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Abstract: Buildings consume approximately 3
4 of the total electricity generated in the United States,

contributing significantly to fossil fuel emissions. Sustainable and renewable energy production can
reduce fossil fuel use, but necessitates storage for energy reliability in order to compensate for the
intermittency of renewable energy generation. Energy storage is critical for success in developing a
sustainable energy grid because it facilitates higher renewable energy penetration by mitigating the
gap between energy generation and demand. This review analyzes recent case studies—numerical
and field experiments—seen by borehole thermal energy storage (BTES) in space heating and domestic
hot water capacities, coupled with solar thermal energy. System design, model development, and
working principle(s) are the primary focus of this analysis. A synopsis of the current efforts to
effectively model BTES is presented as well. The literature review reveals that: (1) energy storage
is most effective when diurnal and seasonal storage are used in conjunction; (2) no established link
exists between BTES computational fluid dynamics (CFD) models integrated with whole building
energy analysis tools, rather than parameter-fit component models; (3) BTES has less geographical
limitations than Aquifer Thermal Energy Storage (ATES) and lower installation cost scale than hot
water tanks and (4) BTES is more often used for heating than for cooling applications.

Keywords: borehole thermal energy storage; seasonal thermal energy storage; BTES; ground source
heat pump (GSHP) transient system simulation tool (TRNSYS); EnergyPlus; diurnal storage; solar
thermal; solar-coupled GSHP; system modeling; component modeling

1. Introduction

Optimizing the performance of a sustainable and renewable grid is becoming an increasingly
important topic. Societal dependence upon energy has increased significantly in the last several
decades; from 10 billion MWh in 1950 to 28.5 billion MWh in 2013, totaling a 280% increase in total
energy consumption in the United States [1]. Population has grown from 150 million to 316 million
during the same period, indicating an energy use per capita increase of 33%. Fossil fuels generate 72%
of the electricity produced in the United States, negatively impacting air quality and contributing to
global warming [2–5].

Buildings consume approximately 3
4 of total electricity generated in the United States and

represent about 40% of the primary energy use. Building heating, ventilation and, air-conditioning
(HVAC) systems are also major energy users and drivers of electric peak demand [3]. Electric
utilities meet peak demand with fossil fuel energy sources because of convenient storage and quickly
accessible energy [6–8]. Peak demand from buildings therefore drives fossil fuel-based pollution.
To minimize pollution and building energy use, investigation of non-fossil fuel energy sources in
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both grid independent and grid-connected capacities is vital [9–13]. However, renewable energy
sources are highly variable because of their dependence upon weather [11,12]. Energy storage is one
solution for increasing grid flexibility and facilitating greater penetration of renewables. Sovacool et
al. stated that the United States’ grid cannot accommodate wind and solar penetrations higher than
35% without failure if solely dependent on renewable technologies with no method for storage due to
their intermittent nature [11]. Others agree with this study, finding penetrations of 30–33% plausible
with no energy storage [12,13]. Thermal energy storage at the building level can relieve electric peak
demand and fossil fuel emissions.

A majority of renewable grid solutions consist of distributed generation (DG) with energy
storage and smart-grid control [4,5,9,14–18]. A number of studies indicate that a diverse portfolio
of different energy management techniques, including energy storage, are necessary for sustainable
and reliable energy use [11,12,19,20]. Jacobson et al. provide a thorough economic feasibility analysis
implementing wind, water, and solar (WWS) renewable energy generation with the grid, primary
reliability stemming from energy distribution algorithms coupled with various methods of energy
storage [12,19]. Mason et al. demonstrate a similar renewable energy analysis in New Zealand,
concluding that generation mixing, combined with both hydro and virtual energy storage, as well as
load shifting allow for a 100% renewable energy grid [20]. Becker et al. illustrate that expensive energy
storage can be minimized by selecting the right combination of energy generation depending upon
the transmission grid [21]. Others conclude that grid flexibility and energy storage are required to
achieve higher renewable energy penetrations with larger grid sizes [4,22,23]. Nordell concludes that
varying solar intensity, a primary energy source results in the need for seasonal storage in conjunction
with short term storage [24]. According to Hyman, installation of thermal storage results in optimal
outcomes with time variant loads, time dependent energy costs, and previously required equipment
or system upgrades [25]. Marnay et al. claim that decoupling thermal energy and electrical energy
requirements is potentially cost effective because it allows for the charging and discharge of energy
storages during cost effective periods for otherwise unrelated loads [26].

Among different storage technologies, thermal energy storage nears 100% round trip efficiency,
compared to the 80% efficiency batteries possess [27–29]. Using thermal storage for viable solar
energy utilization through solar thermal panels to meet building heat loads becomes an important
discussion [13,28,30,31]. Excess thermal energy generated throughout the day can be stored for either
short or seasonal periods [32,33]. Since seasonal storage might have slow charging or discharging rates,
coupling seasonal storage with diurnal storage might bridge this gap. Diurnal thermal energy storage
takes the forms of chilled water and ice storage for cooling, and hot water tank storage for heating
with greater energy transfer rates [30,32,34–37]. Seasonal thermal storage stores thermal energy when
solar radiation or other energy sources are abundant or inexpensive to avoid energy shortages during
periods of limited sun exposure or high energy cost [30,31,34,36,38–41]. The practices of using water
tanks as a diurnal buffer in conjunction with solar collectors, and ice storage with conventional chillers
are well documented [13,25,30,32,33,35]. Seasonal storage for both heating and cooling applications
remains an emerging technology [30,31,34,39,41–46]. Therefore, coupling solar energy with sensible
storage for diurnal and seasonal periods is a logical next step for DG and higher renewable energy
penetrations, especially with thermal energy end use [9,14,35,41,46–49].

