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Abstract: The penetration level of renewable generation has increased significantly in recent years,
which has led to operational concerns associated with the system ramping capability. Here, we
propose the flexible ramping capacity (FRC) model, which considers the practical ramping capability
of generation resources as well as the uncertainty in net load. The FRC model also incorporates the
demand curve of the ramping capacity, which represents the hourly economic value of the ramping
capacity. The model is formulated mathematically using ramp constraints, which are incorporated
into unit commitment (UC) and economic dispatch (ED) processes. Simulations are carried out using
a 10-unit system to compare the FRC model with conventional methods. We show that the FRC
method can improve reliability and reduce expected operating costs. The simulation results also
show that, by using the FRC model, system reliability can be satisfied at high wind power generation
levels while achieving economic efficiency.
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1. Introduction

The penetration of intermittent renewable generation resources has increased significantly in
recent years, which has led to increased variability of the system net load. This has resulted
in challenges for independent system operators (ISOs), including frequency control issues and
complications for planning transmission systems [1]. As shown in Figure 1, the net load varied
significantly with the variations in the output from wind power [2]. This volatility of wind power
can result in ramping events in the system. A ramping event is defined as a large change in the
magnitude of the net load (at least 50% of installed capacity) within a time interval of up to 4 h [3].
Previous studies have focused on the reserve level to mitigate variations and uncertainties associated
with renewable power generation [4–13]. References [9,10] managed uncertainty in net loads by
imposing operating reserve requirements in deterministic models and [11–13] proposed stochastic
programming which attempts to minimize expected costs over net load scenarios. However, procuring
more regulation services to maintain power balance in the case of sudden changes in net load may
result in high energy prices due to insufficient resource in energy market. Furthermore, the additional
dispatch must be compensated for by penalty prices associated with shortages, even when there are no
contingency events [2]. Accordingly, it will be uneconomic to manage the intermittent characteristics
of renewable energy by procuring more regulation services. Furthermore, some power systems have
already experienced shortages of energy and reserve caused by insufficient ramping capability [14], and

Energies 2016, 9, 1040; doi:10.3390/en9121040 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies


Energies 2016, 9, 1040 2 of 17

both Midcontinent independent system operator (MISO) and California independent system operator
(CAISO) intend to establish ramping products in the power market to accommodate uncertainties and
variations in net load [15,16].
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There have been many investigations into the requirements for ramping capacity. In [16], the
authors describe a mathematical formulation for incorporation into CAISO’s market optimization
application to analyze the effects on the system and provide flexibility. Wang et al. [17] reported
a method to determine the ramping capacity requirements. Simulation-based optimization was used to
minimize the expected cost while maintaining the required reliability. Wang and Hobbs [18] compared
the performances of ramping products using a deterministic economic dispatch (ED) model, and
compared the results with those of a stochastic ED model. Their results illustrate how “flexiramp”
can improve system flexibility and market efficiency. Chen, R., et al. [19] explored the mechanism
and possibility of including wind power producers (WPPs) as ramping capacity providers. In [20],
the impacts of ramping services on the thermal generation scheduling which include hourly demand
response in the deregulated environment were addressed. The approaches described above focused on
determining the ramping capacity requirements or investigating the corresponding cost and reliability,
and did not consider ancillary services (AS) responsibility of resources when generators provide
ramping capacity. If a resource has AS responsibilities, its available ramping capability must be
calculated considering the ramp rate that is required to provide that AS. Moreover, most existing
approaches consider ramping only in terms of ED; however, because of the increased system flexibility
requirements associated with wind energy, significant changes in the on/off state of a generator may
be expected with the unit commitment (UC) process.

