202]

Tröger’s Base CHIRALPAK AD Ethanol [203]

Ketoprofen Chiralpak AD1 Ethanol, hexane and
trifluoroacetic acid [204]

Ketoprofen Chiralpak AD1 Ethanol, hexane and
trifluoroacetic acid [205]

Guaifenesin CHIRALCEL OD Hexane/ethanol [206]

Praziquantel Chiralcel OZ Methanol [207]
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SMB simulates TMB counter-current flows and overcomes its intrinsic solid movement
problems by keeping the solid phase fixed and switching the input and output streams
cyclically and periodically (time switch) in a multi-column system, as shown in Figure 14,
by simulating a bed movement [208]. SMB has four sections for which the function is
analogous to TMB, as shown in Figure 13. The SMB system is fed with an eluent (stream
E in Figure 14) and racemate to be separated (stream F in Figure 14). Two outlet streams
remove the more and the less retained compounds, respectively, in the extract and raffinate
streams (streams X and R, respectively in Figure 14). At the time instant t1, the inlet and
outlet streams are set as shown in Figure 14. At time t2, they move clockwise from their
current positions to the next ones. Next, they proceed to t3 and so on until they return to
their original positions, thus finishing the cycle. The separation is promoted by adsorption
of the enantiomer with greater chemical affinity onto the porous solid phase, as zoomed in
Figure 14.
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Optimal SMB operation depends upon several factors, such as reasonable operating
conditions of its streams, switching time, eluent, and the chiral stationary phase. Engineer-
ing practices have shown that the scenario of SMB operating conditions is rather limited; a
poor set of the pump flowrates may lead to contamination of the outlet streams, thus com-
promising the separation. The Simulated Moving Bed has been gaining prominence due to
its advantageous features such as cleanliness, small size, security, and fast procedure when
compared to other systems. Moreover, the method has presented great performance in the
separation of enantiomeric drugs such as praziquantel [209], which is a drug frequently
used to combat schistosomiasis.

6. Conclusions

Due to the importance of enantiomer in several fields, especially for pharmaceutical
companies that strive to diminish drug side effects, this article approaches different features
of enantiomers. The article defines what an enantiomer is, presents related nomenclature,
optical activity, enantiomers actuation in human body, enantiomers in biomolecules, market
and pharmaceutical demands, and enantioresolution methods such as membranes, crys-
tallization, and chromatography, especially TMB and SMB. It also reports on the features
of the most applied enantioresolution methods, main enantiomers, eluents, and chiral
stationary phases, with an emphasis on the cyclic adsorption processes. Through the com-
prehension of the aspects related to enantiomers, the authors of this articles hope to raise
the interest of incoming students of chemical engineering to enantioresolution, control, and
optimization field.
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