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Abstract: The massive penetration of wind generators in electrical power systems asks for effective
wind power forecasting tools, which should be high reliable, in order to mitigate the effects of the
uncertain generation profiles, and fast enough to enhance power system operation. To address
these two conflicting objectives, this paper advocates the role of knowledge discovery from
big-data, by proposing the integration of adaptive Case Based Reasoning models, and cardinality
reduction techniques based on Partial Least Squares Regression, and Principal Component Analysis.
The main idea is to learn from a large database of historical climatic observations, how to solve
the wind-forecasting problem, avoiding complex and time-consuming computations. To assess the
benefits derived by the application of the proposed methodology in complex application scenarios,
the experimental results obtained in a real case study will be presented and discussed.

Keywords: wind power forecasting; knowledge discovery; big data; case-based reasoning;
machine learning

1. Introduction

A crucial issue in modern power systems is how to support the large-scale pervasion of wind
generators in existing power grids by mitigating their negative impacts on system operation and
control. In particular, a massive integration of intermittent and non-programmable generators into
power grid affects the line currents and the bus voltage magnitudes by inducing several side effects [1].
In this domain, an effective forecasting of the injected wind power profiles represents a relevant issue
to address, since it can support power system operator in limiting imbalance charges, getting strategic
information on the electricity market dynamics, and planning effective predictive based maintenance
programs. Wind power forecasting may also contribute in limiting the occurrence or time duration of
power curtailments [2].

Wind forecasting is typically addressed by the adoption of Numerical Weather Prediction
(NWP) [3]. These climatological models forecast the profiles of several climatic variables on large area,
by solving the dynamic atmosphere equations on fixed spatial grids. However, the spatial resolution
of these forecasting models is of the order of several km2 (i.e., 7.6 km × 7.6 km), which could be not
suitable for accurately describing local wind dynamics in complex regions. Moreover, they require
very large computational resources and complex, time-consuming solution algorithms, which make
complex their deployment in a real grid operation scenario.

Consequently, many research works have focused on proposing forecasting algorithms, which
process local measured data by statistical black-box models, in order to obtain higher spatial resolutions
and lower computational burden. To this aim, many learning techniques based on the aforementioned
AutoRegressive Integrated Moving Average (ARIMA) have been proposed in the literature, with
acceptable performance in short-term scenarios (1–3 h ahead). However, their performance diverges
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in medium-term forecasting horizons, since the wind profiles are non-stationary, extremely volatile
and characterized by non-constant mean, variance and significant outliers [4]. To overcome this
limitation a shift toward the application of non-linear learning techniques was suggested, including,
Feed-Forward Neural Network and Neuro-Fuzzy networks [5] Although these black-box techniques
allow overcoming some of the intrinsic limitations of ARIMA-based forecasting tools, their adoption in
real operation scenario is not prone to side effects, which mainly derive from the lack of rigorous and
generalized methodologies for identifying the network architecture, and the difficulties in managing
the intrinsic time-variation effects of the wind forecasting problem.

More recently, advanced techniques based on the integration of physical modeling and non-linear
learning techniques, known as semi-physical modeling algorithms, have been proposed for wind
forecasting [6,7]. The insight is to preserve the best from both climatic models and black-box modeling
techniques, by amalgamating physical knowledge coming from the downscaling of a climate mesoscale
model, with empirical evidence provided by measurements. Although these methodologies have
proved their effectiveness in various realistic operation scenarios, their integration into existing Energy
Management Systems is very demanding due to the high computational resources required to solve
the physical downscaling problem. As a consequence, the research in wind power forecasting is
now addressing the issue of making physical modeling more efficient by avoiding accurate yet time
consuming algorithms.