Thermal energy generation is readily implemented with DG mini-grids because thermal energy
supports higher roundtrip efficiencies [8,15]. However, solar heating systems present the paradox
of being available during the day when the sun is visible and remaining offset from peak demand
periods [30,43]. This mismatch between utility energy demand and renewable energy supply is
dubbed the “duck curve” [6,7]. Storage thus becomes a necessary consideration when implementing
solar energy in the smart grid discussion [11,12]. Thermal storage can manifest in many different
forms, which will be discussed throughout the paper [25,30,34,38,45,50–53]. Because building HVAC
systems provide a major draw on the electrical grid, addressing HVAC loads with thermal energy
is a practical grid decentralization solution, with solar thermal panels readily implementable at the
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demand side [8,27,38,46,50]. This study reviews seasonal subsurface thermal energy storage systems
that accommodate entire load or partial (peak) load demands. Concentrated solar power plants are not
included in the review, as the focus of this review is the system demand side [28]. A brief discussion of
other seasonal energy storage techniques is shown in Section 2. Modeling techniques and tools, with
advantages and shortcomings are considered in Section 3. An overview of diurnal thermal energy
storage is provided.

2. Seasonal Thermal Energy Storage for Meeting Demand Side Space Heating, Cooling and
Domestic Hot Water (DHW) Loads

Sensible thermal storage collects energy by increasing (or reducing) the temperature of a medium
with finite heat capacitance (typically water) [30,54,55]. Seasonally, it is stored in a variety of mediums
for use during periods of higher demand and/or limited energy availability [30,39,44,55–60]. The most
prominent modes of storage found by this literature review are: (1) Hot Water Energy Storage (HWTES);
(2) Gravel-Water Thermal Energy Storage (GWTES); (3) Aquifer Thermal Energy Storage (ATES); and
(4) Borehole Thermal Energy Storage (BTES) [34,44]. Each storage method presents various advantages
such as cost, location, capacity, and energy discharge capability. Among these four, BTES is the most
flexible energy storage technique [61] and therefore is the primary focus of this analysis because of
universal demand-side energy storage and resulting peak-load grid draw mitigation [33,39,41,57,61].
Other thermal storage methods are briefly described below.

2.1. Hot Water Thermal Energy Storage (HWTES)

Hot Water Thermal Energy Storage functions similarly to a hot water boiler: it uses heated water
contained in tanks, well insulated to reduce heat losses and extend the effective storage period of the
tank [30,55,57]. Hot water tanks are not commonly integrated with the surrounding geometry [38,46].
However, Dincer and Rosen present a buried concrete tank case study, despite significantly higher
installation costs [32]. Similar thermal properties of the tank cement and surrounding soil provide
additional heat capacity and a greater quantity of working fluid [32].

2.2. Gravel Water Thermal Energy Storage (GWTES)

Gravel water thermal energy storage units are comprised of a water gravel mixture insulated on
the top and sides in a tank [62,63]. The specific heat of this mixture is lower than pure water [30]. As a
result, the container must then be larger than a water-only storage tank to store comparable amounts
of thermal energy [44,64]. Figure 1 below is a schematic of a gravel-water tank.
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2.3. Waste Snow Pits and Ice-Pond Seasonal Thermal Storage

The primary methods of storing cooling capacity energy for seasonal periods of time are: (1) waste
snow pits/warehouses and (2) ice-pond seasonal cooling storage [65]. Historically, snow and ice
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have been stored by Scandinavian cultures, insulated in shelters termed Fabrikaglace [66]. While snow
utilizes latent heat storage, large volumes of storage are still required for adequate cooling capacity [67].
Taylor presented the first ice pond for air conditioning at Princeton university in 1979, producing
annual savings of 31,000 $/year [68]. Yan et al. optimize a seasonal cold energy storage to supplement
capacity to existing chillers with a payback time of 6 years [69]. Skosberg and Nordell describe a snow
storage system in Sundsvall, Sweden for a hospital hosting a well-insulated pit equal to 2000 MWh of
cooling capacity [45]. Efforts to develop seasonal cooling storage methods are most notably made in
Japan and Norway [45,65,69–71].

2.4. Aquifer Thermal Energy Storage (ATES)

Similar to GWTES, Aquifer Thermal Energy Storage collects energy in a mixture of water and
earth, but utilizes natural formations [30,58]. Aquifer energy storage provides an alternative to the
previously mentioned storage systems due to ideal combinations of the high specific heat provided
by water as well as lower cost attained from the absence of a tank [59,60]. However, ATES requires
specific considerations to ensure proper performance. For example, ATES must use benign working
fluids to minimize the risk of aquifer contamination with hazardous chemicals [72]. Thus, water is
usually the working fluid due to mild environmental impact in comparison to other high specific
heat fluids such as glycol mixtures and hydrocarbon oils [37,44]. Aquifers work with a heat source,
charged by heated fluid from solar collectors, and a heat sink linked through a heat exchanger to heat
the fluid required for DHW or space conditioning end use. ATES can be used for heating or cooling
purposes: during summer, cool water temperatures are used for cooling, and during the winter, warm
water (solar heated or not) is used for heating purposes [32,61,73]. ATES is characterized by a defining
layer of non-porous rock between two volumes of water at different temperatures [30,36,57,60]. Water
thermal pollution can have a negative impact on the environment, harmful to many species, and must
be mitigated [74]. To reduce the impact of heated groundwater, water used in ATES is isolated, with
surrounding rock possessing little porosity in order to prevent heat contamination [34]. It is important
to note that the plausibility of this technology is strictly limited to preexisting aquifer formation.
Figure 2 details a simplified ATES schematic.
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The lack of insulation in this system is an important design consideration. To avoid excessive
heat losses, the maximum volume to surface area ratio should be achieved through optimal borehole
depth for the fluid bearing pipes [30,32,58,60]. In ATES storage, the thermal front is important for
determining storage efficiency [60]. A thermal front characterizes the temperature profile between
injected water into ATES, for storage, which if allowed to reach the production well will result in
greater heat loss [60]. Rock-cavern thermal energy storage, or CTES, is an energy storage method
similar in concept to ATES [31,39,61]. CTES functions by using heat exchangers to exchange heat
with a water storage medium, contained by an artificial underground spaces (the distinction from
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natural aquifers), which can be very expensive to construct [31,39,61]. Because of this expensive
construction cost, existing spaces are often utilized such as abandoned mines or areas previously used
for underground oil storage [31,39]. Drilling cost for ATES systems range broadly from 200 $/ft to
970 $/ft [75,76]. Due to the nature of ATES open-loop configuration, typically only two boreholes are
need in comparison to many for a comparable energy storage system of BTES variety and may cost
significantly less. These systems offer high extraction and injection rate, and are used in some cases as
both diurnal and seasonal storage, simplifying overall design [31,77].

