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Abstract: Predictive modelling of infectious diseases is very important in planning public health
policies, particularly during outbreaks. This work reviews the forecasting and mechanistic models
published earlier. It is emphasized that researchers’ forecasting models exhibit, for large t, algebraic
behavior, as opposed to the exponential behavior of the classical logistic-type models used usually in
epidemics. Remarkably, a newly introduced mechanistic model also exhibits, for large t, algebraic
behavior in contrast to the usual Susceptible-Exposed-Infectious-Removed (SEIR) models, which
exhibit exponential behavior. The unexpected success of researchers’ simple forecasting models
provides a strong support for the validity of this novel mechanistic model. It is also shown that
the mathematical tools used for the analysis of the first wave may also be useful for the analysis of
subsequent waves of the COVID-19 pandemic.
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1. Introduction

The first period of the COVID-19 pandemic in Europe, often referred to as ‘the first
wave’, provides an ideal situation for the retrospective study of the various mathematical
formulations used for modelling the dynamics of this viral epidemic. Indeed, during this
phase, many European countries employed similar measures for combating the spread of
the epidemic, and moreover, the pandemic was dominated by a single viral strain. Such a
study is not only useful for academic purposes, but also, importantly, could identify an accu-
rate mathematical formalism that could be used in a variety of epidemiological phenomena.

In the framework introduced by Holmdahl and Buckee [1], epidemiological models
are broadly divided into two categories: forecasting and mechanistic. The former models fit
a specific formula to the data, and then attempt to predict the dynamics of the quantity
under consideration. The main limitation of these models is that they usually remain
valid for a short period of time, and specifically only if the epidemiological situation
remains unchanged. For example, they can be used during a lockdown period, but will not
make accurate predictions after the lockdown is lifted. In contrast to forecasting models,
mechanistic models can make predictions even when the relevant circumstances change.
The main limitation of the forecasting models is the difficulty of determining the parameters
specifying them.

In what follows, the researchers first discuss specific forecasting and mechanistic mod-
els introduced by the collaborative efforts published in [2–8]. In particular, the researchers
provide an explanation for the remarkable success of researchers’ simple forecasting models
for predicting the dynamics of the first wave. The researchers then emphasize that the

Encyclopedia 2022, 2, 679–689. https://doi.org/10.3390/encyclopedia2020047 https://www.mdpi.com/journal/encyclopedia

https://doi.org/10.3390/encyclopedia2020047
https://doi.org/10.3390/encyclopedia2020047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/encyclopedia
https://www.mdpi.com
https://orcid.org/0000-0001-9865-0260
https://orcid.org/0000-0002-1283-0883
https://doi.org/10.3390/encyclopedia2020047
https://www.mdpi.com/journal/encyclopedia
https://www.mdpi.com/article/10.3390/encyclopedia2020047?type=check_update&version=1


Encyclopedia 2022, 2 680

tools introduced for the analysis of the first wave can also be useful for analyzing subse-
quent waves of the COVID-19 pandemic. This is illustrated with a brief discussion of the
second wave.

2. The Success of the Novel Formulae as Opposed to the Logistic Formula

A novel class of forecasting models was presented in [2,3]. Although, as correctly
noted in [9], the forecasting models are ‘not well suited for long-term predictions,’ the
researchers’ class of forecasting models provided highly accurate long-term predictions
both for the number of deaths caused by COVID-19 and the number of reported infected
cases. Specifically, by training researchers’ novel formulae (i.e., by fixing the constant
parameters appearing in theses formulae) using data for the accumulative number of
deaths in a given country until 1 May 2020, it was possible to make predictions for a period
of more than 3.5 months. A typical example is shown in in Figure 1: for the COVID-19
epidemic in Italy, it is seen that there was no deviation between the curve depicting the
number of deaths and the curve constructed via the model formula. Incidentally, although
this formula was trained using dates during the lockdown period, its predictions remained
accurate even after the easing of the lockdown conditions; possible explanations for this
unexpected fact are discussed in [4].

Encyclopedia 2022, 1, FOR PEER REVIEW 2 
 

 

In what follows, the researchers first discuss specific forecasting and mechanistic 
models introduced by the collaborative efforts published in [2–8]. In particular, the re-
searchers provide an explanation for the remarkable success of researchers’ simple fore-
casting models for predicting the dynamics of the first wave. The researchers then empha-
size that the tools introduced for the analysis of the first wave can also be useful for ana-
lyzing subsequent waves of the COVID-19 pandemic. This is illustrated with a brief dis-
cussion of the second wave. 

