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Abstract: This paper proposes a structure for long-term energy demand forecasting. The 
proposed hybrid approach, called HPLLNF, uses the local linear neuro-fuzzy (LLNF) 
model as the forecaster and utilizes the Hodrick–Prescott (HP) filter for extraction of the 
trend and cyclic components of the energy demand series. Besides, the sophisticated 
technique of mutual information (MI) is employed to select the most relevant input features 
with least possible redundancies for the forecast model. Each generated component by the 
HP filter is then modeled through an LLNF model. Starting from an optimal least square 
estimation, the local linear model tree (LOLIMOT) learning algorithm increases the 
complexity of the LLNF model as long as its performance is improved. The proposed 
HPLLNF model with MI-based input selection is applied to the problem of long-term 
energy forecasting in three different case studies, including forecasting of the gasoline, 
crude oil and natural gas demand over the next 12 months. The obtained forecasting results 
reveal the noteworthy performance of the proposed approach for long-term energy demand 
forecasting applications.  

Keywords: local linear neuro-fuzzy (LLNF) model; Hodrick–Prescott (HP) filter; 
HPLLNF; mutual information (MI); energy demand forecasting 
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1. Introduction 

The world demand for energy is on a growing path due to the increase in world population. For 
instance, consumption of petroleum in the Unites States, as one of the world’s largest energy 
consumers, has increased by 20.4% from 1990 to 2005. The US natural gas consumption has also 
experienced a 16.32% increase within the same period [1]. Therefore, governments and policy-makers 
need accurate forecasts of energy demand, especially long-term forecasts, for large-scale decision 
making, such as investment planning for generation and distribution of energy.  

Through the past decades, different methods have been developed for energy demand forecasting. 
The auto-regressive integrated moving average (ARIMA) model is one of the most popular time  
series-based methods which has been used for energy consumption prediction to a great extent. For 
instance, Haris and Liu proposed ARIMA and transfer function models for prediction of electricity 
consumption [2]. ARIMA and seasonal ARIMA (SARIMA) were used by Ediger and Akar to estimate 
the future primary energy consumption of Turkey from 2005 to 2020 [3]. Linear regression models 
have also been proposed for energy consumption prediction [4]. 

However, when nonlinearity of the forecasting problem prevails, the linear approaches may fail to 
capture the nonlinear dynamics of the process. In the past decade, computational intelligence (CI)-based 
models have been at the center of attention in forecasting applications, such as energy consumption 
and demand forecasting. The CI-based methods can effectively capture and model the nonlinear 
behavior of time series. Fuzzy logic and artificial neural networks (ANN) are two main CI-based 
techniques which have found many applications in modeling and prediction. Energy consumption 
modeling and forecasting are also among the applications of the CI-based approaches. Azadeh et al. 
estimated the oil demand in the US, Canada, Japan and Australia using a fuzzy regression modeling 
approach [5]. A hybrid technique of well-known Takagi-Sugeno fuzzy inference system and  
fuzzy regression has been proposed for prediction of short-term electric demand variations by  
Shakouri et al. [6]. In their study, they proposed a type III TSK fuzzy inference machine combined 
with a set of linear and nonlinear fuzzy regressors in the consequent part to model the effects of 
climate change on the electricity demand. Padmakumari et al. combined neural network and fuzzy 
modeling for long-term distribution load forecasting [7]. They employed radial basis function network 
(RBFN) as the neural network part of their approach. Long-term monthly gasoline demand forecasting 
has been performed using an intelligent adaptive algorithm in [8]. The intelligent algorithm, composed 
of artificial neural network, conventional regression and design of experiment (DOE), was applied for 
monthly gasoline demand forecasting in Japan, USA, Kuwait, Canada and Iran. Based on the findings 
in [8], ANN provides far less error than regression. Yokoyama et al. concentrated on neural networks 
to predict energy demands [9]. They used an optimization technique, termed “Modal Trimming Method” 
to optimize model’s parameters and then forecasted cooling demand in buildings. A considerable 
number of review studies on intelligent demand forecasting, have also been published. A comprehensive 
literature survey on electric demand forecasting using artificial intelligence (AI) techniques has been 
presented in [10]. This literature review study has presented a wide-range biography of numerous 
papers, concentrated on AI-based load forecasting techniques such as expert systems, fuzzy, genetic 
algorithm, artificial neural network (ANN), etc. Another review on electric load forecasting approaches 
has been conducted by Hahn et al. in [11]. They have provided an overview on classical time series 
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and regression methods as well as artificial intelligence and computational intelligence approaches. 
Various traditional and CI-based models for energy demand forecasting have been also reviewed in [12].  