This paper advocates the role of knowledge discovery by Case-Based Reasoning (CBR) and
cardinality reduction techniques in dealing with the problem of obtaining a reliable and prompt
solution of the wind downscaling problem. The rationale is that, in practical applications, forecasting
algorithms are often called to downscale mesoscale models with a set of boundary conditions that are
not too far from previously encountered ones. Hence, rather than solving the physical downscaled
model for the given set of boundary conditions, the analyst could select from a database of historical
boundary conditions the most similar ones, inferring from the corresponding stored solutions the
one corresponding to the given boundary conditions. This is an instance of the CBR-based paradigm,
which allows obtaining approximate and fast forecasting problem solutions, by avoiding unnecessary
physical model solutions for similar boundary conditions. The effectiveness of these approximations is
strictly related to the accuracy of the similarity measure between the actual and the stored boundary
conditions, which represents one of the most critical and challenging issues to address. The main
difficulties arising in computing a reliable similarity measure for the boundary conditions mainly
derive by the large dimensions of the corresponding descriptive vectors, which could be composed
by thousands of components depending on the size and the resolution of the spatial mesh describing
the area under analysis. Hence, the distances in this highly dimensionally space tend to become
uniform and the nearest neighbor notion loses of meaning. This is a well note problem encountered in
deploying CBR-based paradigms in big-data domains, which is referred in the computational science
literature as the curse of dimensionality problem [8]. To face this issue, in this paper the adoption
of cardinality reduction techniques based on Partial Least Squares Regression (PLSR) and Principal
Component Analysis (PCA) are proposed. The idea is to extract the most relevant information codified
in the boundary conditions by projecting the corresponding descriptive vectors in new space domains
characterized by a reduced number of dimensions.

The integration of these techniques in the CBR-based forecasting framework is expected to be
accurate, robust and prompt. Accuracy should derive from the use of advanced feature extraction
techniques and powerful regression algorithms, which aim at inferring the forecasting solution
corresponding to the given boundary conditions by processing the historical physical model solutions
corresponding to the most similar boundary conditions. Robustness should be guaranteed by an
adaptive process, which relies on the precise physical model solver when the precision of the forecasting
solution computed by the regression algorithm is not deemed to be sufficiently accurate. Finally,
promptness derives from the fact that, once a sufficient number of boundary conditions and historical
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solutions are stored, the forecasting solution may be quickly approximated by the regression algorithm,
without invoking the rigorous algorithm for a physical model solution.

In order to assess the effectiveness of the proposed methodology, detailed experimental results
obtained in a real case study are presented and discussed. The considered case-study is based on
the hourly one-day ahead wind power forecasting for 27 wind turbines dispersed on a large area
characterized by very complex orography.

2. The Role of Physical Downscaling Models in Wind Power Forecasting

The most reliable tools for time and spatial wind power forecasting on medium- and long-term
time horizons are based on NWP models, which solve the set of not-linear differential equations ruling
the physic of the atmosphere for a specific domain.

In particular, global NWP models, such as the Integrated Forecasting System (IFS), which is
a hydrostatic, two-time-level, semi-implicit, semi-Lagrangian model [9], allow one to describe the
weather dynamics with spatial resolution of 10 km, until 2 weeks ahead. Larger time forecasting
horizons can be obtained by Limited Area Models, LAM, such as Consortium for Small Scale Modelling
(COSMO) I7 and I2, which compute weather forecasts until 72 h ahead [10]. In particular, COSMO-I7
uses as boundary conditions the solutions computed by IFS, and COSMO-I2 is solved in cascade to I7 in
order to refine its solution. Hence, the local weather predictions for a certain time horizon are obtained
by a physical downscaling, which refines the predictions of two NWP models, as schematically
depicted in Figure 1.
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Figure 1. Physical downscaling model.

According to this processing paradigm, the solution computed by COSMO-I2 can be further
downscaled by a Computational Fluid Dynamics (CFD) solver in order to obtain a more accurate
description of the weather variables, and in particular the wind profiles, on a limited geographic area.
This principle is currently employed in modern wind power forecasting tools, which try to improve
the accuracy of the wind predictions computed by a LAM by solving a detailed physical model of
the analyzed area, assuming as boundary conditions the solution computed by the mesoscale model,
as schematically depicted in Figure 2. Experimental studies confirmed that the adoption of these
physical downscaling-based approaches allows to obtain a sensible improvement of the wind power
forecasting accuracy especially for short- and medium-term horizons (30 min to 24 h ahead). This
positive feature is mainly due to adoption of high-resolution Digital Terrain Modules-DEM, which
allows to accurately describing the orography and roughness of the analysed area, without requiring
the need for acquiring and processing anemometric data.

