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Abstract: We present the conceptual design of a collective control scheme for appliances within
a smart home. Based on the relevant energy acquisition procedures, three appliance groups are
defined, modeled, and completed with an energy storage as well as a generator using renewable
sources. At the following stage, a mixed quadratic optimization problem is presented, with the
solution consisting in a time plan to regulate the operation of the individual devices. Importantly,
the paper also proposes a heuristic algorithm securing consistent functionality of the computational
process even despite the varying input and user conditions given in the receding horizon.
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1. Introduction

Electricity consumption currently plays a central role in all fields of human activity. In the
last 100 years, the world population has increased to such an extent that, at present, ample food
or potable water to sustain the existing human community cannot be produced without electricity.
In this context, however, it is also important to note that although the generation of electrical energy
from fossil fuels has revolutionized the basic social processes, the resulting benefits are not without
a major consequence: the irreversible changes of Earth’s environment could be largely regarded as
following from the intensive use of the said fuels. The dwindling volumes and growing prices of
these resources correspondingly increase the cost of energy, and the search for alternative energies
has become ever more urgent. The gradual growth of energy costs is accompanied by increasing
willingness on the part of users to change their behavior with the aim to cut the electricity expenditures
or, in the very least, to maintain them at an acceptable level. Consumers are thus more inclined to
purchase advanced energy saving devices and to install local generators of energy or technologies that
facilitate its preservation and use at a later time.

This article discusses a universal method for optimal electricity consumption planning
in residential areas and presents a software implementation to validate the related procedures. Based on
end user demands, the technique coordinates the operation of electrical appliances, local generators,
and accumulators within an intelligent home; it also considers changes in the input parameters such
as ambient temperature, wind speed, and the level of sunlight. Moreover, the method also considers
hourly basis electricity price fluctuation. The main benefit of the paper rests in a heuristic algorithm
securing consistent functionality of the computational process even despite the varying input and user
conditions given in the receding horizon.
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Before the actual designing of optimal control, home appliances have to be categorized according
to their typical usage and the offered possibilities with respect to a working cycle deferral or electricity
consumption cutback. If the mathematical descriptions of appliances within the proposed classes
are merged into a bundle, we obtain a model of the entire system, which represents a complex
optimization problem.

A set of appliances can be managed via various optimality criteria. Two of these are intuitively
definable as the most significant ones: the price paid for the consumed energy, and the preservation
of a certain user comfort level. Specialized papers nevertheless present a number of other criteria,
such as the minimization of carbon dioxide consumption in cases where the distributor provides
updated information on the share of individual electrical energy sources in the actual production
of electricity. Another criterion can then be, for example, accurate monitoring of the bidding curves
given by the distributor. By combining the separate demands, it is possible to ensure the desired
behavior of the entire system; however, as the said requirements can be partly or wholly contradictory,
the tuning of their mutual priorities is not trivial, and the quid pro quo principle applies.

The following portion of this paper is organized as follows: The extended introduction is outlined
in Section 2; the mathematical model, together with a discussion of relevant sources on each appliance
category, is provided in Section 3; the optimization problem and criteria functions are specified
in Section 4; Section 5 presents the case study, namely, the definition and computational results;
the conclusions and discussion are provided in Section 6.

2. Demand Response

Electrical grids are currently facing a large number of problems and challenges, of which the
most significant include aging infrastructure, insufficient capacity, and multiple system limitations.
Owing to these issues, national governments across continents have reacted by supporting the various
initiatives and efforts to introduce smart grid networks at a larger scale. This grid concept comprises
a multitude of different technologies, solutions, and end user products, which are all required to comply
with diverse technical and official regulations.