2.5. Borehole Thermal Energy Storage

The primary seasonal thermal energy storage for heating presented in this review is BTES [43,78].
The underlying principle of the technology is consistent with the previous methods, BTES stores
thermal energy utilizing soil and rock as a thermal medium [30,34,43,64,78]. BTES is a prevalent choice
of seasonal storage because of its universal applicability, not limited to specific formations as with
ATES and GWTES [30,32,33,36,46,48]. However, variations in climate can impact the performance of
BTES systems [79]. Limitations of BTES include the comparatively large amount of heat loss compared
to insulated water tank or gravel tank systems [30,56]. ATES and CTES systems also see an added
advantage of combined short and seasonal time scale storage by combining large storage space and
water as the storing medium [24]. A final major concern for BTES installation is the drilling cost
associated with the borehole field, considerably more than in ATES configurations. A typical borehole
design can be seen in Figure 3 below.
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Despite high drilling cost thermal energy storage using boreholes is still a cost effective
option. In comparison to thermal energy storage, batteries, a competing mode of energy storage,
offer an attractive energy storage solution because of reduced unit storage size. Despite this
advantage, BTES storage possesses a number of promising assets. BTES systems offer increasing
energy return throughout their lifespan, while battery longevity is limited by the chemical reactions
utilized [41,80]. The cost of batteries ranges from $300/kWh, to $400/kWh for medium and large size
storage applications such as the Tesla Powerwall [80–83]. BTES energy storage at Drake Landing has a
capital cost of $2.6/kWh (thermal) [43]. BTES stores thermal energy and not electrical energy which
represent significantly different capital costs. A qualitative table is supplied below in Table 1. The
intent of this table is to impart a comparative sense of the key advantages and disadvantages of various
energy storage methods. Capacity values for snow waste pit are around half of liquid water due to the
significantly lower density of snow compared to liquid water or ice. In contrast, ice ponds offer higher
storage capacity than water due to latent heat of fusion and a density similar to liquid water.
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Table 1. Comparsion of seasonal thermal energy storage.

Seasonal Storage Cost (Quantitative) Geographical
Limitations Energy Recovery Heating/Cooling

Application
Storage Capacity

Compared to 1 m3 Water

HWTES High due to manufacturing costs None High (~90–98%) [41,79] Heating 1 m3

GWTES High due to manufacturing costs None Lower than HWTES because of
greater thermal conductivity [62] Heating 1.5 m3 [55,57]

Snow Waste Pit/
Ice Pond

Low installation cost (~2–5$/kWh)
and operating costs

Regions with high annual
snowfall or ponds Free cooling Cooling 0.67–2 m3 [45,51,69]

ATES Low initial drillling and equpment,
with high maitenence costs [46,56,62] Limited to aquifers Medium (65–95%) [73,76] Heating and Cooling 1.5–2.5 m3 [62]

BTES
High drilling cost, low maitenence
and manufacturing costs, modular

construction [41,48,57]

Harder rock may increase
drilling costs Low (~70–90% efficieny) [62] Heating and Cooling 2–4 m3 [62]
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BTES is the focus of this review and the principles of construction, component modeling, system
working principles, and integration into systems will be discussed in the following sections.

3. BTES Principles

BTES effectively provides a large amount of heat storage despite reduced specific heat of the
storage medium because of an easily increased storage volume [30,34,64]. Ground source heat pumps
(GSHPs) can be coupled with BTES technology in two distinct manners. A passive GSHP system
extracts energy from the ground when heating is needed, using the higher ground temperatures
during the cold season [84,85]. These systems can utilize the ground as a heat sink during the summer
season, combining both heating and cooling; the cooling heat rejection in this way can act as a
charging source [46,62,84,85]. He and Lam demonstrate heating and cooling using a single system
with energypiles in place of ground loop heat exchangers, simulated in TRNSYS [86]. The second type
of system is the variety implemented at Drake Landing Solar Community (DLSC), featuring seasonal
“charging” of the borehole with excess solar energy input to the ground [43,48,87–89]. However, DLSC
is unique in the fact that heating is provided by water to air heat exchange fan coils located in each
home [43]. The higher temperature of the systems ensure the longevity and efficiency of the BTES and
GSHP system in colder climates [47,89]. Nam et al. find that GSHP systems coupled with solar thermal
energy can maintain better soil temperature balances to perform at higher COPs over the lifetime
of the system [79]. Sliwa and Rosen summarize a number of natural and artificial heat regeneration
options for BTES alternative to solar thermal coupling [90]. Higher temperatures of the borehole after
solar charging result in higher GSHP COP’s and thus less electrical energy use overall. The second
system is of interest in achieving higher renewable energy penetration.