In any case, the main limitations characterizing these CFD-based approaches derive by the large
computational resources needed to solve the physical downscaling problem, which could make the
problem intractable, or the computing time so high to make the corresponding forecasting solutions
not really useful for power system operation.
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3. Wind Power Forecasting by Case Based Reasoning

In this paper the role of CBR as enabling methodology for solving the dichotomy between accuracy
and promptness in wind power forecasting is analyzed. The main idea is to formalize the physical
downscaling problem schematically depicted in Figure 2, as an input/output mapping correlating
the boundary conditions of the downscaling problem for the selected geographic area computed
by the LAM, to the corresponding downscaled solution computed by the CFD solver. Hence, if we
assume that the wind profiles on the analyzed area change according to definite patterns, it can be
argued that similar input patterns (boundary conditions) correspond to similar downscaled physical
solutions. According to this paradigm, the solution of the local physical model for the assigned
boundary conditions can be approximated by processing the downscaled solutions corresponding to
the most similar boundary conditions stored in a data-base.

In particular, let XB be the input matrix storing n boundary conditions, each of them described by
a vector of m components, representing the values of the weather variables on a spatial mesh with large
resolution; and let YB be the output matrix storing the corresponding n downscaled solutions obtained
by the CFD solver, each of them described by a vector of r components, representing the wind speed
components in the points of interest, i.e., the wind turbines locations. These input/output matrixes
represent the knowledge base of the CBR process, since they allow computing the downscaled solution
for a boundary condition described by the query vector xq according to the following procedure:

1. Compute the distance between the query point xq and each vector of the input matrix XB:

dj =

√
m

∑
i=1

(
xq(i)−XB(j, i)

)2 ∀j ∈ [1, n] (1)

2. Compute the similarity degree between the query and the stored vectors:

wj =
max

i
(di)

dj
∀j ∈ [1, n] (2)

3. The downscaled solution ŷq for the query vector can be approximated by processing the
downscaled solutions corresponding to the “most similar input vectors”, here referred as the
neighbors, which can be identified ordering the input vectors according to their similarity degrees.
To this aim, the following naïve approach can be applied:

ŷq(i) =
∑j∈N YB(j, i)× wj

∑j∈N wj
∀i ∈ [1, r] (3)

where N is the set of the neighbors.

Alternatively, the previous problem can be solved by a more sophisticated approach based on the
solution of the following regression model:
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ŷq = xqβ (4)

where β is the regression matrix, which is obtained as follows:

β =
(

XT
N

)−1
XT

NYN (5)

XN = XB(j, i) ∀j ∈ N ∀i ∈ [1, m] (6)

YN = YB(j, i) ∀j ∈ N ∀i ∈ [1, r] (7)

It is worth observing that the approximation accuracy of this CBR-based forecasting paradigm is
strictly related to the “completeness” of the knowledge base, which depends by the “granularity” of
the information represented by the stored input/output patterns. Hence, in order to progressively
enhance the knowledge base, an adaptive process aimed at detecting the degradation of the forecasting
performances, or the inadequacy of the stored information in correctly representing the input/output
mapping, can be used to trigger the rigorous solution of the downscaling problem, and the adjournment
of the knowledge base with the corresponding input/output patterns. The first condition can be
assessed by performing the ex-post analysis of the forecasting accuracy, i.e., by checking if the forecasting
error lies outside a fixed tolerance bound, while the second condition can be assessed by an ex-ante
analysis aimed at detecting if the maximum similarity degree between the query vector and the stored
input patterns is outside a fixed tolerance bounds, namely if the query vector is too much different
from the stored input vectors.

The mathematical backbone of this CBR process is the assessment of the similarity degree, which
represents the most critical issue to address, due to the large dimensions of both XB and YB. In fact,
these matrixes are characterized by a large number of both rows and columns, depending on the
number of available input/output patterns (e.g., order of several hundreds), and the spatial resolution
of the environmental variables profile (e.g., order of several thousands), respectively.

Working with these matrixes is a very demanding task, since also the most elementary operations
require large computing and storage resources, making the deployment of conventional mathematical
operators not suitable. Another complex issue to address in this domain is the assessment of the
vectors similarity, since in high-dimension spaces the conventional distance metrics could degenerate,
becoming uniform, and the nearest neighbor notion loses of meaning, due to its poor discrimination
feature. In the computational intelligence literature, this phenomenon is referred as the curse of
dimensionality problem, which represents one of the most challenging issue to address in the context
of Big Data analytics [11]. To solve this issue in this paper the adoption of feature extraction techniques
based on PCA, and PLSR is explored.