In order to reduce the required peak transmission capacity, it is desirable to ensure that the
generated energy is consumed as close as possible to the place and time of its production. Even
with the utilization of energy storage systems, there remains the persistent difficulty to achieve such
an ambitious goal at a local scale. As the cross-regional power flows do not need to be zero, the task
can be managed at regional and national levels. Moreover, the ability to keep the typical peak power
flows reasonably low contributes to the resilience of the grid. To achieve the outlined goal, we first
need to eliminate numerous technical limitations and secure an effective use of accurate wind flow
and sunlight intensity predictions as inputs for sophisticated optimization algorithms. Based on the
corresponding outputs, we can then decide on consuming or storing the energy via concrete technical
means. Wholesale market electricity prices mostly fluctuate during a day: while high at peak hours,
they generally remain low in off-peak periods [1]. This variation nevertheless relates to only a small
proportion of consumers as the suppliers assigned fixed conditions and prices to most end users.
Smart grids, however, would enable these users to enjoy the demand response mode, which further
allows the customers to swiftly respond to electricity price changes between various periods of the
day; thus, the cost of electricity for a home can be minimized and the required comfort maintained.
The basic function and prerequisite of demand response consists in that the end user is able to partly
reduce his or her energy consumption in the high price interval and then proportionally increase
his offtake as soon as the price drops [2]. The resulting lower energy expenditures subsequently
constitute the main benefit for the customer, who is nevertheless also burdened with the fact that any
use of the demand response mode in conjunction with dynamic price tariffs makes the cost-minimizing
consumption planning a complex activity [3].

From the perspective of the network operator, demand response is an instrument to improve
the distribution grid stability via suppressing energy demand during shortage times at the expense
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of demand increase in surplus periods [4]. The obtained balance then positively reflects in the
distribution grid properties and quality of the supplied energy. Moreover, the ever-intensifying
requirements for the transmission of growing energy volumes causes increasing demands on the
distribution infrastructure. Rational implementation of demand response methods can reduce
such demands.

End customers are generally motivated via tariff programs. These are subdivided into two
categories: energy price schedules and user stimuli. A typical price-based program is Day-Ahead
Pricing (DAP), namely, a tariff where the market operator releases information on the energy price
valid for the next day. The resulting price for the given period is a compromise between the supply
and the demand. An example of stimuli-based programs consists in Interruptible/Curtailable
Load (ICL), a mode built upon stimulating users, who—if they respond to calls to reduce peak
time offtakes—are rewarded for their effort.

As demand response tariffs are usually capable of saving approximately 10% of consumed energy,
which is markedly less than users commonly desire, it is vital to maintain the “set and forget” approach
in implementing the discussed tariff, meaning that the system behavior is automatically modified
based on user preferences upon a variation of the input conditions. In general, we may claim that
users are not willing to consciously change their behavioral patterns related to their use of electrical
appliances, but, simultaneously, they expect their demand response (DR) compatible devices to “do the
right things at the right times” without increasing the risk of disproportionate growth in energy costs.

3. Building Energy Management

The applicability of the demand response approach within a smart home directly depends on the
presence of a central device, a building energy manager system (EMS), which uses the communication
network to control the various appliances, heating or cooling systems, solar panels, and related
components. In addition to the data from the connected appliances, the manager acquires also
information from other sources: for example, it utilizes a smart meter to receive data on the current
energy consumption rate. The information on the energy price, its prediction, and possibly also the
properties of a tariff for the concrete user are communicated to the BEM by either the smart meter
or another channel. The weather forecast details, a very important item within the discussed data
portfolio, are acquired from a suitable internet service; the current outer temperature, sunlight intensity,
and wind velocity can be supplied from the EMS’s own measurement or conveyed by some of the
appliances. Based on the acquired information, the EMS then creates and maintains a mathematical
model of the entire system.

For modeling purposes, home appliances have to be classified into several categories according
to their dynamic behavior over an examined time period, considering the magnitude of the time
slot (i.e., the interval during which the appliances’ energy input is regarded as constant; it is the
shortest time of a device run between two switch-offs or its idling between two switch-ons). In this
paper, the time slot length chosen for calculation is 15 min. Appliances whose working cycles appear
markedly shorter than the time slot length (such as electric kettles) or whose run cannot be predicted
with at least a minor degree of certainty, for example, multimedia devices, are not analyzed in this
article. In currently available papers on the topic, time slot magnitudes exhibit substantial variance,
extending from 1 min in paper [5] to 1 h in [6]). The present report describes 5 appliance categories:
deferrable appliances, interruptible appliances, thermostatically controlled appliances, distributed
generators, and accumulators.