Due to successful application of the neural networks and fuzzy inference systems, the synergistic 
combination of them, i.e., neuro-fuzzy models, have also been proposed for energy consumption 
prediction. For instance, Chen proposed a fuzzy-neural approach for long-term forecasting of electric 
energy in Taiwan [13]. As another example, the adaptive neuro-fuzzy inference system (ANFIS) has 
been employed for short-term forecasting of natural gas demand [14]. In this research, the ANFIS 
approach was used with pre-processing and post-processing techniques to enhance forecasting accuracy. 
Nostrati et al. also proposed a neuro fuzzy model for long- term electrical load forecasting [15].  

In this paper, we develop a long-term energy demand forecasting approach established on the HP 
filtering, MI-based input selection and LLNF modeling. Due to the high correlation of the energy 
demand series to the population, such series often contain a trend component. Hence using HP filter for 
decomposition of the demand time series into trend and cyclic components is proposed as an effective 
technique for energy demand forecasting. Since the energy demand series are affected by various 
factors such as population, GDP as well as demand historical, selection of the most appropriate inputs 
turns to be a challenging task. As another novelty behind this paper, we employ the sophisticated 
technique of mutual information for selection of the inputs with most relevance to the output and the 
least redundancy and enhancing the modeling performance of the LLNF model to a considerable extent. 
Finally, after presenting the mathematical description of the mentioned techniques, the proposed 
HPLLNF + MI approach is implemented in three case studies for forecasting long-term demand of 
gasoline, crude oil and natural gas in the United States.  

2. Framework of the Forecasting Approach 

A general description of our proposed energy demand forecast framework is presented in this 
section. In brief, the proposed approach includes three stages: data preprocessing, input selection and 
forecasting, as shown by Figure 1.  

Figure 1. Structure of the proposed forecasting approach. 
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In the first stage, the time series of energy demand up to the test period is passed through the HP 
filter and trend and cyclic components are generated. This decomposition allows us to model trend and 
fluctuations of the time series separately and more accurately. It must be noted that trend and cyclic 
components are separately modeled by LLNFτ and LLNFc, respectively. Then, in the next stage, the 
input selection technique of mutual information is employed to determine appropriate inputs for each 
of LLNF models. In the third stage, the selected input variables are applied to LLNF models and 
forecast values are provided. By aggregating the predictions of the two LLNF models, final values of 
the energy demand forecast are produced. 

3. Local Linear Neuro-Fuzzy Models 

A neuro-fuzzy (NF) model is a fuzzy system drawn in a neural network structure , combining the 
learning, parallel processing and generalization capabilities of neural networks and logicality, 
transparency and use of a priori knowledge in fuzzy systems. A local linear neuro-fuzzy system, as a 
notable category of NF models, decomposes an a priori unknown global nonlinear system into a series 
of local linear models and then tries to carry out the simpler task of identifying parameters of linear 
sub-models [16,17].  

The network structure of a LLNF model is illustrated by Figure 2. In LLNF model, each neuron is 
composed of a local linear model (LLM) and a validity function which sets the validity region of the 
LLM. Accordingly, for input vector 1 2

T

pu u u u⎡ ⎤=    ⎣ ⎦ , the unknown nonlinear system can be 

approximated in the following form: 

( )
1

ˆ ˆ
M

i i
i

y y uφ
=

= ∑  (1) 

which is an interpolation of M local sub-models, weighted with validity functions iφ .  
The output of each LLM ( ˆiy ) can be stated as follows: 

0 1 1 2 2ˆ ...i i i i ip py u u uθ θ θ θ= + + + +  (2) 

where θij are LLM parameters associated with neuron i.  
In order to ensure that contribution of all local sub-models amounts to 100%, the validity functions 

are normalized to form a partition of unity, i.e., 

( )
1

1
M

i
i

uφ
=

=∑  (3) 

with validity functions ( )j uμ , which are not normalized, the normalized validity functions ( )j uφ , 
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Figure 2. Structure of the LLNF model. 
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In the presented description of the LLNF model, two types of parameters should be identified; the 
parameters associated with local linear models (θij) and the parameters associated with validity 
functions. The former parameters are called rule consequent parameters, while the latter are referred to 
as rule premise parameters. 