3.1. BTES Construction

BTES works by entrenching a series of vertically orientated pipes with a u-tube structure in the
soil, passing a working fluid through a heat exchanger, and transferring heat between the working fluid
and the surrounding soil. Supplementary heat storage is easily implemented by drilling additional
holes for heat exchangers [30,44,48,88]. Certain systems exist with buried horizontal piping, where
lower burial depths produce lower cost and more flexible installation options [61,84]. Seibertz et al.
ascertained that the lifetime and efficiency of shallow, geothermal systems is lengthened by allowing
for regeneration and efficiency rather than simply heating and cooling [59]. However, a large volume
of thermal storage material to the total surface area ratio is critical in order to minimize heat loss; thus
horizontal orientation can often be detrimental to the system’s ability to retain heat [84]. Likewise,
Lee finds vertical piping advantageous due to higher temperatures at lower depths in the winter and
lower temperature in the summer [61]. The comparatively large ground area required for horizontal
trenching is also not inherent to a building site, and seasonal ground temperatures can fluctuate
significantly at relatively low burial depths [84]. As a consequence of the presented disadvantages of
horizontally entrenched pipes, vertical pipes are the more prevalent selection [64].

Stored energy in BTES is extracted when needed by the pipe-soil interface acting as a heat
exchanger [43,64]. The design of BTES can vary in size, ranging from two pipes (one home) [91]
up to more than 500 pipes for large scale community systems [43,78]. Large communities such as
Drake Landing or Neckarsulm require larger BTES volumes for greater total storage in contrast to
single building applications [47,50,64,92]. This is because heating and cooling loads impact the sizing
of a borehole field [30,43,64,78]. Başer et al. conclude that undersized BTES volume will result in
greater heat losses and inefficiencies in their study; this is due to greater temperature gradients per
unit energy of storage, resulting in greater heat transfer rate [93]. A characteristic system design for
a community scale borehole is shown below in Figure 4. This type of system is representative of a
solar-coupled BTES system with GSHP, and is based on the design provided by Nussbicker et al. in
their study in Crailshem, Germany [48]. Solar collectors collect energy when solar radiation is present,
and depending upon the system demand either circulate water to meet heating demand or transport
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the heated fluid to the short term storage tank [30,38,39,78,94,95]. Thermal energy stored in the water
tank is dispensed during the evening to meet peak demand or sent to the BTES if unneeded. BTES
functions in either charging or discharging mode, pumping water from hot tanks to the centre of the
borehole field to inject energy or pumping cool water from the outside of the borehole field inward to
extract the energy [30,43,78,96].
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A borehole field would ideally be insulated at the boundaries to minimize heat transfer or
mass transport in undesirable directions [30,43,47,78,91]. However, insulating the sides is usually
infeasible because of exponentially increasing cost. Excavation costs in borehole construction are
already normally between 24 and 40% of installation totals [30,33,34,36,97].

3.2. BTES Performance Metrics

Measuring the performance of BTES systems can be done in many ways. For example, the COP
of the GSHP used in the system (if a heat pump is the primary driver for the system) is a useful metric
if the desired goal of the installation is to improve heat pump performance by raising evaporator
temperatures [47,79,84,91]. A more common measure of system efficiency remains the BTES efficiency,
which is a measure of the total heat extracted (Qextracted) divided by the total heat injected into the
storage (Qinjected), as shown in below equation [43,48,91,98]:

ηBTES =
Qextracted
Qinjected

(1)

This metric is directly impacted by the properties of the soil porosity, conductivity, water table
presence, and groundwater flow [43,78,98,99] and is reported in [43,64,98]. High temperature BTES
storage with direct heat exchange coupled to air units rather than heat pump assisted systems exist
in installations such as DLSC. It is concluded that efficiency performance metric will likely be lower
due to higher ∆T and subsequently greater heat losses. Also, due to a “warmup” period for borehole
temperatures to reach target operating temperatures, less heat may be extracted during this warmup
period than normal operation leading to a misleadingly low efficiency measure [43,96]. This definition
of borehole efficiency is used in [43,47,48,50,64,91,98,100].

Solar fraction refers to the amount of heating demand met with solar energy [43,101]. However,
other studies have used fraction of collected solar energy from the total available radiative energy
available [102]. The former definition is much more useful in energy supply as it explicitly states the
amount of heating energy that is provided from solar energy. Sweet and McLeskey define internal
system efficiency as the heat provided to the home divided by the total solar energy collected, thus
incorporating all system losses into their metric [50]. They also report total system efficiency (ηsytem,total)
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as the provided heat divided by the incident solar radiation upon the solar collectors, representative
equations below in the following equations:

ηsystem,internal =
Heat Provided to Homes

Heat Provided by Solar Collectors

ηsystem,total =
Heat Provided to Homes

Total Incident Solar Radiation on Solar Collectors
Not surprisingly, both of these fraction amounts are considerably lower than other system metrics.

While total system efficiency characterizes the overall performance of the system, solar fraction
provides a better understanding of how well the system meets an energy goal, and BTES efficiency
provides a better understanding of required energy storage size. This efficiency metric is discussed in
Sweet and McLeskey [50].

The most common economic measure of BTES system effectiveness is cost savings, usually
represented as a payback period contrasted with a conventional heating system [64,79]. This
representative value is useful for retrofits and small-scale studies, discussed in [64,79]. Larger
community scales systems are typically novel and difficult to compare against.

3.3. Examples of BTES Systems

Borehole Thermal Energy Storage makes a convincing case for effective STES based on multiple
studies with diverse applications [35,43,64,72,92]. Previous studies acknowledge the push for
centralized community thermal storage development, stating that the existing work on the performance
of single family homes is insufficient when compared to community sized developments [50,56].
The greater development of community scale BTES technology is attributed to the scalable efficiency
of solar assisted BTES technology with storage size [95]. Increasing thermal seasonal storage efficiency
sponsors less grid energy draw from space heating loads because they are met with stored solar
thermal energy [103]. Some numerical models validate with experimental data, but in large scale
studies, often numerical studies are the norm because of construction costs.