3.1. Deferrable Appliances

The concept involves appliances triggered only once or twice a day (if at all); in these devices,
the working cycle length oscillates between a few minutes and several hours. The appliances are
controlled by the energy manager, which—considering the user preferences—decides when to execute
the relevant cycle. The interruption of an already running cycle, although theoretically possible, is not
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assumed in this paper. Typical representatives of the discussed appliances include a washing machine
and a dishwasher.

The basic categorization of appliances, with a focus on deferrable ones, is outlined in references [3,5].
Consumption shifting is analyzed by multiple authors, such as those of [6–10]. The referenced paper [1]
presents a method for optimizing energy offtake and realizing cost minimization within various tariff
models. Further, source [11] proposes a technique to ensure, within a finite time, the achievement
of at least one suboptimal solution. The referenced article [12] characterizes a model of a group
of deferrable appliances, whose optimum running is secured via a Monte-Carlo simulation. Another
approach, structured in [13], describes and solves the optimization problem using MILP, proposing
a scheme of interaction between intelligent appliances and the user.

For modeling purposes, the cycle of each deferrable appliance is described by two parameter
matrices, whose dimension corresponds to the number of appliances and the number of time intervals
during which the working cycles of devices are executed. The first of these matrices, EDE, specifies the
amount of energy consumed by appliances within individual time intervals of the working cycle. The
matrix PDE then describes the maximum value of devices energy input for every time slot of the cycle.
Thus, if the length of the time slot is 15 min and measured values of energy taken off the grid (ε) are
available for the device with the period of 1 min, we can define the following expressions:

eDE
a,t =

1
60
·

15·t
∑

i=15·(t−1)
εi ∀t ∈ (1...n) (1)

pDE
a,t =

15·t
max

i=15·(t−1)
εi, (2)

where n denotes the length of the appliance cycle expressed in timeslot multipliers. Let A be the
set of all deferrable appliances; then, for each appliance a from this set, we shall define the vector
r of a length corresponding to the length of the planning horizon T (the planning horizon denotes the
number of time slots considered for planning). In each on-coming time slot t, we have ra,t = 1 if the
cycle of an appliance a is to be triggered in the corresponding time slot. In all other cases, the elements
of this vector are zero. This condition is embodied in Equation (3) below, namely

T

∑
t=1

ra,t = 1. ∀a ∈ A (3)

The user, however, mostly requires the device cycle to be executed within a time interval narrower
than the full planning horizon. The value αa represents the earliest start, and the value βa denotes the
latest cycle end in the appliance a. The executed cycle length is then given by the value lDE

a . Further,
expression (4) ensures that the appliance cycle will start only in such a time slot where the entire cycle
will finish within the user-specified interval. The user may select a fixed interval to run the appliance
cycle by setting βa − αa = lDE

a . Apparently, if βa − αa � lDE
a , the EMS can plan a cycle in a wide range

of times, and thus there is a higher probability of better optimization results.

ra,t = 0 ∀t /∈
{

αa, βa − lDE
a

}
, ∀a ∈ A (4)

In the course of its run, an appliance a does not exhibit uniform energy consumption. Thus,
in the model, we can define for each time slot t different consumption eDE

a,t and with it the maximum
appliance power pDE

a,t . Being a property shared by all the appliances, reduction of the maximum power
is described in Section 3.6.

ra,t = 1 =⇒ sa = t ∀a ∈ A, t ∈ T (5)

sa2 ≥ cDE
a1,a2 ·

(
sa1 + lDE

a1 + 1
)

∀a1, a2 ∈ A, t ∈ T (6)
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In planning a higher number of devices, the user may require that the consecution of the cycles
of one or more appliances be taken into account; such consecution is defined by value cDE

a1,a2 in the
matrix CDE. If this value equals 1, then device a1 must complete its cycle before the cycle of appliance
a2 can be run. To enable the definition of this prerequisite in the linear problem, we first introduce
an integral variable s, which—for each appliance—denotes the sequence of the time slots where the
cycle of the given device is activated. Equation (5) describes the relationship between vector r̄ and the
discussed variable s. If the variable s is used, we can easily define the time sequence of an appliance,
as shown in Equation (6). Please make sure the format consistent throughout the Equation.