Global and local estimation procedures can be employed for the identification of the parameters of 
the local linear models. It is shown that for low noise level, the global estimation outperforms the local 
approach. Furthermore, the former has better interpolation behavior. However, the local estimation 
performs better for high noise level and has less computational complexities [16]. Both of these 
approaches will be considered in this paper. The sophisticated local linear model tree (LOLIMOT) 
algorithm is also utilized for identification of the validity functions parameters.  

3.1. Global Estimation of the Local Linear Models Parameters 

A single least-square algorithm is run for global estimation of rule consequent parameters. Hence 
the following least squares optimization enters the problem:  

( )
1

min
N

j

I e j
θ

=

= ∑  (5) 

where ( ) ( ) ( )ˆe j y j y j= −  and ( ) ( ) ( )⎡ ⎤=    ⋅⋅ ⋅  ⎣ ⎦1 2
T

y y y y N  contains the measured outputs. 

For an LLNF model with M neurons and P inputs, the vector of linear parameters contains 
( )1n M p= +  elements:  

10 11 1 20 21 2 0 1... ... ... T
p p M M Mpθ θ θ θ θ θ θ θ θ θ⎡ ⎤= ⎣ ⎦  (6) 

The corresponding regression matrix X for N measured data samples is:  
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[ ]1 2 ... MX X X X=     (7) 

where the regression sub-matrix iX takes the following form:  

( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( )

1

1

1

1 1 1 ... 1 1

2 2 2 ... 2 2
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i M

u N u N u N u N u N
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⎢ ⎥
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=   ⎢ ⎥
         ⎢ ⎥

⎢ ⎥      ⎣ ⎦

 (8) 

Hence:  

( ) 1ˆ ˆˆ . ;   T Ty X X X X yθ θ
−

= =  (9) 

3.2. Local Estimation of the Local Linear Models Parameters 

While all ( )1n M p= +  of the local linear models are estimated simultaneously by the global 
estimation approach, in the local approach M separate local estimations are performed for the 1p +  
parameters of each local linear model. The parameter vectors for each of the estimations are:  

0 1 ... , 1, ...,
T

i i i ip i Mθ θ θ θ⎡ ⎤=    =   ⎣ ⎦  (10) 

The corresponding regression matrices are: 

( ) ( )
( ) ( )

( ) ( )

1

1

1

1 1 ... 1

1 2 ... 2
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i
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u u
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It must be noted that all local linear models have identical regression matrix, since the elements of 
the iX  do not depend on i. The output of each local linear model is valid in the region where the 
corresponding validity function is close to unity. Hence, as the validity function decreases, the data 
become less relevant for estimation of iθ . Therefore, the validity function values are introduced as 
weighting factors in the error function to carry out a weighted least squares optimization:  

( )( ) ( )
1

min
i

N

i i
j

I u j e j
θ

φ
=

= ∑  (12) 

The solution for the weighted least squares problem in (11) is given below:  

( ) 1T T
i i i i i iX Q X X Q yθ

−
=  (13) 

where iQ is the N × N diagonal weighting matrix:  
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3.3. Estimation of the Validity Functions Parameters 

The local linear model tree algorithm is used for estimation of validity functions parameters. This 
algorithm, owing to its fast rate of convergence, computational efficiency and intuitive constructive 
implementation is preferred to other optimization methods such as genetic algorithms and simulated 
annealing. The LOLIMOT algorithm utilizes multivariate normalized axis-orthogonal Gaussian 
membership functions, as stated below: 

( ) ( ) ( )

( ) ( )

22
1 1

2 2
1

2 2
1 1 1 1

2 2
1 1

1exp ...
2

1 1exp ... exp
2 2

p ipi
i

i ip

i i

i i

u cu c
u

u c u c

μ
σ σ

σ σ

⎛ ⎞⎛ ⎞−−⎜ ⎟⎜ ⎟= − + +
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟= − ⋅ ⋅ −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (15) 

where cij and σij represent center coordinate and standard deviation of normalized Gaussian validity 
function associated with ith local linear model. The validity functions in (15) are normalized  
according to (4).  

In the LOLIMOT algorithm, the input space is divided into hyper-rectangles by axis-orthogonal 
cuts based on a tree structure. Each hyper-rectangle represents an LLM. At each iteration, the LLM 
with worst performance is divided into two halves. Then Gaussian membership functions are placed at 
the centers of the hyper-rectangles and standard deviations are selected proportional to the extension of 
hyper-rectangles (usually 1/3 of hyper-rectangle’s extension). This procedure is summarized below:  

1. Start with the initial model: Set M = 1 and start with a single LLM whose validity function 
( ( )1 uφ ) covers the whole input space. 