3.3.1. Residential and Small Scale Demonstration of BTES

Contrasting the movement towards larger, community centric BTES installations there are several
studies illustrating how coupled solar collectors can increase BTES efficiency [64,104–106]. These study
focus on smaller scale, low-cost BTES system from a greenhouse study or single buildings. For example,
Zhang et al. analyzed a retrofitted greenhouse possessing solar collectors, water tank, and a small
borehole field using both TRNSYS and validated with experimental data. The system achieved an
efficiency of 80% and 44% solar utilization and an expected payback of 14 years [64]. There are also
instances of storage coupling with other mediums such as gravel water storage [63,107].

3.3.2. Community and Large Scale Demonstration of BTES

There are a number of successful large-scale BTES installations, especially in Europe. Sibbet et
al. present a large scale and successful study at Drake Landing in Okotoks (AB, Canada) [43]. Drake
Landing is an energy efficient community where each home meets the Canadian gold standard of
building home efficiency [43,78]. Hugo and Zmeureanu confirm that improved home envelope thermal
efficiency can significantly reduce heating loads in cool climates [108]. Figure 5 shows the schematic
for the heating system at Drake Landing. The borehole field is insulated on the top, and runs through
two buffer tanks filled with hot water (top) and cold water (bottom). The tanks provide the water
needed for the BTES: heated water to store the energy in the ground from the hot water tank, and
cool water for the cool water tank to extract the energy from the borehole. The heat transferred to
the residential water lines provides DHW and space heating. Excess energy during the summer is
stored in the borehole field during the winter for later use. Solar collectors mounted on building roofs
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provide the heat source. Boilers in fall and winter are backups should unusual occurrence avert the
necessary energy. This system is an effective renewable energy storage system, where space and water
heating consume approximately 80% of the energy supplied to residences [109].Energies 2017, 10, 743 10 of 23 
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Based on numerical and validated with experimental results, the overall performance for the fifth
year show that the system achieved:

• 94–98.5% STTS Efficiency (short term thermal storage)—Annual average

• Efficiency =
Qout,tank
Qin,tank

[98]

• 36–41% BTES Efficiency—5th Year
• 89–97% Utilized Solar Fraction (5th Year)

Reported BTES round-trip efficiency is relatively low at Drake Landing due to high groundwater
flow [98]. However, other studies have reported BTES efficiencies of 80–90% [46,48,64,98]. Thus,
proper site assessment regarding groundwater flow is important to promote higher efficiencies [98,99].
Seibertz et al. determined that monitoring of cooling behavior from thermal gradients makes it possible
to identify high ground-water flow zones using a decay time comparison [59].

McDaniel et al. numerically analyzed in TRNSYS the annual energy cost reduction of combined
heat and power coupled with a BTES system retrofit at the University of Massachusetts, Amherst
campus [98]. The thermal energy comes from preexisting steam systems, which operate at maximum
capacity during the summer months when demand and cost are lowest, storing the energy until the
winter. The seasonal shift of energy results in a payback time of 9 years, with a BTES efficiency of 90%.
This study from McDaniel delineates the relationship between increasing BTES efficiency and size,
with a higher efficiency resulting from a borehole field consisting of 6000 boreholes.

BTES storage utilization features more prominently in Western Europe than other regions of the
World [24,31,35,42,56,78,87,89,110]. Germany, Norway and Sweden, among the nations of Europe,
boast the greatest number of STES systems. Switzerland is the world leader in BTES use, with
annual geothermal heating of 1 TWh provided by installations [61]. Germany especially seeks to
utilize BTES for solar energy storage in communities [35,39,48,57,88]. Table 2 show some of the more
prominent examples.
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Table 2. Community sized BTES constructions.

Location Building(s) Year Built Energy Source No. of Boreholes Storage Volume
[1000 m3]

Estimated Thermal
Storage Capacity

[MWh]

DLSC in Olbotoks, Canada [43] 52 Residential Homes 2007 Solar Thermal 144 34 780
Neckarsulm, Germany [88] 300 Homes & Shopping Center 1997 Soar Thermal 528 63 1000

Akreshus University Hospital, Norway [42] Hospital 2007 GSHP 228 300 N/A
Nydalen Business Park Oslo, Norway [85] Several Large Buildings 2004 GSHP 180 1800 N/A

Brædstrup District Heating, Denmark [111] 1500 households 2013 Solar Thermal 48 19 616
Crailshem, Germany [48] School & Gymnasium 2007 Solar Thermal 80 39 1135

Attenkirchen, Germany [89] 30 Homes 2000 Solar Thermal 90 10 77
Anneberg, Stockholm [87] 50 homes 2001 Solar Thermal 99 60 1467

UMASS Campus, USA [98] University Campus Simulation Existing Steam Turbines 6000 620 37,000
University of Ontario, Canada [112] Four University Buildings 2004 Heating and Cooling GSHP 370 1400 9700
Groningen, The Netherlands [113] 96 residences 1985 Solar Thermal 20 23 595

Kerava, Finland ** [62] 44 Flats 1985 Solar Thermal
Vaulruz Project [113] Maintenance Center 1982 Solar Thermal Horizontal Tubing 3.5 90

Kungsbacka, Sunclay, Sweden [62] School Building 1980 Solar Thermal N/A 85 86,000
Innsbruck, Kranebitten, Austria [113] 1200 MWh/year 1983 Solar Thermal Horizontal Tubing 60 100