2. The Success of the Novel Formulae as Opposed to the Logistic Formula 
A novel class of forecasting models was presented in [2,3]. Although, as correctly 

noted in [9], the forecasting models are ‘not well suited for long-term predictions,’ the 
researchers’ class of forecasting models provided highly accurate long-term predictions 
both for the number of deaths caused by COVID-19 and the number of reported infected 
cases. Specifically, by training researchers’ novel formulae (i.e., by fixing the constant pa-
rameters appearing in theses formulae) using data for the accumulative number of deaths 
in a given country until 1 May 2020, it was possible to make predictions for a period of 
more than 3.5 months. A typical example is shown in in Figure 1: for the COVID-19 epi-
demic in Italy, it is seen that there was no deviation between the curve depicting the num-
ber of deaths and the curve constructed via the model formula. Incidentally, although this 
formula was trained using dates during the lockdown period, its predictions remained 
accurate even after the easing of the lockdown conditions; possible explanations for this 
unexpected fact are discussed in [4]. 

 
Figure 1. Predictions for the number of deaths in Italy. Comparison of the predictions of researchers’ 
formulae for the number of reported deaths using data only until 1 May 2020, versus the actual data 
until 1 August 2020 (predictions for 92 days). The thick blue data-points depict the data used for 
calibrating the formulae and the red data-points depict the data used for checking the predictions 
of the 3 formulae. 

In researchers’ previous work [2,3], the usual logistic formula used in epidemiology 
is replaced by a different formula, called the rational formula. The logistic and rational for-
mulae are given, respectively, by 

𝑁(𝑡) =
𝑁

1 + 𝛽𝑒ି௧
  (1)

and 

Figure 1. Predictions for the number of deaths in Italy. Comparison of the predictions of researchers’
formulae for the number of reported deaths using data only until 1 May 2020, versus the actual data
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calibrating the formulae and the red data-points depict the data used for checking the predictions of
the 3 formulae.

In researchers’ previous work [2,3], the usual logistic formula used in epidemiology
is replaced by a different formula, called the rational formula. The logistic and rational
formulae are given, respectively, by

N(t) =
N f

1 + βe−kt (1)

and

N(t) =
N f

1 + β(1 + dt)−k . (2)
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In these formulae N(t) denotes the cumulative number of deaths (or reported infected
cases) at time t; the parameters Nf, k, β, and d are constants that can be determined by
‘training’ the model using the given data.

In addition to the rational formula, researchers also used a simple variant of this
formula, called birational [2,3]. The birational formula is similar to the rational formula,
but the associated parameters are different before and after a fixed time point. Both the
rational and birational formulae are based on a particular nonlinear ordinary differential
equation, called the Riccati equation. This equation is specified by the constant parameter,
Nf, denoting the final total number of deceased (or infected individuals), and by a time-
dependent function, a(t). Remarkably, although this Riccati equation is a nonlinear equation
that involves time-dependent coefficients, it can be solved in closed form. Its solution
depends on Nf, a(t), and on a parameter related to the constant that arises in integrating
this equation. In the particular case that a(t) is a constant, the explicit solution of the above
Riccati equation becomes the classical logistic Formula (1). If a(t) = kd/(1 + dt), then it
becomes Formula (2).

3. Deep Learning

In previous work [2], researchers also investigated deep learning algorithms, and
in particular, the bidirectional long short-term memory (BiLSTM) network, which is a
powerful generalization of recurrent neural networks (RNN) that can capture long-term de-
pendencies while at the same time avoiding the problem of vanishing/exploding gradients.
RNN can capture sequential information but cannot learn from long term dependencies.
A common problem with RNN, particularly when many hidden layers are used, is the
vanishing or the exploding of the gradient in the backpropagation algorithm occurring
during the process of updating the weights. Hochreiter and Schmidhuber introduced in [10]
the Long Short-Term Memory (LSTM) networks that can capture long term dependencies
and at the same time avoid the problem of vanishing/exploding gradients. LSTM networks
are a type of RNN, where a memory cell maintains its state over time; they use gates to
decide whether to flow information in (keep) or out (forget) of the memory cell.

Graves and Schmidhuber introduced in [11] the BiLSTM networks; this development
was motivated by the Bidirectional RNN networks, introduced earlier by Schuster and
Paliwal in [12], where the training runs forwards and backwards using two separate RNN.
Consequently, the main difference is the training sequence: in the LSTM, the sequence runs
backwards, preserving information from the future, whereas in the BiLSTM training, the
sequence runs backward and forward, preserving information from both the past and the
future. The BiLSTM networks are well suited for time series prediction and can potentially
completely capture the contextual information of the time series.