2. Find the worst LLM: Calculate a loss function, here RMSE, for each of i = 1,2,…,M, LLMs and 
find the worst LLM. 

3. Check all divisions: The worst LLM, in all of p-dimensions, must be divided into two equal 
halves. For each of p divisions, a multidimensional validity function must be constructed for 
both new hyper-rectangles, then the rule consequent parameters of both new LLMS must be 
estimated using global/local least squares approach and finally the loss function for the current 
overall model must be computed.  

4. Find the best division: The best LLM related to the lowest loss function value, must be 
determined. The number of LLMS is incremented: M → M + 1. If the termination criterion,  
e.g., a desired level of validation error or model’s complexity, is met then stop, otherwise  
go to step 2.  

Maximum generalization and noteworthy forecasting performance are among the salient features of 
the model identified by LOLIMOT learning algorithm. A three-dimensional graphical representation 
of partitioning of a two-dimensional input space by LOLMOT using up to four iterations is illustrated 
by Figure 3. 
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Figure 3. Operation of LOLIMOT in the first four iterations in a two-dimensional 
input space. 
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4. Data Pre-Processing Using a Hodrick-Prescott Filter 

Data pre-processing often leads to desirable results in the field of system modeling, estimation  
and prediction. Application of data processing techniques in time series prediction is a recently 
introduced field of study mainly focusing on extracting useful information from available data and 
eliminating useless and ineffective information. Removal of high-frequency and noisy components of 
the time series by an appropriate filtering approach, results in a smoothed, well-behaved, and more 
predictable series.  

The Hodrick-Prescott (HP) filter, introduced by Hodrick and Prescott, is a mathematical tool for 
extracting trend and cyclic components of a time series [18]. The HP filter is widely used in 
macroeconomic time series modeling [19,20]. Combination of HP filter and CI based techniques has 
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also been proposed. For instance, in [21] Li and Huicheng used a HP filter and fuzzy neural networks 
to forecast urban water demand. They decomposed the factors correlative with the water demand into 
trend and cyclic components. Then multiple linear regression and fuzzy neural network were employed 
to forecast the trend and cyclic components of the correlative factors, respectively. It must be noted 
that in the presented approach in [21], separate models must be developed for each influencing factor, 
which increases complexity of the approach if there are many influencing factor.  

The idea behind the HP filter technique is to break down a given time series into a trend component 
and a cyclic component. Consider that time series ( )h t  is composed of trend and cyclic component:  

( ) ( ) ( )h t t c tτ= +  (16) 

where τ  and c  are trend and cyclic components, respectively. The HP filter removes the cyclic 
component by the following minimization problem:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 22

1 2

min 1 1
T T

t t

h t t t t t tτ λ τ τ τ τ
−

= =

⎧ ⎫⎡ ⎤− + + − − − −⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑  (17) 

where T is the length of the time series. The first term in (17) determines the fitness of the time series, 
while smoothness is controlled by the second term. A compromise between the fitness and the 
smoothness can be made through multiplier λ . This factor must be determined based on the frequency 
of the data. For 0,λ =  the trend component is identical to the original series. The larger the value of 
λ , the higher smoothness is achieved. The value 14400λ =  has been suggested in literature for 
monthly data [18]. The cyclic component of c  is obtained by subtracting the trend component τ , from 
the original time series.  

We employ the HP filter to decompose the original demand series to its trend and cyclic components. 
Then separate LLNF models are used for predicting each component. The final predictions are 
obtained by aggregating predicted values for trend and cyclic components. It’s worth noting that in 
comparison to the approach presented in [21], we develop an LLNF model for the trend component as 
well, which can bring about satisfactory results due to generalizability of the LOLIMOT learning 
algorithm. Furthermore, only two LLNF models are used to build the forecast model.  