In this paper, we present a short-term generation scheduling model, that takes into account the
available practical ramping capacity, and determine the flexible ramping capacity (FRC) requirements
using a probabilistic method. A demand curve for FRC is proposed, which indicates the price that
a system operator is willing to pay for ramping capacity. The method was designed to maintain system
reliability above a threshold each hour, and also secure flexibility regarding the requirements of hourly
varying ramping capacity. Significant cost reductions were found, which were more significant at
higher levels of wind power penetration. The main contributions of this paper can be summarized
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as follows: (1) we recognize the limitations of conventional ramping capacity models and suggest
the two improvements; we consider operating reserve constraints to reflect the resource’s available
ramping capacity and propose a method to determine the FRC requirements; (2) the FRC model is
incorporated into day-ahead UC and real-time ED processes; and (3) we develop the demand curve
which represents the amount that a system operator is willing to pay for FRC.

The remainder of the paper is organized as follows. Section 2 describes a model of uncertainties
in the system (i.e., load forecast error, wind power forecast error and generator forced outages) as well
as the design of the flexible ramping model. Section 3 describes the mathematical formulation of the
flexible ramping capacity constraints. In Section 4, the assumptions and methodology used in the
paper are discussed by way of simulation studies. Section 5 concludes the paper.

2. Modeling Flexible Ramping Capacity and Uncertainties in Power Systems

In this section, we describe the FRC model, which addresses uncertainties and variability of net
load. To this end, we distinguish between variability and uncertainty, and then go on to model the
system uncertainties stochastically.

2.1. Uncertainty and Variability of Wind Power

Most methods reported in the literature either use the terms “uncertainty” and “variability”
interchangeably or only focus on uncertainty in the forecast data. However, the effects of variability
and uncertainty on a system differ. Therefore, the corresponding measures taken by the system
operator (SO) to account for them should also differ. The uncertainty is represented by (A) in Figure 2,
and can be expressed as the difference between the forecast wind power and the actual wind power
output. It is very difficult to predict by how much the actual wind power output will deviate from
the forecast wind power output [21]. Therefore, the uncertainty caused by the forecast error requires
operating reserve in order to control the balance between generation and load [14]. The variability
is shown by (B) in Figure 2, which is defined as the difference between wind power at time t and
wind power output at time (t + a) [2]. This may result in power imbalance due to insufficient ramping
capability. As the penetration of renewable energy resources increases, these problems become more
severe, and it is therefore becoming increasingly important to determine the appropriate ramping
capacity for a system in order to provide flexibility. Here, we propose the FRC method, which considers
both uncertainty and variability.
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2.2. Modeling System Uncertainties

2.2.1. Load Forecast Error and Conventional Generator Outage

The uncertainty in the forecast load can be described using a Gaussian distribution with a zero
mean and a fixed standard deviation [22]. The main source of uncertainties with conventional
generation is forced outages of the generation units. The most widely used probability tool is the
capacity outage probability table (COPT), which contains all possible power outputs of the committed
conventional generation fleet, and a corresponding discrete probability distribution is calculated based
on the individual forced outage probabilities of each of the generation units [22].

2.2.2. Wind Power Forecast Error

The uncertainty in the forecast wind power was described using a probability distribution.
Models of wind power forecast error typically employ a normal distribution; however, measured
data for wind power show that a Gaussian distribution does not well describe the tails in the error
distribution in the forecast data [1]. Furthermore, wind power generation is asymmetric in terms of
the forecast error distribution, and also follows different distributions depending on the generation
level [7]. Because of this, to capture the statistics of the error, here the wind power forecast errors were
classified into five groups according to wind power level for a given lead time. The low predicted
wind powers produce negative forecasts, and when the wind power is high, the forecast errors tend
to be positive. Positive error indicates overestimation and negative error indicates underestimation.
The probability distribution can be represented using gamma-like densities [7]:

fγ(y) =
1

βαΓ(α)
yα−1e

− y
β ; {α,β, y} > 0

µ , αβ; σ ,
√

αβ2

(1)

where {µ, σ} are functions of the parameters {α, β}, and indicate the mean and standard deviation of
the gamma density. Figure 3 shows gamma-like density functions with various α and β where α is
a shape parameter, and β is a scale parameter. For simplicity, all wind turbines were assumed to be
identical; therefore, the output of a wind farm is N times the output of a single wind turbine.
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2.3. Flexible Ramping Capacity