4. Enabling Methodologies for Feature Extraction from Massive Wind Data

Feature extraction techniques based on PCA and PLSR have been recently proposed in the wind
forecasting literature in an attempt to reduce the complexity of identification models. In particular,
in [12] PCA is integrated in a statistical wind-forecasting algorithm in order to reduce the cardinality
of a time delay-matrix, simplifying the solution of the time regression problem. According to the same
principle, in [13] a PCA-based technique is employed to reduce the cardinality of the training set of a
neural network aimed at improving the wind forecasting accuracy of a mesoscale model, while in [14]
the same technique is employed to select the most suitable inputs for a semi-physical forecasting
method. Moreover, in [15] a method based on PLSR is adopted in an ensemble-forecasting framework
to determine the weighting factors to assign in combining the output of multiple forecast algorithms.

These papers demonstrate the effectiveness of PCA and PLSR based techniques in extracting the
most relevant information codified in large datasets of historical input/output observations. This
is obtained by projecting the vectors composing the original dataset in a transformed space, which
allows describing the information codified in the dataset with a reduced number of vector components.
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This cardinality reduction feature could play an important role in solving the curse of dimensionality
problem in wind forecasting, which is one of the main contributions of this paper. Hence, after
presenting the mathematical fundamentals of these two techniques, their integration in a CBR-based
wind-forecasting framework is discussed.

4.1. PCA: Principal Component Analysis

The goal of PCA is to deflate the dimension of a dataset guaranteeing the lowest information
losses, by projecting the vector composing the original dataset by a proper orthogonal base aimed at
maximizing the data variance.

The application of PCA to the problem under study asks for decomposing the input/output
matrixes as follows:

XB = XB + XBsPT + εx (8)

YB = YB + YBsQT + εy (9)

where:

• XB and YB are the center of the matrixes XB and YB, respectively;
• XBs and YBs, whose dimensions are [nPCx, n] and [nPCy, n] (with n PCx � m, nPCy � r), are the

score matrixes;
• P and Q, whose dimensions are [n, nPCx] and [n, nPCy], respectively, are the loadings matrixes;
• εx and εy are the error matrixes.

The components of the loading matrixes P and Q can be computed by using an iterative approach
that maximizes the variables variance, constraining the column vectors of these matrixes to be the
eigenvectors of the covariance matrixes:

Σ ∝ (XBwk)
T =

(
XBwp

)T
= (w T

k XT
BXBwp

)
= wT

k λpwp = λpwT
k wp

k, p ∈ [1, m]
(10)

where, Σ represents the linear correlation between two random variables.
Hence, the corresponding elements of the scoring matrixes can be computed as:

X̂b f = XB −
f−1

∑
s=1

XBpsp
T
s (11)

Ŷb f = YB −
f−1

∑
s=1

YBqsq
T
s (12)

where ps and qs are the s-th column vectors of the loadings matrices P and Q, respectively, and f is
the number of principal components, which can be selected by applying the methodologies described
in [16].

4.2. Partial Last Square Regression

PLSR aims at extracting an orthogonal set from a set of “latent variables”, which contains the
most relevant information codified in the original dataset [17]. This can be obtained by representing
the knowledge based according to the following equations:{

XB = XB + XBsPT + εx

YB = YB + YBsQT + εy
(13)

Similarly to PCA, at each iteration PLSR tries to maximize the covariance between XB and YB,
by projecting these data in a new space [16], but, in addition, it includes a regression step, which
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allows to compute two further variables, namely the regression matrix β, and the intercept β0. These
variables allow to approximate the output matrix YB as follows:

ŶB = β0 + XBβ (14)

4.3. Proposed Method

To deal with the curse of dimensionality problem in CBR-based wind power forecasting, the
application of PCA and PLSR-based techniques is proposed in this paper. The idea is to extract
actionable intelligence from the knowledge base of the CBR process, by projecting the input/output
vectors in a transformed domain, which is characterized by lower dimensionalities. In this domain the
vectors can be represented by a limited number of components, and both the similarity assessment
and the regression analysis can be performed more effectively.