5. Mutual Information-Based Input Selection 

Apart from the modeling approach employed, the input selection technique considerably affects 
prediction accuracy. Building the forecast model based on the irrelevant or unnecessary input variables 
may adversely influence the model’s performance. Using insufficient input variables leads to a model 
which is unable to capture the dynamics of the target system. On the other hand, employing a large 
number of unnecessary input variables exposes the model to the phenomenon of over-fitting. Hence, 
adopting an appropriate input selection technique is of utmost importance in prediction applications. 
Correlation analysis, Principal component analysis and mutual information (MI) are input selection 
techniques, used by researchers [22,23]. The first two methods are linear techniques which perform 
poorly when nonlinear relationships between input variables prevail. On the other hand, mutual 
information, as a measure of dependencies, is very powerful in assessing the relevance or redundancy 
of the input variables [24]. In this paper, we employ MI techniques to select appropriate inputs for 
energy demand forecasting.  
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5.1. Definition of Mutual Information 

The concept of MI, originated from Shannon entropy, addresses the dependencies between random 
variables [24]. The MI between two random variables X and Y expresses the amount of information 
shared by them. In other words, the MI between X and Y measures the reduction in uncertainty on X 
due to the knowledge provided by Y and vice versa [24]. The MI between random variables X and Y, 

( ),I X Y , is defined by: 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

, |

|

,

I X Y H X H X Y

H Y H Y X

H X H Y H X Y

= −

               = −

               = + −

 (18) 

where, ( )H X  and ( )H Y  are entropies of X and Y, ( )|H X Y  and ( )|H Y X  are conditional entropies 

and ( ),H X Y  is the joint entropy of X and Y, respectively. The entropy of continuous variable X with 
probability density function XP  is defined by: 

( ) ( ) ( )2logX X
x

H X P x P x dx= −∫  (19) 

Similarly, the joint entropy of random variables X and Y is stated by:  

( ) ( ) ( ), 2 ,, , log ,X Y X Y
x y

H X Y P x y P x y dxdy= −∫ ∫  (20) 

where, ( ), ,X YP x y  is the joint probability density function of X and Y. By substituting (19) and (20)  
in (18) and some algebraic manipulations, we arrive at the following definition of the MI between 
continuous random variables X and Y:  

( ) ( ) ( )
( ) ( )

,
, 2

,
, , log X Y

X Y
X Yx y

P x y
I X Y P x y dxdy

P x P y
= ∫ ∫  (21) 

In case of discrete random variables, the mutual information between variable X with values 

1, ..., nX X  and probabilities ( ) ( )1 , ...,X X nP X P X  , and variable Y with values 1, ..., mY Y   and probabilities 
( ) ( )1 , ...,Y Y mP Y P Y  , is given as follows:  

( ) ( ) ( )
( ) ( )

,
, 2

1 1

,
, , log

n m
X Y i j

X Y i j
i j X i Y j

P x y
I X Y P x y

P x P y= =

= ∑∑  (22) 

For two independent random variables the equality ( ) ( ) ( ), ,X Y X YP x y P x P y=  holds and therefore 

based on (22) the mutual information between them is zero. For computing the MI between random 
variables X and Y, the marginal and joint probability density function of random variables X and Y 
need to be estimated. Histogram and Kernel techniques are commonly used for estimating probability 
density functions [25]. However, we employ the k-nearest neighbors approach to overcome the curse 
of dimensionality, suffered by the two formerly mentioned techniques. This technique attempts to 
estimate entropy based on the average distance to the k-nearest neighbors, averaged over all data. 
Further information about this technique can be found in [24].  
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5.2. Input Selection Algorithm 

Selecting a set of input variables with the highest relevance to the output and the least  
inter-dependence among each other is the goal of the input selection algorithms. For this purpose, we 
will try to find input variables which have large MI with the output variable and small MI with all 
other already selected input variables [25]. This algorithm is illustrated by Figure 4. 

Figure 4. Illustration of input selection algorithm. 
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total primary energy consumption in 2008 with 20.2% of the total primary energy consumption [1]. 
The required data for the U.S. energy demand forecasting were acquired from the US energy 
information administration database [1]. In addition to energy consumption historical, as the  
auto-regression part of inputs, the population, gross domestic product (GDP) and the energy price have 
also been considered in each case study as the exogenous inputs (cross-regression part of inputs) for 
the forecast models. However, since a large portion of natural gas is consumed for heating purposes, 
the average heating degree-days data is used as an additional input for forecasting of the natural gas 
demand. Table 1 shows the input variables for each case study. The training, validation and test data 
period and length for three case studies are presented in Table 2. The training data are used to construct 
the forecast model and validation data are applied to select the best structure of the model as well as 
the best set of input variables. The test data are finally used for evaluating the performance of the 
proposed forecast model.  

Table 1. Input variables for energy demand forecasting. 