3.2. Interruptible Appliances

Generally, this group comprises devices which have to run for a certain period during a day, and
it is not important when their cycles will be executed; however, we need to guarantee the required
cycle length. The actual run of an appliance can be interrupted at any time, but the concrete device
or technology may necessitate and define stricter rules.

Unlike the above-outlined category, interruptible appliances have been discussed in only
a relatively limited number of studies. The devices are explicitly mentioned by, for example, research
reports [11,12]; these papers also define a relevant linear mathematical model, for which optimum
operating values are sought. Interestingly, source [14] characterizes such a model as a Markov decision
process, and the author introduces his own algorithm to yield an optimum solution. However, other
approaches to the modeling of interruptible appliances are available too: reference [9] describes a linear
mathematical model applicable in the simulation of deferrable and, with certain restraints, interruptible
units. A similar concept was proposed also by our research team [10]; the adopted method nevertheless
produces a complex, computationally demanding model.

Such appliances include, for example, the swimming-pool pump, which ensures water circulation
through filters, or an electrical boiler (the addition of a boiler into this category is possible only
if certain simplifying conditions—its non-linear behavior in particular—are accepted. In any other
case, the boiler must be considered a thermostatically controlled appliance, as presented in the
following section of this paper). For modeling purposes, we use index IN to denote parameters
related to interruptible appliances; value l IN

i then describes the number of time slots during which
an appliance is to be run. Further, it is assumed that, in the course of its run, an interruptible appliance
takes off a constant amount of electricity (it operates with an invariable energy input). Thus, the energy
withdrawn by a device during one time slot can be described with value eIN

i . The maximum continuous
appliance run time is given by value sIN

i , while the minimum run time after switch-on (or idle time
after switch-off) is expressed via value uIN

i , possibly dIN
i .

Let I be the set of all interruptible devices; then, for each appliance i of this set, we shall define
the vector m of a length corresponding to the length of the planning horizon T. We have mi,t = 1 for
each time slot t if an appliance i is to run in this time slot. In an opposite case, the vector element
contains value 0. This behavior is described in Equation (7). The user may define the time slot in which
a concrete interruptible appliance can be run; outside this interval, the device is not allowed to operate.
For each appliance i from the set I, the beginning of the interval is denoted by αIN

i and its end by βIN
i .

The requirement is formally defined as Equation (8).

T

∑
t=1

mi,t = l IN
i ∀i ∈ I (7)

mi,t = 0 ∀i ∈ I, t ∈ 〈αIN
i , βIN

i 〉 (8)

The demand for limiting the maximum appliance run time (sIN
i ) is formally characterized

in Equation (9) (the symbol M denotes a sufficiently large positive number). The auxiliary variable
n used in this equation is determined within rule (10); rules (11) or (12) utilize this variable to model the
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requirements for the minimum appliance run time after switch-on (denoted by uIN
i ) or the minimum

idle time after switch-off (dIN
i ).

t+sIN
i

∑
k=t

mi,k ≤ sIN
i + M · (1− ni,t) ∀i ∈ I, t ∈ 〈1, T − sIN

i + 1〉 (9)

ni,t ≤ mi,t −mi,t−1 ∀i ∈ I, t ∈ (1, T〉 (10)
t

∑
k=t−uIN

i +1

ni,k ≤ mi,k ∀t ∈ 〈αIN
i + uIN

i + 1, βIN
i 〉 (11)

t

∑
k=t−dIN

i +1

ni,k ≤ 1−mi,k ·
(

t− dIN
i

)
∀t ∈ 〈αIN

i + dIN
i + 1, βIN

i 〉 (12)

3.3. Thermostatically Controlled Appliances

The basic function assigned to the devices discussed within this section is to maintain a required
temperature (setpoint) in a certain room. The prerequisite for any effective incorporation of these
appliances into a EMS system consists in prior availability of the physical model of the room whose
temperature is to be maintained. In this category, the most prominent energy consumers are heating
and air conditioning [15], and thus they constitute the main focus of this paper in the given respect.
However, after simplification and modest adjustment, the proposed procedures can be applied in other
thermostatically controlled devices too. Typical examples of the discussed type of appliances include,
above all, heating, air conditioning, refrigerator, and freezer.