The rational and birational formulae are, in a sense, optimal, since such elaborate deep
learning algorithms investigated in [2] could not improve the predictions obtained by using
these simple analytic formulae.

What is the critical difference between the logistic and the rational formulae? Although,
for large time, t, both the logistic and the rational formulae tend to a constant, Nf, namely,
the plateau reached by the epidemic, this constant is approached with exponential and
algebraic rates, respectively. Indeed, for large t, Equations (1) and (2) yield the following
asymptotic expressions:

N(t) ∼ N f

(
1− βe−kt

)
, t→ ∞ (3)

and

N(t) ∼ N f

(
1− β

dk t−k
)

, t→ ∞ (4)

It is interesting to note that given a set of data, it is always possible to choose the
constant parameters that specify these two formulae, so that they can match the given data
extremely well. However, when these formulae are used to predict the dynamics of the
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epidemic, it becomes clear that the curve obtained via the logistic formula immediately
begins to deviate from the curve of the real data, whereas the rational formula yields
excellent predictions.

Regarding the algebraic decay, it is worth noting the following observation: whereas
physical phenomena are often accurately modelled by exponential processes, social phe-
nomena usually require an algebraic formalism.

4. A Typical Susceptible-Exposed-Infected-Recovered (SEIR) Type Model

In summary, the analysis of the real data from several European countries during the
first wave of the COVID-19 epidemic suggests that the long-time behavior of the dynamics
of the underlying processes is characterized by an algebraic as opposed to an exponential
decay. This raises the following important question: do the mechanistic equations used
to model these dynamics exhibit large t algebraic decay? This important question is
discussed below.

It is well known that the most widely used mechanistic models are the so-called
susceptible-exposed-infected-recovered (SEIR) type models. A typical such model was
analyzed in [5,6]. This model consists of six ordinary differential equations modelling the
number of infected, asymptomatic, sick, recovered, hospitalized, and deceased. Numerous
other investigators have analyzed similar models, which include the well know works
of [13]. Different SEIR models use different number of ‘compartments,’ but the essential
physiological hypothesis used for deriving these models is the same.

The large time asymptotics of the model of [5] are analyzed in [7], where it is shown
that this SEIR model exhibits exponential decay. It is natural to expect that all other SEIR
type models will exhibit a similar behavior, which is inconsistent with the summary at the
beginning of this section.

By modelling in [7] a physiologically important mechanism, which was until recently
ignored, an additional nonlinear effect was introduced in the six ordinary differential
equations presented in [5]. Remarkably, for large t, the novel model introduced in [7]
exhibits algebraic decay, consistent with the decay exhibited by the real data. It is noted that
the new physiological mechanism used in [7] was first introduced in [8,14] in connection
with a simpler model.

5. From the First to the Second Wave

RNA viruses, as exemplified by influenza, may acquire mutations that can have a
significant effect on their biological behavior [15,16]. Viruses’ mutation rates are affected by
various factors inherent to their replication such as the polymerase action, or external to the
virus itself such as environmental effects. The precise contribution of these effects and how
natural selection acts to optimize these rates remains unknown. The novel coronavirus,
even before harboring genetic changes like the D614G polymorphism, was already fit
enough to cause a pandemic.

The novel pandemic coronavirus SARS-CoV-2 acquired mutations early on [17], which
altered some of its essential characteristics, affecting diagnosis [18], disease phenotype and
severity [19,20], therapeutic interventions [21], and vaccine efficacy [22].

The exact public health impact of the early mutations remains debatable. By April
2020, strains carrying the D614G mutation [23,24] became prevalent in Europe, the USA,
and Canada [23]. In particular, in a study in Houston, Texas, USA, the D614G variant strain
gradually fully dominated the local epidemic [25]. The high prevalence of this strain was
also confirmed in a UK study involving the analysis of 25,000 genomes [26]. In human
infections, this strain was reported to be associated with a fitness advantage, as well as
with greater transmissibility [23] and higher viral loads.