2.3.1. Operating Reserve Constraints

As discussed above, procuring more regulation service to manage wind power variability and
forecast uncertainties is inefficient (from the perspective of market efficiency). Accordingly, some
power markets, including MISO and CAISO, have proposed creating a new market termed “ramping
product”. This is the amount of power output that an on-line generator can increase or decrease
within a predetermined time interval. To ensure reliable operation, there must be sufficient ramping
capacity to handle a change in net load. However, existing approaches do not consider constraints
caused by the operating reserve when evaluating the ramping capability of a generator. This may lead
to overestimates of the ramping capacity of resources with AS responsibilities. If a resource being
dispatched has AS responsibility at time t, the ramping capability of resources must be reduced to
provide some ramping capacity for AS. Figure 4 illustrates the practical ramping capability of resources,
considering operating reserve constraints. The technical upward ramp rate of a generator ranges from
the dispatch level to the top of the box. However, since the region shown in blue is retained due to AS
awards, the practical ramping capability that the generator can provide becomes limited to the region
shown in orange. If this constraint is not considered, it can lead to scarcity events caused by resources
that have sufficient power capacity, but insufficient ramping capability [14].
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2.3.2. Flexible Ramping Capability Requirement

The target system upward and downward ramping capacity requirements (SURC and SUDC,
respectively) can be expressed as follows [14]:

SURCt = max
[
(NetDemandt+n − NetDemandt) + Uncertaintyupt+n , 0

]
SDRCt = max

[
(NetDemandt − NetDemandt+n) + Uncertaintydnt+n , 0

] (2)

The first terms on the right-hand side of these expressions represent the variability between
consecutive time intervals. The second terms are fixed values that correspond to the uncertainty in the
net load. With significant variability and uncertainty in a power system, this method cannot prevent
power imbalance and price spikes. Here, to improve system reliability and cost efficiency, the amount
of FRC required at time t is calculated stochastically:

SURCt = max
[
(NetDemandt+n − NetDemandt) + max(Uncertaintyupt+n − Reservet+n, 0

)
, 0]

SDRCt = max
[
(NetDemandt − NetDemandt+n) + max

(
Uncertaintydnt+n − Reservet+n, 0

)
, 0
] (3)
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In general, when the variability of the system net load is positive, (i.e., the net load is increasing),
upward ramping capacity is required. Conversely, when the variability is negative, downward
ramping capacity is required. When considering the uncertainties in the net load, however, there may
be times when both upward and downward ramping capacity is required simultaneously. With FRC
method, both upward and downward ramping capacity can be secured, which can satisfy system
reliability criteria. The first term in (3) is the ramping capacity for managing the net load variability,
and the second term is ramping capacity required to maintain system reliability. The ramping capacity
required for uncertainty is calculated as the difference between the upper limit of the net load and
the forecast net load at time (t + n). If the operating reserve is insufficient to compensate for this
uncertainty, additional capacity is secured via flexible ramping capacity using a stochastic method.
The requirements calculated using the FRC method can maintain system reliability above the threshold
in all cases, and can reduce the rate of occurrence of price spikes by increasing the system flexibility.

To calculate the additional flexible ramping capacity requirements, the generation margin
probability distribution function M was used, which is defined as the difference between the total
generation and load. Assuming independence, the system generation margin can be computed using
convolution [23]. First, the sum G of the conventional generator output C and the wind generation
output W is computed using convolution:

PG(G = g) =
∞

∑
c=−∞

PW(W = g− c)PC(C = c) (4)

Next, the system generation margin M can be calculated by the convolving the system generation
output and load:

PM(G− L = m) =
∞

∑
l=−∞

PG(G = g− l)PL(L = l) (5)

The variable, L, is the load. The system generation margin is the margin by which the available
generating capacity exceeds the system net load, and can be expressed using a discrete probability
distribution for each look-ahead time, as shown in Figure 5 [4]. The y-axis means probability corresponding
to the generation margin. The sum of probabilities of negative generation margin is the loss of load
probability (LOLP), which is widely used in power systems analysis. It is calculated by summing the
probability that the demand exceeds the available generation capacity [14]. The FRC requirement
(see Section 2.3.2) is determined to maintain the LOLP below the threshold for the reliability criteria.
Using a stochastic method, we can maintain the system reliability within the reliability threshold and
reduce the number of short-term scarcity events due to shortages of ramping capacity.
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2.4. Calculation of the Demand Curve

In this section, we define the demand curve for FRC. This indicates the price of the ramping
capacity of the system and sets an effective cap on the required ramping capacity that must be procured.
Hourly FRC demand curves can be determined based on the FRC requirement. The price of flexible
ramping capacity R is represented as follows.