In addition to basic temperature regulation, current HVAC systems consider also the air humidity
and, in some cases, carbon dioxide levels in the home [16]. The systems are being developed for
two main purposes: First, the research and development of appliances to achieve more effective use
of energy [17]; second, the investigation of methods to control the discussed systems [18–20]. However,
the latter of these processes has become more prominent as already deployed and working HVAC
systems cannot be changed if merely partial energy savings are desired, and thus the present paper
will employ the said perspective to optimize the volume of energy consumed by concrete appliances.

At present, the mathematical modeling of HVAC systems embodies a major step in not only
designing such systems for use in new buildings but also optimizing the energy consumption of already
installed setups. Within this domain, multiple modeling or simulating applications are usable, including
EnergyPlus [21] or TRNSYS [22]. The models generated via these applications nevertheless exhibit
considerable complexity and difficulty to design a control scheme, mainly because they exploit
comprehensive analyses of the physical properties of buildings [23]. The modeling of a thermal system
comprising a HVAC appliance and utilizing physical principles is interestingly outlined in studies [24,25],
among other papers.

Contrary to the above approach, articles [23,26] use parametric regression to identify the
parametric model. Source [27] then presents the inclusion of such a model in a complex mathematical
problem, together with a relevant solution based on commercial software, and report [28] resolves the
optimization problem via dynamic programming. Besides the temperature and humidity, the actual
user comfort is, as indicated above, markedly influenced by the concentration of CO2. A model
respecting such concentration is optimized in [16].

The last option offered in corresponding studies combines both of the methods introduced above.
The structure of the model and the initial parameters are then based on knowing the physical principles
of heat transfer through houses. During the operation of the system, the model becomes progressively
refined [29], exploiting the measurement of the input/output quantities inside the given building.



Energies 2017, 10, 1049 7 of 28

A concrete instance of the model setup is proposed in study [30]. The result of modeling the
individual parts (thermal capacities) of a building and their interrelations is a system of non-linear
differential equations, which can be written in the matrix form as

ẋ = Ax + f (x, u) + d(t) (13)

y = Cx,

where f (x, u) is the non-linearity in the form (input · state), and d(t) denotes the vector of the
time-variable errors affecting the system (the model variant presented in this paper assumes the
influence of the outer temperature). As in this case it is presumed that the system condition (the set
of inner temperatures) will be set close to a specific temperature (e.g., 21 °C) for most of the time,
we can perform the linearization and discretization; the resulting discrete system can then be written as

ẋ = Ax + Bu (14)

y = Cx. (15)

While the optimal run of deferrable appliances can be planned within a rather coarse time
scale (the cost of energy does usually not change oftener than once an hour, and the value of 15 min
thus appears to be sufficient [9,31]), controlling a thermodynamic system requires more frequent
correction of the control actions. In this paper, the period of 1 min is used. However, as it is not
possible or beneficial to solve the entire optimization problem at such fine resolution, we introduced
two time scales: the coarse scale, which—in addition to the optimal planning of the other appliance
groups—is also used as the framework for solving the coarse estimate of thermostatically controlled
appliances (TCA) activity, and the fine scale, finding application in tuning a concrete TCA control
action based on more specific data.

The optimization problem must be defined as robust from the perspective of model uncertainty
and noise, namely, its design must not contain any strict constraints on the output variable, as defined
by Equation (16) [32]. The said restrictions may, owing to the effect of the stochastic component,
lead to the infeasibility of the model. Thus, the bounds need to be relaxed via the addition of slack
variables, forming Equation (17); the minimization of the slack variable ε then constitutes a part
of the criteria function. Furthermore, a suitable selection of value W will enable us to achieve the
required system behavior. In view of the above description, robustness is a property characterizing
an optimization problem that does not comprise any strict constraints other than those bounding the
control action.

u ≤ T (16)

u ≤ T + ε (17)

The expression H describes the set of all TCAs. The physical model is, after discretization,
represented by three matrices: the state matrix A, the input matrix B, and the output matrix C.
The dimensions of these matrices correspond to the following model properties: |A| = (γ × γ),
|B| = (γ, |H|+ 1), and |C| = (|H|, γ), where γ is the order of the model and |H| the number of devices.
The order of the model is given by the number of thermal capacities (not only the capacities of the
heated rooms but also those of the walls and other assumed parts of the building).