The first step in deploying the proposed framework is to build the knowledge base of the CBR
module by solving the physical downscaling problem for a comprehensive set of boundary conditions
generated by the mesoscale model. To this aim a CFD model aimed at computing the wind and
pressure field on a high-resolution spatial grid is employed. The CFD allows to accurately representing
the area under study by a high-resolution Digital Elevation Model (DEM), which integrates detailed
information on the orography and roughness of the terrain. The solutions computed by the CFD are
organized in the matrixes XB and YB, which are processed by a feature extraction technique based
on PCA or PLSR. The corresponding reduced matrixes, XBs and YBs, are stored in the database of
the historical physical downscaling solutions, and used to infer the solutions for the query vectors.
The overall forecasting process is summarized in Figure 3.Energies 2017, 10, 252 8 of 15 
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5. Experimental Results

To assess the benefits deriving by the application of the proposed framework in the task of solving
complex forecasting problems, detailed experimental results are here described. The analyzed area,
which is schematically indicated in Figure 4, is located in the south of Italy, in a region characterized
by a massive pervasion of wind generators. The morphology of this area is very complex, the ridges
are steep, the territory is mainly rural with agricultural and wooded areas. The installed wind power
capacity for the entire area is 70.2 MW, which is shared among 27 machines directly connected to the
power transmission system by a HV power line. This line is frequently congested due to the large wind
power production, and in many operation conditions it represents the bottleneck for the entire power
system capability, inducing sensible differences of the local marginal prices. To assess the benefits
deriving by the application of the proposed framework in predicting power congestions and defining
effective mitigation strategies for this area, ten days characterized by critical contingencies have been
selected and analyzed in this study.

The forecast profiles for each hour of the next day are computed by the mesoscale model for the
area under study have been furnished by Italian Aerospace Research Center (CIRA). These data are
organized on a spatial grid composed by 16 × 18 points (spatial resolution of 2.8 km), for 62 layers,
ranging from about 4 m to 20 km on the terrain ground. The DEM for the area under study has
been developed by the CNR-IREA (Institute for Electromagnetic Measurements of the Environment).
The employed CFD solver solves mathematically the Reynolds Average Navier Stokes equation (RANS)
using finite volume method and is based on Phoenix software package, which adopts traditional CFD
techniques to model the atmospheric dynamics.Energies 2017, 10, 252 9 of 15 
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5.1. PCA Results

A preliminary sensitivity analysis is performed to identify the optimal PCA algorithm set points.
After this analysis the CBR-based framework has been adopted to solve the forecasting problem
for 16 cases, requiring a solution time of the order of 4 min, against the 2 h required for solving
the corresponding case by the CFD solver. The results obtained are summarized in Table 1, and
demonstrate the good accuracy of the proposed method, although a reduced number of historical
information is stored in the knowledge base. More detailed results are shown in Figures 5–8.
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Table 1. Performance Indexes: Proposed Method.

Case
Number

N◦ xPCs
(kXB )

N◦ yPCs
(kYB )

Nearest
Neighbors

(NN)

Normal Root
Mean Square

Error (NRMSE)

Normal
BIAS

(NBIAS)

Normal Mean
Absolute Error

(NMAE)

1 5 5 3 0.5204 0.2063 0.4439
2 10 12 3 0.3995 0.0166 0.3403
3 5 5 6 0.4195 0.2599 0.3629
4 5 5 3 0.2994 −0.0412 0.2366
5 10 12 3 0.3039 0.0864 0.2594

Figure 5 shows the comparison between the Principal Components (PC) estimated (red) and
obtained applying PCA to the CFD outputs in the validation period (green). In Figures 6–8 the wind
speed, the wind direction, and the generated power for each turbine of the windfarm estimated by
using the proposed method (red) and the CFD (green) are reported.Energies 2017, 10, 252 10 of 15 
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obtained by using of PCA for the 2nd forecasting hour.

These figures confirm the good degree of accuracy obtained by the proposed method, although
the estimation of the first latent variables needs to be improved, since higher forecasting errors are
observed. This is also confirmed in Figure 9, which reports, for a fixed forecasting hour, the distances
of Nearest Neighbors case by the query vector, and the probabilistic distribution of these distances.Energies 2017, 10, 252 11 of 15 
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Moreover, Figure 10 reports some interesting figure of merits characterizing the accuracy of the
proposed method, which include the NMAE trend on each hour unit of time of validation period,
the related distribution of the NMAE values, the NBIAS trend on each hour unit of time of validation
period, the related distribution of NBIAS values, the NRSME trend on each hourly unit of time of
validation period, and the related distribution of NRSME values.
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These results confirmed the need for increasing the number of historical cases in order to reduce
the distance between the query point and the neighbors, which is the main factor affecting the overall
forecasting accuracy.