P(R) = ∑
m

LOLP(R, m)×m×VOLL−∑
m

LOLP(T, m)×m×VOLL (6)

Figure 6 shows the FRC demand curve, which is developed every time interval. X-axis of the
FRC demand curve represents ramping capacity. Y-axis refers to the price of ramping capacity. T is the
maximum FRC that a SO is willing to procure in order to satisfy the system reliability. When the SO
has procured FRC with T amount, the system reliability satisfies the given reliability standard, which
means the SO does not have to purchase FRC any more even if the FRC price is zero. P refers to the
difference between the EENS cost of the case when the SO has procured FRC with T amount and that
of the case when the SO has procured with R amount as shown in (6). If the price of FRC is greater
than P0, the cost for purchasing FRC becomes bigger than the EENS cost of the system. Consequently,
the SO will take the risk of power imbalance instead of purchasing FRC. In this way, FRC demand
curve evaluates the value of the FRC depending on the system condition, and provides a price signal
considering system reliability. The SO can achieve reasonable decision making taking account of the
tradeoff between system reliability and FRC cost through the FRC demand curve.
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3. Mathematical Formulation

The following objective function minimizes the production cost over all scheduling intervals
subject to the constraints in (8)–(24):

min ∑T
t=1 ∑I

i [C
E
i,t(vi(t), Pi(t)) + CR

i,t(vi(t), Ri(t))] (7)

Here, we sum two components: the energy cost (CE
i,t) and the reserve cost (CR

i,t). The energy cost
consists of startup and fuel costs for satisfying the generation-demand balance. The reserve provision
cost is imposed on conventional generator. Reserve costs are typically much lower than energy
costs. We assume that the operating reserve costs are 20% of the energy marginal cost. The real-time
economic dispatch (RTED) model is nonlinear and contains modified constraints. RTED also uses the
commitment schedule from the day-ahead UC (DAUC), and optimizes it in RT over a single shorter
interval (i.e., 1 h) using actual load and wind power data.
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3.1. Generation Limits and Ramping Constraints

The inequalities below describe a power output constraint for each generator and a ramping rate
constraint. The generation of each unit must be within the following limits [24]:

Pmini × vi(t) ≤ Pi(t) ≤ Pmaxi × vi(t) (8)

where the variable Pi(t) is constrained by the ramping constraints:

− Rampdn,i × Response Time ≤ Pi(t)− Pi(t− 1) ≤ Rampup,i × Response Time (9)

where, vi is the commitment variable of unit i, where vi = 1 if unit i is scheduled to be on during period
t, and vi = 0 otherwise. Pmaxi and Pmini are the maximum and minimum output powers of unit i,
respectively (MW). Equation (9) represents the ramping constraints of generator i.

3.2. Minimum Up and Down Time Constraints

The expressions describing the minimum up and down time constraints in DAUC are formulated
as mixed-integer linear expressions [25]. The minimum up time constraints are as follows.

Si

∑
t=1

[1− vi(t)] = 0; ∀i ∈ I (10)

t+UTi−1

∑
n=t

vi(n) ≥ UTi[vi(t)− vi(t− 1)] (11)

24

∑
n=t
{vi(n)− [vi(t)− vi(t− 1)]} ≥ 0; ∀t = 24−UTi + 2, . . . . . . , 24 (12)

The minimum down time constraints are represented as follows:

Li

∑
t=1

[vi(t)] = 0; ∀i ∈ I (13)

t+DTi−1

∑
n=t

[1− vi(n)] ≥ DTi[vi(t)− vi(t− 1)] (14)

24

∑
n=t
{1− vi(n)− [vi(t− 1)− vi(t)]} ≥ 0; ∀t = 24− DTi + 2, . . . . . . , 24 (15)

where, Si is the number of periods that unit i must be on-line initially because of its minimum up time
constraint h. Li is the number of periods that unit i must be initially off-line because of its minimum
down time constraint h, and UTi is the minimum up time of unit i.