The state of the model during calculation is, in each time slot, fully described by the state
variables’ vector, xt = (x1,t, · · · , xγ,t)ᵀ. As regards the model described in this paper, the individual
state variables correspond directly to the temperatures of relevant materials of the building. The vector
of system inputs, ut = (u1,t, · · · , u|H|,t, tamb

t )ᵀ, then represents the energy outputs of the TCAs; its last
element is the outer temperature. Then, formula (18) is the state equation of the model defining its
dynamic behavior in time.
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As already mentioned above, in the model proposed herein the particular state variables
correspond to temperatures of the particular materials; C therefore denotes a rectangular matrix,
where ci,i = 1, ∀i ∈ |H| and ci,j = 0, ∀i 6= j. Equation (19) formally determines the output temperature
pattern th,t in time t for individual devices h ∈ H. We have

xt+1 = Axt + But ∀t (18)

Tt = Cxt. ∀t (19)

For each room and appliance h, the user is able to set the range of values between which the room
temperature is to settle. Vectors ζmin

h or ζmax
h denote the minimum or maximum user-accepted room

h temperature for all time slots t. Equation (20) defines this requirement formally. Without softening,
the presented condition could result in the infeasibility of the optimization problem. However,
by introducing variables umin

h,t and umax
h,t together with their minimization in the criteria function (23),

the condition is softened, and the limits set by the user can be overstepped (yet at the expense of certain
penalization in the criteria function). The slack variables matrices Umin and Umax always have to satisfy
the condition (21).

ζmin
h,t − umin

h,t ≤ Th,t ≤ ζmax
h,t + umax

h,t ∀h, t (20)

umin
h,t ≥ 0, umax

h,t ≥ 0 ∀h, t (21)

0 ≤ ph,t ≤ PTC
max,h ∀h, t (22)

A finite output power of a TCA appliance can be described by constant pTC
h,t and must be less than

the maximum output power Pmax,h (rule 22). Generally, a TCA is capable of both heating and cooling
the given room. The simultaneous mode option (or the heating and cooling), namely, the configuration
where it is possible to warm or cool based on the instantaneous difference of temperatures, has not
found wide application in real conditions (the switching between the modes is usually performed
twice a year only: during the spring and autumn periods) and, for this reason, is not discussed in this
paper. The criteria function is as follows:

min J(Θ, ∆, P, umin, umax, wΘ, wTH) =

wΘ · ∆ ·
T

∑
t=1

Θt ·
|H|

∑
h=1

ph,t + wTH ·
T

∑
t=1

|H|

∑
h=1

(
umin

h,t
2
+ umax

h,t
2
)

. (23)

3.4. Distributed Generators

This class of devices can be divided into two parts. The first subsection then comprises
generators whose output power directly depends on the weather; thus, the generators are characterized
by markedly limited controllability, and the energy production is predictable only with difficulty. In the
second subsection, small micro-combined heat and power units (µCHP) are comprised; these devices
produce electricity together with heat, which is then utilized as a source to heat or cool the building
and to provide for warm water. Typical local generators include wind turbines, photovoltaic elements,
solar thermal cells, and micro-combined heat and power units. In this paper, energy generation via
wind turbines is considered.

Optimization models for systems with µCHP units are proposed within studies [33,34]. Thanks
to their favorable cost and operating potential, cogeneration units are currently often employed
to satisfy the heat and electricity requirements of multiple homes simultaneously; this option
is analyzed in, for instance, study [31]. Further, sources [35,36] utilize wind speed prediction at the
planning horizon to optimize energy production and transfer through wind generators; while the
former paper assembles a MILP model to be resolved with an available solver, the latter one focuses
on particle swarm optimization.
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To ensure optimal use of the energy produced by a wind turbine, it is vital to possess a highly
precise production estimate at the prediction horizon, and thus also an estimate of the wind
flow velocity. The acquisition of such estimates is, due to the inhomogeneity of the atmosphere
and constantly changing conditions, a complex and long-term problem analyzed systematically
by meteorologists and mathematicians. An estimate of the future velocity of wind can be acquired either
from an external source (weather forecast) or via compiling a probabilistic model based on historical
data, as described in [37]. It is also possible to combine these two techniques, and such a procedure
will enable us to use the probabilistic model for sufficiently accurate prediction to cover the first 4 h.
The relationship between the generated energy volume and the velocity of wind is non-linear and
depends on the concrete type of turbine and generator.