Case Study Input Features 

Gasoline demand Auto regression part Gasoline demand historical 
Cross regression part Population GDP Gasoline price 

Crude oil demand Auto regression part Crude oil demand historical 
Cross regression part Population GDP Crude oil import price 

Natural gas demand 
Auto regression part Natural gas demand historical 

Cross regression part Population GDP Natural gas price 
Average heating degree-days 

Table 2. Data period and length. 

Case Study 
Demand 

Training  
Data Period 

Length 
Validation  

Data Period 
Length 

Test  
Data Period 

Length 

Gasoline  Jan 1992–Dec 2008 204 Jan 2009–Dec 2009 12 Jan 2010–Dec 2010 12 
Crude oil  Jan 1992–Dec 2007 192 Jan 2008–Dec 2008 12 Jan 2009–Dec 2009 12 

Natural gas  Jan 1992–Dec 2006 180 Jan 2007–Dec 2007 12 Jan 2008–Dec 2008 12 

In each forecasting case study, the proposed model established based on the HP filter, LLNF model 
and MI input selection will be applied to energy demand forecasting. It must be noted that both LLNF 
models with global and local estimations are used for the purpose of comparison. Furthermore, to 
demonstrate the effectiveness of the HP filter, the LLNF model with global estimation and MI input 
selection is also applied to each case study and its performance will be compared to the other models.  

For numerical analysis of the proposed method the following error measures will be computed in 
each case study: 

• Mean absolute percentage error (MAPE):  

MAPE = 
1

ˆ1 100
T t t

t

d d

N d=

−
×∑  

1

1 T

t
t

d d
T =

= ∑  
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• Absolute percentage error (APE):  

APE = 
ˆ

100
t t

t

d d

d

−
×  

where td  and t̂d  are actual and forecasted demand at time t and T is the number of forecasts.  

6.1. Selecting the Number of Input Variables 

Before training the forecast model in each case study, the MI technique is applied to the auto- and 
cross-regression part of the input variables to rank time lags of different inputs based on their mutual 
information with the output, according to the procedure shown in Figure 4. It must be noted that the 
demand historical is decomposed into trend and cyclic components and the procedure of MI-based 
input selection is performed for both trend (LLNFτ) and cyclic (LLNFc) models. For each input 
variable, 48 time lags, corresponding to the past four years are considered. Therefore, the MI-based 
input ranking, ends with 4 × 48 = 192 inputs for the first two case studies and 5 × 48 = 220 inputs for 
the third case study. Obviously, this number of inputs is unacceptably large. Hence, selecting the 
appropriate number of inputs from the MI-ranked lags of input variables is another problem. This is 
resolved through model validation.  

In the model validation steps, at first, only the input with the highest rank is fed to the model. The 
model is trained with this input and then the validation data are applied to the model and validation 
error is calculated. Then the input with the second rank is added to the inputs of the mode. Again the 
model is trained and then the validation error is computed. The process of adding high ranked inputs 
carries on until no improvement happens in the validation error. The proper number of inputs is 
decided upon based on the lowest validation error. The procedure of selecting number of inputs based 
on the validation error is carried out for both trend (LLNFτ) and cyclic (LLNFc) models. The validation 
errors for trend and cyclic models of the first case study (gasoline demand forecasting) are shown in 
Figures 5 and 6, respectively. Obviously, six inputs results in the lowest validation error for LLNFτ 

model, while five inputs lead to the best validation error for LLNFc model. These inputs will be used to 
construct the structure of the forecast model. For further analysis, the selected inputs for both LLNFτ 
and LLNFc of the first case study are presented in Tables 3 and 4, respectively. The normalized mutual 
information between each selected input and the output is also presented in these tables. The 
normalization was performed with respect the input with maximum MI with the output. It’s worth 
noting that, in addition to the first three past lags of the gasoline demand, the exogenous variables are 
also assigned to the trend model, LLNFτ, while only the past time lags of the gasoline demand 
historical are selected as the inputs of the cyclic model, LLNFc. This is due to the fact that the trend 
component represents long-term changes of the demand and therefore is more correlated to the 
econometric variable such as population and GDP. In Table 3, 1hdt − , 1hp − , 1hpr − , 1hGDP −  stand for 
gasoline demand trend component, population, gasoline price and GDP at month 1h − , used for 
forecasting the trend of gasoline demand at month h.  
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Figure 5. Validation error versus number of inputs for LLNFτ—first case study. 
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Figure 6. Validation error versus number of inputs for LLNFc—first case study. 
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Table 3. Selected input features for the trend model of the gasoline demand. 