** Information lacking due to study year.
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German practice appears to follow modularizing the construction of their BTES and accompanying
solar collectors by adding additional solar collectors and ground heat exchangers after initial
construction [48]. The Neckersulm borehole features the double U-pipe configuration validated
by Zeng et al. to improve heat exchange with the surrounding earth, and has both numerical and
experimental assessment of system performance [88,114]. The Crailsheim installation approaches
the issue of separating diurnal and seasonal storage by isolating two solar arrays, one to seasonally
service the BTES and another to charge hot water tanks for daily usage [48]. Attenkirchen provides
a buried the water tank used for daily storage in the center of the BTES field, recycling some of the
heat loss from the tank into the BTES [89]. Table 2 shows that solar assisted boreholes require less
volumetric capacity, with injected energy supplementing the performance of GSHPs. This is supported
by Rad et al. in a feasibility study of combined solar thermal and GSHP systems, determining that
solar assistance leads to shorter required borehole lengths to meet the same loads [46]. Figure 6 below
illustrates the relationship between increasing solar panel array area and increasing equivalent storage
for a solar thermal system. This relationship demonstrates that more collected energy necessitates
larger storage.
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4. Design and Modeling of BTES

Large costs for the construction of BTES tend to emphasis the importance in numerical simulations
to ensure economic and thermodynamic feasibility. Three types of programs are present in building
energy simulation: Building Energy Simulation (BES) tools such as EnergyPlus, building envelope
heat and mass transfer (HAM) programs such as WINDOW (window and daylight modeling software
from Lawrence Berkeley National Laboratory) and WUFI Pro (Wärme Und Feuchte Instationär, or
transient heat and moisture ) , and computational fluid dynamics (CFD) such as MODFLOW, COMSOL
and TOUGH2 [115]. Modeling of BTES requires appropriate tool selection, which depends on the
application and goal of the study: from whole building energy simulations, to more detailed heat
and mass transfer programs. Accordingly, this study reviews various modeling techniques based
on component level design, system level design, as well as a development of integration between
these two.

4.1. Parameters to Consider in BTES Modeling and Development

Total storage capacity of the borehole depends on total volume of the borehole, porosity, and
overall specific heat [30,40,99,116]. Catolico et al. assert that lower thermal conductivities allow for
higher heat retention and thus better borehole efficiencies [99]. This is due to more concentrated



Energies 2017, 10, 743 13 of 24

thermal plumes which cause higher thermal gradients near the pipes and thus better heat transfer to
and from the pipes during discharge periods [99].

Thermal conductivity depends on the material or soil temperature, but is often considered a
constant property [116,117]. Moradi et al. utilize a model developed by Smits et al. adapted to the
relevant geometry, treating the thermal conductivity as a constant [116,118]. Moradi finds that thermal
conductivity increases proportionally to increasing water content because soil is a medium consisting of
air, water, and organic matter in COMSOL, validated with experimental data [93,116,119,120]. Higher
fractions of water lead to higher thermal conductivity and storage as the respective coefficients increase;
these higher fractions of water are coined “water bridges” [119,120]. Greater measured porosity leads
to higher levels of saturation with water present, resulting in higher thermal conductivity. In addition,
thermal conductivity rises due to (1) increase in solid matter per unit volume; (2) less soil pores filled
with air; (3) consistent contact for conductive heat transfer flow [120].

Soil saturation will lead to higher convection coefficients as well as higher thermal conductivity,
which unfavorably impacts Borehole heat retention, and should be avoided [121]. Boundary layer
models directly impact simulation accuracy and are critically important [99,114,116,119]. Convective
heat losses induce more heat loss than conductive heat losses, however both lower the efficiency
of BTES [99,116,122]. High permeability in soils, both unsaturated and saturated, leads to higher
convection coefficients and subsequently higher heat losses [99,116]. This confirms McDaniel’s
observation that high groundwater flows lead to low BTES efficiency [98]. Li et al. establish that
this applies only to BTES with solar or other heat injection, with GSHP installations lacking heat
injection featuring higher thermal restoration in areas with higher groundwater flow [123]. The
effects of convective boundary layers regarding heat transfer from soil to pipe have not been fully
explored and should be studied further to fully understand the effect upon BTES efficiency [99]. The
appropriate sizing of BTES and accompanying diurnal storage with ensuing codependence dictates
system performance [41,44,49].

4.2. Component Design Level Modeling Software and Development

Numerical solutions providing a Multiphysics approach to defining ground heat transfer
providing more accurate and robust solutions than a parameter fit white-box model approach taken by
a larger whole building platform. Clio and Mirianhosseinabadi note that while numerical solutions
present a high degree of versatility and accuracy, often they are prone to computational inefficiencies
as a consequence of complicated hybrid coordinate systems, contrasted with analytical solutions [124].
Their study confirms that TRNSYS and EnergyPlus are highly utilized tools for residential homes in
BTES simulation [124]. Simpler models like G-functions in GLHEpro (for EnergyPlus) or the Duct
Storage Model developed by Hellstrom in TRNSYS may not accurately depict BTES heat transfer and
fluid flow. BTES modules within larger simulations do not solve using a multiphysics approach, nor
do they take ground water flow into account, to facilitate acceptable simulation times [125,126].

Studies examining more in-depth heat transfer in soil use COMSOL, GLHEpro and
TOUGH2 [99,116,125,127,128]. COMSOL is a finite element analysis tool used for multiphysics
approaches, such as fluid flow behavior [129]. TOUGH2 is a numerical solution program for heat and
fluid flow in porous and fractured media [130]. GLHEpro uses a numerical simulation based upon
“G-functions” which provide an accurate solution to the temperature profile of the earth envelope and
do not have lengthy computational times [125]. Additionally, MODFLOW is the USGS program for
modeling groundwater flow, or other flow in porous media [131]. Certain projects exist that utilize
MODFLOW in [132].