3.3. Power Balance Constraints

The total generation of all scheduled units during period t must be equal to system net demand:

∑
gen i

Pi(t) = D(t) (16)

where, D(t) is the system net demand during period t.
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3.4. Operating Reserve Constraints

For system reliability, some operating reserve must be maintained (we assume 5% of the net
demand). A generator that is being called upon to provide operating reserve should operate within its
upper generation limits [24]:

∑
online gen i

Pmaxi ≥ D(t) + OR(t) (17)

Pi(t) + ORi(t) ≤ Pmaxi × vi(t) (18)

where, OR(t) is the system operating reserve and ORi(t) is the operating reserve contribution of unit i
during period t (MW).

3.5. Flexible Ramping Capacity Constraints

The following constraints ensure that the total amount of upward and downward flexible ramping
capacity can meet the system requirements [15]:

∑
online gen i

FRCup,i(t) ≥ SURC(t) (19)

∑
online gen i

FRCdn,i(t) ≥ SDRC(t) (20)

where, FRCup,i(t) and FRCdn,i(t) are the upward and downward flexible ramping capacities of unit i
during period t, and SURC(t) and SDRC(t) are the system upward and downward ramping capacity
requirements during period t, respectively.

The upward and downward FRC during each time period t is bounded by the available unloaded
resource capacity:

Pi(t) + ORi(t) + FRCup,i(t) ≤ Pmaxi × vi(t) (21)

Pi(t)− FRCdn,i(t) ≥ Pmini × vi(t) (22)

The Constraints (21) and (22) describe minimum and maximum power constraints of each
generator considering the FRC. Constraint (21) limits the sum of the awards of energy schedule,
operating reserve and upward flexible ramping capacity to be less than or equal to the unit’s maximum
power. Constraint (22) ensures minimum power limit. The deployment of procured downward flexible
ramping capacity should not violate unit’s minimum power constraint.

In this paper, we do not consider the downward operating reserves.

FRCup,i(t) + ORi(t) ≤ Rampup,i × Response Time× vi(t) (23)

FRCdn,i(t) ≤ Rampdn,i × Response Time× vi(t) (24)

In Equation (23), the sum of the ramping capabilities plus the upward reserves provided by a unit
should be limited to the ramp rate of the resource. The response time is the time after which the
operating reserve and ramping capacity provided by generator i is deployable. The day-ahead interval
is 1 h, and the real-time interval is 5 min. This constraint ensures that the generators in the system can
provide the required ramping capability.

3.6. System Reliability Threshold Constraints

The hourly system reliability (LOLP) should always satisfy the reliability threshold (∝). The hourly
FRC requirement will be adjusted to maintain the reliability level.

LOLPt(t) ≤ ∝ (Reliability threshold). (25)
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4. Simulation and Discussion

We carried out simulations to explore the benefits of the proposed FRC method and analyze
its impact on generation scheduling of DAUC and RTED. The DAUC produces optimal generation
scheduling, including commitment status, reserve schedule, and ramping capacity over 24 h. The RTED
model takes the DAUC results as inputs, and produces the least-cost dispatch schedules at 5-min
intervals for 1 h. We developed FRC demand curves, which indicate the value of the ramping capacity
of the system.

This section is divided into two parts. The first compares generation schedules and expected
operating cost between the conventional method and the proposed FRC method. The expected
operating cost is computed as the sum of the production costs and expected energy not served
(EENS) costs, assuming that the value of lost load (VOLL) is $1000/MWh. EENS cost models describe
the economic losses imposed on the demand side in case of interruptions of electrical power [26].
The second part of this section illustrates how the FRC model affects the system reliability and expected
operating costs, and how this depends on the level of wind power generation.