Before the actual optimization, the best prediction of the future values of wind flow velocity,
w1 . . . wT , is determined in each time slot via applying the current data and the relevant historical
model. The initial period of no more than first 3 h is defined through the most probable value from
the model defined by Markov chains, and the rest of the planning horizon is predicted using publicly
available mathematical model data. This technique, in spite of not being designed upon a solid
scientific basis, provides very good results in real conditions [38].

pRE
W (t) =


Θ(vw,t) vα ≤ vw,t ≤ vβ

Pn vβ ≤ vw,t ≤ vγ

0 otherwise
∀t ∈ 〈1 . . . T〉 (24)

The amount of power generated by a turbine depends on the wind speed. The function describing
this dependency is not linear (Equation (24)). For low wind speeds (vw ≤ vα), the power is 0. The linear
or quadratic relationship Θ(vw,t) can be applied for medium speeds (vα ≤ vw ≤ vβ). The maximum
generated power is reached at high wind speeds (vβ ≤ vw ≤ vγ). Above the value vγ, the turbine must
be stopped due to possible damage. The currently measured (w0) and predicted (w1 . . . wT) values are,
according to the above Expr. (24), used to calculate the vector PRE

W , whose individual elements then
specify the predicted volume of energy produced by the wind turbine for the separate time slots on the
planning horizon.

3.5. Accumulators

The integration of electromobile batteries into an energy management system is analyzed within
references [39–41]; the benefits of connecting an electromobile are then discussed in detail by the
authors of study [42]. In this context, let us note that energy storage within EMSs can be performed
not only via batteries but also using other means, including, for example, fuel cells (as proposed
in articles [43,44]). By extension, paper [45] outlines the connection of electric vehicles to the grid
(V2G), and article [46] then examines, within the V2G problem, the planning of simultaneous charging
in a large group of electromobiles from the perspective of cost optimization. Interestingly, study [47]
describes the possibility of a large peak demand being generated during early night hours (namely,
when large-scale charging of electromobiles is assumed); the paper also formulates a quadratic
optimization problem to investigate different issues and economic benefits related to the various levels
of the usage of electromobiles across the populace. The relevant paper [48] considers the stochastic
character of the building energy management system; the introductory part of the study formulates
the deterministic MILP. Further, a two-stage stochastic demand side management problem is created
that addresses the stochastic nature of renewable energy generation, loads, EV availabilities, and EV
energy demands.

If the system comprises an accumulator, then energy can be taken off and stored at times of cheaper
or easily available electricity and subsequently used whenever energy acquisition is expensive.
Generally, it holds true that the higher the accumulator capacity, the wider the possibilites within the
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demand response system [39]; however, we also need to consider the relevant physical limitations,
energy loss in time, and projected life of the accumulator.

Within the optimization problem, the battery condition is fully described by its remaining capacity
in each time slot t, denoted as qt. Due to the technical limitations of a concrete battery, this variable must
lie within interval 〈eST

min, eST
max〉 (Equation (25)). As follows from the relevant economic prospect [30],

these two values may represent the battery discharge level corresponding to the maximum number
of kilometers in a daily car trip and also the optimal charge level (which may amount to only 90%
of energy due to the technical limitations of the given technology).

The energy remaining in the battery at the moment of the electromobile being connected to the
system in time slot αST is denoted as eST

α (Equation (26)). By analogy, the desired energy in the battery
after disconnection from the system in time slot βST is expressed with eST

β (Equation (27)). Outside the

time interval represented by constants 〈αST , βST〉, the battery remains disconnected (Equation (30)).
The energy volume charged into the battery in each time slot t is represented by the value

of variable ct; similarly, then, the discharged energy volume is denoted by the value of variable dt.
Equations (28) and (29) prevent the maximum energy volume charged during one time slot from
exceeding cST

max and, in the same sense, they ensure that the maximum discharged volume will not
exceed dST

max.