A difference in the growth rates between the higher levels of recorded infections and
lower levels of respective number of deaths during the evolution of the pandemic, and
especially during the second surge of the infection, is evident in the examination of the
epidemic curves available from the European Centre for Disease Control [27,28]. A number
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of different factors may be associated with this ‘paradox,’ including increased testing,
better health system capacity, earlier treatment, and increased levels of immunity in local
populations. The possibility that the virus—due to structural differences—has evolved to
be associated with less virulence, has been reported at the experimental level [29]. In this
context, studies investigating the effect of earlier mutations including the D614G polymor-
phism showed that infections with D614G carrying strains were associated with higher
viral loads in the upper respiratory tracts and a fitness advantage, leading to increased
transmissibility [23,30–34]. Two large genomic analysis studies suggested otherwise [26,35];
they did not find convincing evidence with regards to infectivity or virulence [26,35]. The
question of establishing whether this strain is indeed more infectious or less virulent re-
mains crucial with regards to virus evolution to less virulent forms [36]. In the meantime,
the world is faced with the emergence of new variants [37–50].

5.1. Predictions for the Number of Reported Infected Cases and the Number of the Deceased for the
Second Wave in Portugal

In order to show that the techniques developed for the first wave can also be used for
the analysis of subsequent waves, researchers applied the rational and logistic formulae
to the cumulative number of deaths and reported infected cases for the second wave
of Portugal. These formulae provided accurate predictions for the relevant dynamics
(Figure 2). The data were fitted up to 27 December 2020, the last day before the first
appearance of the UK lineage. Therefore, the researchers’ curves determine what the
plateau for reported cases and deaths would have been without the emergence of the UK
lineage. For the number of deaths, the logistic formula predicted a plateau on 21 February
2021 with 6002 deaths for the second wave and 7798 total deaths overall; the rational
formula predicted a plateau on 2 March 2021 with 6432 deaths for the second wave and
8228 total deaths overall. The plateau is defined as the point when the rate of deaths for the given
wave is 5% of the maximum rate. It should be noted that in order to get accurate predictions,
the model should employ data at least up to a short period after the time when the rate of
deaths reached a maximum. In Portugal, for the deaths of the second wave, this occurred on
6 December 2020.
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For the number of reported infected cases for Portugal, the logistic formula predicted
a plateau on 2 February 2021 with 364,526 cases for the second wave and 420,123 total cases
overall; the rational formula predicted a plateau on 5 February 2021 with 369,040 cases for
the second wave and 424,637 total cases overall. In Portugal, the rate of infections of the
third wave reached a maximum on 21 November 2020.

5.2. Higher Infectivity and Lower Virulence

In order to compare the infectivity and virulence of the first two waves, additional
techniques are needed. In this regard, first, researchers computed the rates dN/dt directly
from the data, where N denotes the number of reported infected, in seven European
countries (in order to avoid the noise of the real data, researchers computed these rates
by fitting the data for the first and second waves to the rational and the logistic formulae,
respectively). Second, researchers computed the function v(t) defined as the ratio of the
cumulative number of deaths to the total number of reported infected cases that occurred
three weeks prior to the date that the accumulated number of deaths was computed.

The computed rate of reported infected cases in the seven European countries analyzed
was larger in the second wave, which supports the suggestion that the circulating strain of
the virus of the second wave was more infectious. Figure 3a presents the relevant curves for
Spain, which is prototypical of all cases examined. Similarly, the computed rate of deaths
was much lower, seen in Figure 3b.
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For the case of Portugal, the rate of deaths can also be computed indirectly by exam-
ining the logistic and rational models. By comparing the parameters of the fitted logistic
formula for Portugal (Figure 2) between the first and the second waves, it is confirmed that
the rate of deaths is lower in the second wave (the parameter k is 0.0778 for the first and
0.0564 for the second, whilst the parameter Nf is 1489 and 6076).

In order to examine whether death rates were slower during the evolution of the
pandemic and especially in the last half of 2020, researchers computed v(t) using the
following steps. First, researchers separated the reported infected cases and the deaths for
each country in the two waves and calculated their plateau. Then, in each wave, researchers
computed the function v(t) by dividing the cumulative number of deaths up to a given
date, by the cumulative number of reported cases 3 weeks earlier. Researchers chose the
period of 3 weeks because individual infections during the last 3 weeks are not expected to
greatly affect the number of deaths [51].

The graphs of v(t) for Germany, Greece, Spain, UK, Italy, Czechia, France, and Belgium
are shown in Figure 4. The values of v(t) after the situation gets stabilized are shown in
Table 1. These results suggest that the pathogenicity of the second Autumn/Winter wave
was smaller than the first for these countries. Various factors may affect this suggestion,
including increased testing, better health system capacity, earlier treatment, and increased
levels of immunity in local populations. Among these factors, perhaps the increased
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number of testing during the second wave is of particular significance. As shown below,
this effect can be quantified.
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Table 1. Stabilization values for the function v(t) for the first and second waves, for various countries,
for all population.