The test system was a modified 10-unit system consisting of thermal units and wind power
plants, where the output was described as a negative load [27]. Wind turbines were considered to be
non-schedulable, and could supply the power up to the maximum available wind power. We do not
consider transmission constraints for simplicity, and focus on the impact of the FRC model. Table 1
lists the data on the generators, and Table 2 lists the forecast hourly load and available wind power.
The system peak load was 1500 MW, and occurred at hour 12.

Table 1. Generator data for the 10-unit system [27].

Unit No. 1 2 3 4 5 6 7 8 9 10

Cost coefficient

a ($/h) 1000 970 700 680 450 370 480 660 665 670
b ($/MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c ($/MW2h) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173
Pmax (MW) 455 455 130 130 162 80 85 55 55 55
Pmin (MW) 150 150 20 20 25 20 25 10 10 10
Min up (h) 8 8 5 5 6 3 3 1 1 1

Min down (h) 8 8 5 5 6 3 3 1 1 1
Start-up cost ($) 4500 5000 550 560 900 170 260 30 30 30
Initial state (h) 8 8 −5 −5 −6 −3 −3 −1 −1 −1
Ramp (MW/h) 150 150 25 25 30 30 30 50 50 50

Table 2. Forecast hourly load and wind generation. These data were obtained from the EirGrid website [28].

H Load (MW) Wind (MW) H Load (MW) Wind (MW) H Load (MW) Wind (MW)

1 700 351 9 1300 220 17 1000 171
2 750 330 10 1400 158 18 1100 160
3 850 298 11 1450 115 19 1200 181
4 950 315 12 1500 102 20 1400 219
5 1000 316 13 1400 116 21 1300 240
6 1100 285 14 1300 148 22 1100 271
7 1150 277 15 1200 153 23 900 309
8 1200 238 16 1050 187 24 800 320

4.1. Comparison between the Conventional and Proposed Methods

The following three cases were studied to investigate the impact of the proposed method on
optimal DAUC and RTED. The operating reserve was assumed to be 5% of each hourly load, and the
total power supplied from wind was set to 21.5% of the daily forecast system load.

• Case 1: Ramping capacity method without operating reserve constraints and flexible ramping
capacity requirement.
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• Case 2: Ramping capacity method with operating reserve constraints.
• Case 3: Flexible ramping capacity method with operating reserve constraints and flexible ramping

capacity requirement.

Case 1 is a conventional ramping model, which does not consider operating reserve constraints.
In this model, the ramping capacity to deal with uncertainty in the net load was fixed. Case 2 considers
operating reserve constraints, which reflect the available practical ramping capacity of the generation
resources. Case 3 is the proposed method with operating reserve constraints and FRC requirement,
where the FRC requirement was calculated stochastically depending on the uncertainty in the net load.
The system reliability (LOLP) threshold was set to 1% [29].

4.1.1. Results of Day-Ahead Unit Commitment

The changes in the DAUC schedules of generators 3 and 4 were analyzed, and the results are listed
in Table 3 (see the underlined data). With cases 2 and 3, generator #3 was committed during hour 7 and
16. With case 2, generator #4 was committed only during hour 6, while the commitment schedules of
the other generators were the same in all cases. Although the target system ramping capacity was the
same for cases 1 and 2, the commitment schedules varied. This is because of changes in the available
practical ramping capacity of each generator, which reflect the operating reserve constraints.

Table 3. Unit commitment schedules.

Unit Commitment Schedule (1–24 h)

3
Case 1 000000 011111 111000 000000
Case 2 000000 111111 111100 000000
Case 3 000000 111111 111100 000000

4
Case 1 000000 111111 111111 111111
Case 2 000001 111111 111111 111111
Case 3 000000 111111 111111 111111

Comparing cases 2 and 3, the hourly unit commitment also changed. This is because with case 3
the model procured more FRC to maintain system reliability to cover the uncertainty in the net load
(see Table 4). Conventional methods only consider either upward or downward ramping capacity,
depending on whether the change in the net load is negative or positive. However, the proposed
method considers the ramping requirements in both directions.