Finally, in Figure 11 the probabilistic distribution of the error between the power output estimated
by the proposed method, and by the CFD solver for the validation period is reported. The results show
a slight underestimation of the estimated power, which in most cases is of the order 10%.
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5.2. PLSR Results

The first experiments developed have been based on the application of PLSR for reducing the
cardinality of the matrixes XB and YB. To this aim, the choice of the proper number of PCs has been
done by analyzing the evolution of the variance in YB versus the number of PCs, which is reported in
Figure 12. The optimal number of principal components is given by the analysis on the cumulative
variance expressed by the PC. In this chase, the first 24 principal components explain over 90% of
the cumulative variance. Obviously, a larger number of components is expected to improve the
approximation accuracy and the computational burden, as it can be observed by analyzing the data
summarized in Table 2.
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Table 2. Performance Indexes using PLSR.

Case RMSE on Wind
Speed (m/s)

RMSE on Wind
Direction (◦)

Time
Required N◦ of PCs Rsquared

Ratio

1 1.7865 25.5 6.10 s 24 0.8355
2 2.1861 27.8 2.87 s 12 0.7581
3 1.6119 24.0 11.39 s 48 0.8538

As expected, the case characterized by the largest number of components, namely case 3, is the one
characterized by the better approximation accuracy on both wind speed and direction, and the largest
computational burden. This is also confirmed in Figure 13, which depicts the scatter plot of the original
versus the reconstruction variables. This graph highlights the important role played by the selection
of the optimal number of components in improving the approximation performances of PLSR-based
methods. In particular, it could be note that increasing the PC number, increases the accumulation of
the points nearby the first quadrant bisector, hence leading to a better approximation accuracy.
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Finally, it should be noted that the limited number of available observations in the knowledge base
does not allow the PLSR-based CBR module to extract enough information, leading to unsatisfactory
forecasting accuracy. In these conditions the PCA-based technique represents the most viable solution
for CBR-based forecasting. A different trend is expected for larger observations. The experimental
validation of this issue is currently under development by the authors.

6. Conclusions

This paper has proposed a novel method for time and spatial wind power forecasting, which is
based on a process of knowledge discovery from big data. The main idea is to integrate Partial Least
Squares Regression, and Principal Component Analysis in a Case-based Reasoning module, in order
to effectively process massive data sets, addressing the curse of dimensionality problem. The obtained
results obtained on a real case study have shown the effectiveness of the proposed method in the task of
obtaining approximate and fast forecasting problem solutions, by avoiding unnecessary physical model
solutions for similar boundary conditions. This has been obtained by extracting the most relevant
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information codified in the boundary conditions by projecting the corresponding descriptive vectors
in new space domains characterized by a reduced number of dimensions. This important feature
allowed us to infer the forecasting solution corresponding to new boundary conditions by processing
the historical physical model solutions corresponding to the most similar boundary conditions, and to
detect when the knowledge base need to be adjourned in order to improve the granularity of the stored
information. The authors are confident that the conceptualization of feature extraction techniques
based on the proposed CBR paradigm could support the analyst in identifying the most valuable
variables influencing the input/output forecasting mapping, which might help the design of the link
between future models showing where detail may be more and less important. This issue is currently
under development by the Authors.
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List of Symbols

xq query vector
XB the input matrix storing n boundary conditions
YB output matrix storing the downscaled solutions obtained by using of the CFD solver
dj distance between the query point xq and each vector of the input matrix XB

wj similarity degree between the query and the stored vectors
ŷq approximated downscaled solution ŷq for the query vector with CBR
n number of downscaled solutions obtained by the CFD solver
m number of components of each boundary condition set in XB

r number of components of each downscaled solution set in XB

β regression matrix
XN set of nearest neighbors of XB

YN set of nearest neighbor of the YB correspondent to the XN vectors
XB, YB center of the matrixes XB and YB, respectively
XBs, YBs score matrixes of the matrixes XB and YB, respectively
nPCx, nPCy number of principal components of the matrixes XB and YB, respectively
P, Q loadings matrixes
εx, εy error matrixes
Σ covariance matrix
wk example of column vector of loading matrix
ps, qs the s-th column vectors of loadings matrices P and Q of matrices XBs and YBs, respectively
β0 intercept matrix
xqs query vector in the new phase space
ŷqs approximated downscaled solution ŷq for the query vector with CBR in the new phase space
N is the set of the neighbors
kXB , kYB principal components number of matrices XB and YB, respectively
RSPSLR Root Square Ratio
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