In addition to commercially available software, Zeng et al. developed a quasi-three-
dimensional model for the thermal network in a borehole field for a multitude of heat exchanger
arrangements [114,133]. A more popular model often utilized in optimization case studies for BTES
modeling is Ingersoll’s infinite-line source model, and has been used in many studies as the underlying
solution to the heat transfer in BHE [134–136]. Yet more optimization studies on system design
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use Hellstrom’s DST model in Kjellsson et al. [137]. Finite line-source models by Zeng et al. and
Molina et al. (with groundwater advection) illustrate the importance of consideration of axial heat
transfer in BHE fields especially with shorter lengths [133,138]. Eskilson and Claesson present a
detailed three dimensional computer model combining the interactions between convective heat
flow and conductive ground process, which is incorporated into the GLHEpro software used by the
EnergyPlus BES platform [139]. Catolico et al. establish that there are a number of existing models for
modeling the behavior of heat and fluid flow in the ground, but there is a lack of effective property
models for evaluating the pertinent heat and mass transfer parameters [99]. However, Shonder et al.
present parameter estimation techniques coupled with Ingersoll’s one-dimensional Borehole model
giving an accurate solution for variable conductivities and heat capacities of grout and fluid of the
Borehole [140].

4.3. System Design Level Modeling Tools and Efforts to Couple System Level and Component Level Models

TOUGH2 and COMSOL provide more robust analyses of BTES and can accurately model the heat
storage. In contrast to high accuracy heat characteristic modeling, TRNSYS, EnergyPlus, and ESP-r
are commonly used modeling platforms for system level analysis, discussed in Section 4. TRNSYS is
the most prevalent modeling program when modeling BTES, using the Duct Storage Model (DST) to
predict ground heat transfer [46,47,50,62,64,86,91,92,96,98,126]. There exists certain efforts to use open
source EnergyPlus [41,49,124] which relies upon an outside program, GLHEpro, to perform the sizing
parameters of a borehole [125,127,141]. Other studies have attempted to model vertical heat exchanger
behavior in ESP-r [43,94].

The discussion then turns to coupling whole-building analysis tools (EnergyPlus, TRNSYS),
with accurate multiphysics solutions (TOUGH2 and COMSOL). This approach, used for enhanced
building envelope modeling, is known as “BES-HAM” or “BES-Hygrothermal” Coupling [115,142–145].
Co-simulation of software using MatLab and Simulink environment is not a novel process for HVAC
application [142–144,146–149]. Ferroukhi et al. present a successful effort of TRNSYS and COMSOL
co-simulation to model the hygrothermal effects in a multi-layer wall [143]. Huang et al. present a
co-simulation of COMIS tool with EnergyPlus for hygrothermal effects of moisture transfer across
multiple zones [150]. There are more efforts that seek to co-simulate TRNSYS and MODFLOW [151].

Catolico et al. present a BTES model utilizing TOUGH2, which at present has not been
co-simulated with any BES analysis tool [99]. TOUGH2 can accurately model the effects of groundwater
flow upon heat transfer in soil and thus would be a useful tool for effective modeling, especially in
studies where high ground water flows are suspected [43]. The modular approach of the “types”
built in TRNSYS facilitates co-simulation with programs like TOUGH2 and COMSOL, using Simulink
“S-functions” as a linking mechanism to combine accurate building energy evaluation, and BTES
heat transfer modeling More recently, Rad et al. developed an updated TRNSYS type for BTES
simulation [100]. The type is based on the Ground Heat Exchanger Analysis Design and Simulation
(GHEADS) developed by Leong and Tarnawski [152]. The advantage of the GHEADS model over the
Duct Storage Model provided by Hellstrom is a coupled heat and moisture flow model, the presence
of ground water table, and soil freezing and thawing cycles. When applied to the DLSC community
design, Rad et al. found a 38% reduction in Borehole footprint a number could be achieved for similar
system performance. This model by Rad et al. is a comprehensive model that combines complex
coupled heat and mass transfer BTES modeling with system level modeling.

5. System Sizing and Integration of Diurnal and Seasonal Storage

BTES functions in either charging or discharging modes that are rather slow compare to diurnal
storage systems such as water tanks or ice storage For example, the BTES system in DLSC took about
4–5 years to fully charge [43]. For this reason, some studies have proposed and/or implemented
hybrid diurnal/seasonal systems illustrated in Figure 4. Solar panels heat water while solar irradiation
energy is present, and pass the heat energy to the evaporator side of the heat pump. If system demand
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does not require solar energy, the heated fluid is stored in a water tank, or transported to the BTES to
store for later use. The water thus heated from the boreholes is used to raise the temperature of the
evaporator in a ground source heat pump and finally meet system demand [84,85].

System configuration is relatively consistent across design scenarios except in the case of
Zhang et al. and DLSC when BTES temperatures are high enough to provide system heat by direct heat
exchange, and GSHPs are not used [64,96]. However, the addition of short term storage is required
to provide higher heat transfer rates from fluid medium rather than the earth medium of BTES [41].
Additionally, the sizing of diurnal water based storage, BTES, and solar collector area are dependent
upon both each other, and the heating and cooling loads [41]. Sweet and McLeskey analyze the sizing
of a borehole for a single family residence in TRNSYS [50]. Six different home sizes (from 75 m2 to
220 m2) were parametrically analyzed with six different BTES sizes ranging from 10 m3 to 50 m3 with
solar collectors sized to 80% of the south facing roof on the home (Kalaiselvam notes that as a rule
of thumb, solar collectors should be sized to 10% of the total floor area [33]). The results of the study
show that for each home size, a borehole field of 15 m3 provided optimal results, independently of the
home size and solar panel area.