Table 4. Upward and downward system RC requirements.

Up-Ramp 1 2 3 4 5 6 7 8 9 10 11 17 18 19

Cases 1 & 2 71 132 83 49 131 58 89 118 162 93 63 111 79 162
Case 3 86 166 112 75 152 77 89 118 162 93 63 111 79 162

Down-Ramp 7 11 12 13 14 15 16 18 20 21 22 23

Cases 1 & 2 0 0 114 132 105 184 34 0 121 231 238 111
Case 3 5 11 187 205 178 278 128 15 159 269 276 145

As listed in Table 5, the production costs of case 2 increased by 0.26% compared with those of case 1.
This is because more expensive resources were committed. However, the total expected operating cost
was 5.8% lower with case 2 than with case 1. This is because the EENS cost decreased significantly (by
91.7%). Case 1 did not take into account the reduction in the ramping rate of generators with a reserve
obligation. Therefore, if net load were to increase, LOLP would increase significantly due to the lack of
available ramping capacity, as shown in Figure 7. With case 3, there were significant savings in terms
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of the EENS cost because LOLP was maintained below a certain level by ensuring greater system
flexibility. The simulation results show that the proposed FRC method was the most economic.

Table 5. Expected operating costs with DAUC.

Case Production Cost ($) EENS Cost ($) Operating Cost ($)

Case 1 464,155.82 32,775.61 496,931.43

Case 2 465,381.49
(+0.26%)

2,720.05
(−91.7%)

468,101.53
(−5.8%)

Case 3 465,294.29
(+0.25%)

337.57
(−98.9%)

465,631.86
(−6.3%)
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Figure 7 shows the hourly LOLP for each case. With cases 1 and 2, the LOLP exceeded the
reliability threshold. However, with case 3, the LOLP remained below the reliability threshold during
all time periods. The conventional method did not consider the operating reserve constraints, which
led to a significant increase in the LOLP because of a lack of capacity to handle large variations in
net load. In other words, if practical ramping capability is not taken into account, system flexibility
may be overestimated. However, using the proposed FRC method, system reliability was enhanced
significantly. Thus, these simulations show that the FRC method is effective in terms of both supply
reliability and economics. This is achieved by avoiding the dispatch of additional reserve resources to
maintain system reliability, and thus avoiding the associated short-term price spikes.

The downward ramping capacity did not influence the commitment schedule in these simulations.
This is because the downward ramping capability of an online generator was sufficient to cope with
the uncertainty and variability of the net load. If load decreases significantly at the same time as
wind power generation greatly increases, situations in which downward ramping capacity may be
insufficient are more likely to occur.

4.1.2. Results of Real-Time Economic Dispatch

RTED was carried out based on the commitment output from the DAUC model at hour 20.
Table 6 lists the results of generation scheduling of units #1 and #5 for each case. Unit #1 was the least
expensive base-load unit, and unit #5 was the marginal unit at hour 20. With case 2, the ramping
capacity of resources with AS responsibility was reduced compared with that of case 1 because of
operating reserve constraints. To compensate for the shortage of ramping capacity, the power output
of unit #1 was reduced to provide the ramping capacity. The power output of unit #5 increased because
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of the reduction in the power output of unit #1, which resulted in an increase in the production cost.
With case 3, which considered the system uncertainty and the required additional FRC, the changes in
output powers of units #1 and #5 were more significant.

Table 6. Real-time economic dispatch schedules at hour 20.

Unit 0 5 10 15 20 25 30 35 40 45 50 55

1
Case 1 453 448 453 451 453 443 453 453 445 453 453 449
Case 2 449 441 453 447 451 439 451 453 448 453 453 450
Case 3 445 437 448 441 451 439 451 450 445 450 453 447

5
Case 1 141 143 146 148 151 148 148 148 145 147 149 147
Case 2 145 146 147 148 150 147 148 148 145 147 148 145
Case 3 148 149 152 153 153 150 151 151 152 153 151 148

The proposed FRC method resulted in greater system flexibility (see Table 7). The increased
ramping capacity requirement in case 3 contributed to the reduced EENS cost (see Table 8). This in turn
resulted in a reduction in the expected operation costs and maintained system reliability, as shown
in Figure 8. In short, the conventional method resulted in situations where ramping capacity was
insufficient to satisfy the change in the net load. To maintain system reliability, the operating reserve
should be more ensured, which will lead to a significant increase in the production cost.