Rank Variable Normalized MI with the Output 
1 1hdt −  1 
2 2hdt −  0.86 
3 1hp −  0.75 
4 3hdt −  0.71 
5 1hpr −  0.69 
6 1hGDP −  0.65 

Table 4. Selected input features for the cyclic model of the gasoline demand. 

Rank Variable Normalized MI with the Output 
1 12hdc −  1 
2 6hdc −  0.80 
3 24hdc −  0.77 
4 36hdc −  0.65 
5 30hdc −  0.55 
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On the other hand, the cyclic trend contains the seasonality nature of the demand series. Therefore 
the past time lags of the 6, 12, 24, 30 and 36, which represent the demand periodicity, provide the 
highest information about the future values of the cyclic component. In Table 4, the hdc  stands for 
gasoline demand cyclic component at month h.  

6.2. Forecasting Gasoline Demand 

Monthly U.S. gasoline demand in 2010 is forecasted as the first case study. The forecasted model is 
trained using data from January 1992 to December 2008 and validated through data from January 2009 
to December 2009. The forecasted and actual values of gasoline demand for test data set are depicted 
in Figure 7. The forecast was obtained using LLNF model with global estimation. Interestingly, the 
proposed model has effectively followed variations in gasoline demand.  

Figure 7. Actual and forecasted gasoline demand for 2010 (HPLLNF + MI). 
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For a better insight, the actual and forecasted values and the corresponding APE are summarized in 
Table 5. The training and test MAPE are presented in Table 6.  

Table 5. Actual and forecasted gasoline demand (HPLLNF + MI). 

Actual Forecast APE % 
8.52 8.58 0.76 
8.58 8.68 1.18 
8.79 8.84 0.54 
9.11 8.92 2.1 
9.16 9.02 1.53 
9.31 9.05 2.79 
9.3 9.27 0.33 

9.26 9.29 0.3 
9.11 8.9 2.29 
9.02 8.93 0.99 
8.82 8.86 0.48 
8.910 8.907 0.03 
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Table 6. Train and test MAPE—gasoline demand forecasting. 

 Training MAPE % Test MAPE % 
HPLLNF (global) + MI 1.05 1.11 
HPLLNF (local) + MI 1.08 1.16 
LLNF (global) + MI 1.23 1.54 

Based on these results, the model composed of the HP filter, MI-based input selection and LLNF 
model with global estimation has the best performance with training MAPE of 1.05% and test MAPE 
of 1.11%. It must be noted that, in Table 6 we indicated the LLNF mode with global least square 
estimation as LLNF (global) and the LLNF model with local least square estimation as LLNF (local). 
Combination of the LLNF model and the HP filter is also referred to as HPLLNF model. Influence of 
the HP filter on forecasting accuracy can also be analyzed using this table. The test MAPE has been 
reduced from 1.54% to 1.11% by employing the HP filter. The model performance in the training 
phase has also been improved due to the HP filter.  

6.3. Forecasting Crude Oil Demand 

The second case study focuses on crude oil demand forecasting. The input variables and range of 
required data for training, validating and testing the forecast model have been summarized in Tables 1 
and 2. Similar to previous case study, after extracting the trend and cyclic components of the training 
and validation data, the LLNFτ and LLNFc models are trained and then appropriate number of inputs is 
determined by applying validation data.  

Table 7. Actual and forecasted crude oil demand (HPLLNF (global) + MI). 

Actual Forecast APE % 
19.04 19.44 2.1 
18.82 19.21 2.08 
18.72 18.79 0.37 
18.67 19.05 2.02 
18.21 18.73 2.87 
18.83 19.06 1.21 
18.63 18.97 1.85 
18.95 18.96 0.06 
18.59 18.16 2.3 
18.8 18.85 0.26 

18.75 18.69 0.33 
19.24 18.78 2.39 

Figure 8 illustrates the forecasted values of the crude oil demand in 2009 as well as the actual 
demand. Although the test series exhibits many fluctuations and changes during 2009, but the 
proposed HPLLNF (global) + MI forecast model has captured the dynamics of the demand series and 
acceptable forecasts have been provided. The numerical values of actual and forecasted crude oil 
demand are also given in Table 7. Based on the results presented in Table 5, the APE ranges from 
0.06% to 2.87%.  
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Figure 8. Actual and forecasted crude oil demand for 2009 (HPLLNF (global) + MI). 
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Besides, a comparison between different models is carried out as shown by Table 8. The comparison 
result confirms that the HPLLNF (global) + MI model has the best performance in terms of training 
and test, while the model without HP filtering, i.e., LLNF (global) + MI has the worst accuracy.  