All Population 1st Wave 2nd Wave

Date v(t) (%) Date v(t) (%)

Germany 30/June/2020 4.86 26/November/2020 1.50
Greece 04/July/2020 6.18 02/January/2021 3.95
Spain 30/June/2020 11.72 25/December/2020 1.49
UK 30/June/2020 15.24 19/September/2020 2.55

Italy 30/June/2020 14.77 22/December/2020 2.54
Czechia 15/July/2020 3.33 31/December/2020 2.04
France 15/July/2020 18.62 18/December/2020 1.46

Belgium 14/July/2020 15.77 19/December/2020 1.78
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Indeed, let I and R denote the number of infected and reported infected individuals,
and let the subscripts 1 and 2 indicate first and second wave, respectively. In the analysis
that follows, the researchers assume that I1 = α1R1 and I2 = α2R2. Differentiating these
equations with respect to time and dividing the resulting expressions, the researchers find

.
I2
.
I1

=
α2

α1

.
R2

.
R1

. (5)

Since the number of tests increased during the second wave, α2 < α1.
Thus, the researchers’ conclusions are valid provided that the growth of .

R2/
.
R1 is

sufficiently large so it can compensate for the decrease in α2/α1. Similarly, let νa, where the
superscript ‘a’ denotes ‘actual,’ be defined by va = d/I. Then, va = v/a, and hence:

vα
2

vα
1
=

α1

α2

v2

v1
(6)

The researchers’ conclusions remain valid, despite the increase in the number of tests
during the second wave, provided that the decrease of v2/v1 is sufficiently small to com-
pensate for the growth of α1/α2. The researchers have been able to find data for the ratio
α2/α1 only for Italy and UK; these numbers are quite small, namely 1.40 and 1.65, respec-
tively [52,53]. Researchers speculate that similar rations are valid for the other counties
considered in the researchers’ study. Such small ratios will yield slight modifications for
the graphs in Figure 4 and the values in the Table 1, but the overall conclusions remain
the same.

6. Conclusions

The researchers have reviewed different predictive models used in the collaborative
efforts published in [2–8] and have emphasized that the success of the researchers’ forecast-
ing models is due to the fact that, for large time, they capture the essential behavior of a
recently introduced improved mechanistic models. Of course, mathematical modelling is
only suggestive and cannot provide definitive proof of the different biological behaviors
of the virus. In particular, the number of deaths and the rates of confirmed cases vary
significantly across countries and there is significant dependency on the testing performed,
as well as significant underreporting [54]. Moreover, the index of the probability of death
per case of disease (Infection Fatality Rate) also varies from country to country. This is the
result of a variety of factors, including, for example, differences in testing strategies and in
case ascertainment. In addition, variance in population characteristics and comorbidities
among countries and continents affects the observed morbidity and mortality (e.g., age is
the most significant factor associated with increased mortality). Moreover, the percentage
of cases involving specific high-risk sub-populations (such as those in nursing homes [55])
varies according to country. Furthermore, differences in timing of measures adopted, as
well as differences in targeted control strategies across countries (including targeting the
high-risk population like the middle-aged and over), affects death rates. Relating to this
observation, the health system quality and capacity widely varies across nations and conti-
nents. The saturation of medical facilities may further affect mortality rates, especially in
vulnerable high-risk populations.

Researchers have also shown that the mathematical modelling tools used in the first
wave, as well as variations of these tools, can be useful for the analysis of subsequent waves.
The researchers have illustrated this fact by analyzing the second wave. The researchers
suggest that this wave is characterized by higher transmissibility and less virulence than
the first wave. However, in these connections, it should be noted that several clinical and
physiological factors may affect the disease course towards a better outcome. Among these
are the increasing experience of doctors treating the disease and its complications, along
with early diagnosis, small hospital volumes in early stages of the second wave that allowed
for better care, and the use of new antivirals and immune modulation treatments. All these
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effects could potentially lead to milder clinical forms of the disease [56,57]. Thus, the value
of the ratio proposed herein may tend to underestimate the virulence of new strains.

In conclusion, it should be noted that it is not possible to predict the clinical effect of
new mutations. For example, although the second wave apparently involved a less virulent
strain than the first, the third wave was more severe. On the other hand, the omicron
variant is highly transmittable but also has very low virulence.
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