Table 7. System RC requirements for ED.

Up-Ramp 5 10 15 25 30 35 40 45 50

Cases 1 & 2 21 0 17 23 0 0 9 4 0
Case 3 27 2 23 27 11 1 20 15 3

Down-Ramp 0 15 25 35 40 45 50 55

Cases 1 & 2 14 9 31 0 10 0 0 8
Case 3 26 21 31 12 22 3 8 20

Table 8. The expected operating costs with RTED.

Case Production Cost ($) EENS Cost ($) Operating Cost ($)

Case 1 25,103.02 1,475.72 26,578.74

Case 2 25,111.44
(+0.03%)

126.55
(−91.4%)

25,237.99
(−5.04%)

Case 3 25,124.78
(+0.08%)

100.38
(−93.2%)

25,225.16
(−5.09%)
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The FRC demand curves at a specific time (20:20) for RTED with cases 2 and 3 are shown in
Figure 9. The required quantity of FRC was higher with case 3 because we must secure more ramping
capacity to satisfy the reliability criteria (LOLP < 0.01); this led to a significant decrease in the EENS
costs compared with those in cases 1 and 2. Therefore, price levels of the corresponding ramping
capacity were higher with case 3. Although the conventional methods did not reflect the practical
value of ramping capacity, the proposed FRC method could describe the practical economic value of
ramping capacity considering system reliability.
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4.2. Impact of the Wind Energy Level

In this section, we discuss the impact of the level of wind power generation. Cases with wind
generation of daily load forecasts of 14.3%, 21.5%, and 30% were investigated using simulations.
Figure 10 shows the expected operating costs and FRC requirements as a function of the level of
wind power generation with cases 1 and 3. For all cases, as the wind power increased, the expected
operating cost decreased due to a decrease in the generation of (relatively expensive) conventional units.
The reduction in cost was more significant with case 3 because the FRC method considers the hourly
system reliability. Moreover, the hourly ramping capacity requirement increased as the wind power
generation level increased, which in turn resulted in increases in system uncertainty and variability.
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Figure 11 shows the system reliability at different wind power generation levels. With case 1, as
the wind power generation increased, the LOLP also increased, as did the number of events whereby
the LOLP exceeded the reliability criteria. By contrast, with case 3, we can clearly see that the system
reliability was maintained regardless of the wind power generation level. Consequently, these results
show that the proposed FRC method could accommodate wind power generation with improved
economic efficiency while satisfying the system reliability criteria.
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5. Conclusions

We have described a model for generation scheduling with FRC. This model takes into account
uncertainties in the net load and operating reserve constraints. A stochastic approach was used to
account for uncertainty and variability of net load, and operating reserve constraints were considered
when measuring ramping capacity of generating units with AS responsibility.



Energies 2016, 9, 1040 16 of 17

The proposed method was shown to exhibit significant reliability improvements, as well as
improved economic efficiency by altering commitment and dispatch. Our simulation studies showed
that the hourly LOLP could be maintained below the reliability threshold, and the expected operating
costs could be reduced. As the wind power generation increased, the reduction in the expected
operating cost became greater. The proposed FRC model enabled a reduction in the EENS cost by
securing FRC considering the practical ramping capability of the generation resources. The FRC
method also allowed us to calculate the FRC demand curve, which quantifies the economic value of
the hourly ramping capacity product. The prices of the FRC demand curves reflect hourly system
reliability as a function of the FRC. In other words, the FRC demand curve represents the economic
value of hourly system reliability. The proposed method also showed improved economic efficiency
and system reliability in accommodating increased wind power.

As part of future research, we intend to investigate the impact of generating schedules that
consider an FRC model with demand response in both UC and ED processes.
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