Table 8. Train and test MAPE—crude oil demand forecasting. 

 Training MAPE % Test MAPE % 
HPLLNF (global) + MI 1.3 1.48 
HPLLNF (local) + MI 1.38 1.64 
LLNF (global) + MI 1.55 1.80 

6.4. Forecasting Natural Gas Demand 

The U.S. natural gas demand forecasting for 2008 is considered as our last case study. Figure 9 
shows the original and trend component of the natural gas demand from January 1992 to December 2007. 
Clearly the trend component contains very long-term variations of the natural gas demand.  
The corresponding cyclic component is depicted in Figure 10, exhibiting short term and almost 
seasonal variations. As shown in Table 1, an additional exogenous input variable, i.e., average heating 
degree-days, has been considered for natural gas demand prediction. This variable reflects the demand 
for energy needed to heat a home or business and is computed relative to a base temperature.  

Figure 9. Original and trend component of the natural gas demand from January 1992 to 
December 2007. 
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Figure 10. Natural gas demand cyclic component from January 1992 to December 2007. 
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Obviously, the natural gas is consumed during cold months for heating purposes, hence justification 
of using this variable. Analysis of the cyclic component obtained by the HP filter also supports this 
discussion. Figure 11 focuses on the the cyclic series from January 1994 to December 1997. It is clear 
that there are four peaks in the cyclic series within this period, each corresponding to a cold month in 
the year. The actual and predicted values for natural gas demand in 2008 are shown in Figure 12, 
demonstrating the noteworthy accuracy of the proposed HPLLNF (global) + MI in long-term natural 
gas demand forecasting. 

Figure 11. Natural gas demand cyclic component from January 1994 to December 1997. 
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Figure 12. Actual and forecasted natural gas demand for 2008 (HPLLNF (global) + MI). 
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It must be noted that such accurate 12-step ahead prediction have been achieved through HP filter 
decomposition, efficient input selection by MI, and distinguished modeling capabilities of the LLNF 
network. The numerical results and the comparison to other models are provided by Tables 9 and 10, 
respectively.  

Table 9. Actual and forecasted natural gas demand (HPLLNF (global) + MI). 

Actual Forecast APE % 
88.17 81.48 7.58 
86.3 82.37 4.55 
73.46 69.99 4.73 
60.77 58.79 3.25 
50.83 50.48 0.69 
53.45 54.02 1.07 
55.1 53.91 2.16 
54.27 56.88 4.81 
48.67 49.94 2.6 
52.75 51.87 1.66 
62.27 60.97 2.08 
77.38 75.23 2.77 

Table 10. Train and test MAPE—natural gas demand forecasting. 

 Training MAPE % Test MAPE % 
HPLLNF (global) + MI 2.95 3.16 
HPLLNF (local) + MI 3.24 3.37 
LLNF (global) + MI 3.66 4.1 

An overall comparison for three case studies is illustrated by Figure 13. In this figure, the values of 
the test MAPE for three different models are presented. It is clear that in all cases, the HPLLNF model 
(global) + MI has resulted in the most satisfactory performance.  

Figure 13. Comparison of test MAPE in different case studies.  
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7. Conclusions 

This paper has proposed a sophisticated long-term energy demand forecasting approach based on 
the HP filter, MI-based input selection algorithm and LLNF model. Extraction of the trend and cyclic 
components of the demand series and effective input selection by the MI technique, considerably 
improved the modeling performance of the LLNF network. Both local and global estimation of rule 
consequent parameters of the LLNF model were considered and it was demonstrated that the global 
estimation technique results in higher modeling performance. Due to individual modeling of the trend 
and cyclic components, selection of different input for each component was made possible and then 
the overall demand series was modeled more accurately. Implementation of the proposed HPLLNF 
(global) + MI in three different case studies, demonstrated the ability of the proposed model for  
long-term energy demand forecasting. The monthly gasoline, crude oil and natural gas demand of the 
US were forecasted in three different years. The noteworthy forecasting results indicate that the 
proposed approach can be effectively used in real world energy demand forecasting applications.  
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