Effective storage system sizing is based upon both demand loads and supplied energy [43].
Hseih et al. performed a parametric analysis study in Rheinfelden, Switzerland of diurnal and STES
configurations in a suburban area with 11 homes using EnergyPlus. With the addition of diurnal
thermal storage the study concluded that system efficiencies rapidly increase, from 15% to 47%
retention of solar fraction. The addition of long term storage increased the solar fraction used from
47% to 61%. Converting the system to centralized rather than decentralized storage reduced the
system solar fraction utilization from 61% to 44% due to heat losses from transport piping. However,
while the decentralized long term storage is effective for a smaller community, the potential to reduce
installation costs outweighs the effectiveness of the decentralization in large applications. This is
similar to the community in Okotoks (AB, Canada) [43,72]. The study by Hseih et al. acknowledges
the need for water based diurnal storage integrated with STES for effective utilization of energy from
solar collectors. Roth contributes a number of seasonal storage solutions that utilize a diurnal storage
component in order to ensure the proper distribution of cooling energy [153]. Xu notes that water
based storage is advantageous for faster response times, while seasonal thermal energy storage has
comparatively lower discharge rates [36].

In addition to seasonal energy storage, diurnal thermal storage stores excess renewable
energy generated during the day for later use at night, improving system efficiency [30,32,43,154].
Alternatively, some diurnal energy storage seeks to store energy purchased throughout the day during
periods of off-peak loading [6,155,156]. Lee, Joo, and Baek demonstrate how thermal collector control
strategies can be implemented to eliminate space heating during peak electric hours [18].

Rather than providing energy for the entire day, peak energy solar eliminates energy use during
the most expensive energy cost periods associated with on-peak demand. Various combinations
of these solar and off-peak heating purchasing schemes exist [88,155,156]. In addition to reducing
consumer cost, peak-load generators often operate at much lower efficiencies than baseload generators,
and implementation of solar thermal demand-side systems can reduce peak-load generator use [28].
Wholly grid-independent systems require significantly more storage than the aforementioned partially
grid-reliant systems to meet 24 h demand, presenting difficulties and additional costs during
installation [12]. Hyman details a thorough economic analysis for the installation details of thermal
energy storage [25].

Diurnal Storage for Space Cooling Using Absorption Chilling or Ice Storage

Diurnal thermal storage can also provide space cooling by releasing stored heat to an absorption
chiller, which produces cooling from a heat input via chemical process [155–157]. Chillers of this type
have an expected performance (COP) of 0.15–0.6 [157]. The low COPs delineate that absorption chillers
are more economical when used with waste or solar heat, rather than purchased heating [155–157].
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Absorption chillers can increase solar thermal energy penetration during the cooling season if seasonal
thermal energy storage is not available [155,156].

Most Cooling Thermal Energy Storage (CTES) is typically short term and provided by storing
chilled water, or ice, chosen because of high heat capacity, due to stored latent heat. For example,
chilled water with a 5 ◦C temperature difference has a density storage of 5.8 kWh of cooling energy
per cubic meter of water [158], whereas ice storage boasts an energy storage density four to six times
that of cold water storage [159]. Cooling capacity storage is an emerging technology utilizing natural
resource to produce the intended affect [66,160–162]. The IKEA building, located in Centennial (CO,
USA) utilizes combines an ice storage units in conjunction with a GSHP BTES system to supplement
cooling season capacity [163]. After a review of the literature, it is apparent that no combined system
for seasonal and diurnal cooling exists comparable to coupled diurnal and seasonal BTES with water
tank systems.

6. Conclusions and Research Outlook

Energy storage is a critical component for future renewable energy grid performance [11,12,19–22].
The current United States grid relies heavily upon centralized generation and distribution transmission
of energy in electrical form. This is not favorable for the implementation of intermittent renewable
energy, which requires storage [11,12,19]. Additionally, thermal energy storage presents considerably
lower capital cost than electrical energy storage [43,83]. This literature review considers seasonal
energy storage mechanisms demonstrated in recent implementation. Acknowledging the importance
of energy storage for renewable energy penetration, previous studies state that examination of various
options for optimal energy management and system reliability remains the primary concern [164].
While BTES is the most universal STES method, other methods may be more effective depending
upon geography and immediate hydraulic features [24,30,38,57]. The path to effective STES design
is best navigated by thorough evaluation of environmental site characteristics and soil properties.
Additionally, proper design practice regarding the integration of diurnal and seasonal storage yield
higher system performance [37]. Integrated diurnal and seasonal energy storage provides a critical
combination of extended storage periods (seasonal storage) and high discharge rates (diurnal storage)
and promotes the highest levels of renewable energy penetration and efficiency, providing robust
demand response. BTES modeling tools range from in-depth analysis allowing for subsystem design,
to whole building simulations that incorporate simpler subsurface heat transfer models into energy
design analysis [50,124,127]. Tool selection depends on the desired type of analysis, studies looking at
whole building/community use analysis tools such as EnergyPlus and TRNSYS, while more detail
Multiphysics tools such as COMSOL and TOUGH2 are used to model the heat transfer characteristics
of BTES. Careful review on previous studies highlights that:

• Community scale BTES requires a “charging” period of few years for the design system
temperature to be reached;

• Most single-residential scale BTES often do not require solar thermal panels because of low system
demand, which thermal regeneration in the ground can recover;

• BTES is more commonly used for space heating and DHW applications than cooling applications;
• BTES is less geographically limited than ATES and requires lower installation costs than HWTES

or GWTES;
• Coupled diurnal and seasonal storage increases the overall utilization of captured solar energy;
• Coupled diurnal and seasonal storage systems are much more prevalent for heating than

cooling applications;
• Performance metrics for BTES systems and components can be inconsistent across the field,

however BTES efficiency is always defined as the fraction of energy extracted divided by the
energy injected;
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• Although there are a handful of studies coupling BTES at the component model with a system
level simulation, most previous studies have not bridged the modeling gap between the two
levels of modeling.

Coupling integrated system and component level models is critical for modeling practice to
improve system performance and lower capital costs. Jacobson et al. present a nation scale model to
illustrate the effect of energy storage with renewable generation. However, no such model exists that
segregates different energy end uses, undoubtedly for simplification. A comprehensive model that
addresses different end uses in different sectors and regions could more accurately depict the role of
BTES in the changing smart-grid.
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