0 ≤ eST
min ≤ qt ≤ eST

max ∀t (25)

qST
α = eST

α (26)

qST
β = eST

β (27)

0 ≤ ct ≤ cST
max ∀t (28)

0 ≤ dt ≤ dST
max ∀t (29)

ct = 0, dt = 0 ∀t : t < αST ∨ t > βST (30)

The process of energy charging and discharging into/out of a battery, as described
in Equation (31), is burdened with loss. Its efficiency is specified by constants ηc for charging,
or ηd for discharging (ηc ∈ (0, 1), ηd ∈ (0, 1)). Energy storage in a battery is accompanied
by self-discharging; the proportional amount of energy drop in the battery during one time slot
∆ is described by the constant κ (κ → 0). We have

qt = qt−1(1− κ) + ∆
(

ctηc −
dt

ηd

)
. ∀t : αST ≤ t ≤ βST (31)

The amortization to be considered for every 1 kWh of energy taken off the battery is denoted
as θST

unit and can be traced in the criteria function, which is further described in Section 4.

3.6. Energy Balance

The rules for modeling separate classes of home appliances have hitherto been defined separately;
all these appliances nevertheless operate jointly within a single system, and they also consume shared
electrical energy. In the mathematical model, this property is determined by the energy balance
Equation (32). The left-hand side of the equation describes the total power taken off by a household,
namely, the sum of the inputs of appliances included in the relevant categories (DE, IN, TH) and the
input charged into the accumulator ct for the given time slot t; the right-hand side then specifies the
supplied power. Here, the sum is that of the power taken off the accumulator, dt; the power acquired
via the generator from renewable resources, pRE

t ; and the power taken off the grid, pMAINS
t , in the same
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time slot. The relaxation variable uMAINS
t ensures the feasibility of the entire optimization problem.

We have

A
∑
a=1

pDE
a,t +

I
∑
i=1

eIN
i +

H
∑
h=1

pTH
h,t + ct = pRE

t + dt + pMAINS
t ∀t (32)

0 ≤ pMAINS
t ≤ PMAINS

MAX + uMAINS
t ∀t (33)

uMAINS
t ≥ 0. ∀t (34)

4. Optimization Problem

For EMSs, this paper defines a mixed integer quadratic problem (MIQP) consisting of the
following elements: the rules and bounds for individual appliances defined within previous chapters;
global technical and other restrictions (such as energy balance); and criteria function, whose shape
corresponds to the selected strategy. For this article, we chose several requirements specified in [30];
these requirements and the resulting control strategy are described below.

4.1. Price Minimization

The basic end user requirement addressed at the demand response system is to reduce the relevant
cost. The expression ΨΘ in function (39) indicates the total cost of energy consumed by all appliance
categories for the entire prediction horizon. This price is obtained as the product of the unit price
in time slot Θt and the energy taken off the grid in individual time slots (96 intervals, each 15 min long).
For each time slot, the extracted energy is calculated as the sum of the following components: the energy
consumed by deferrable (DE, Equation (35)), interruptible (IN, Equation (36)), and thermostatically
controlled (TH, Equation (37)) appliances; the energy charged into the accumulator; the negatively
assumed value of energy discharged from the accumulator (Equation (38)); and the values of energy
produced by the wind turbine pRE

t .

ψDE
t =

|A|

∑
a=1

lDE
a

∑
j=1

ra,t−j+1· eDE
a,t (35)

ψIN
t =

|I|

∑
i=1

∆ · eIN
i · mi,t (36)

ψTH
t =

|H|

∑
h=1

∆ · pTH
h,t (37)

ψST
t = ct − dt (38)

ΨΘ =
T

∑
t=1

Θt ·
(

ψDE
t + ψIN

t + ψTH
t + ψST

t − ∆ · pRE
t

)
(39)

4.2. Observation of Preferred Times to Run DE Appliances

The minimization of Equation (40) leads to such system behavior in which the working cycle
of deferrable appliances is executed as early as possible within the user-selected interval.

In Real-time pricing (RTP) tariffs, where it is necessary to rely significantly on the prediction
of future energy prices (as described by, for example, [49]), the combination of the requirements for
observing the preferred times and minimizing the price eventually reduces the risk of wrong price
estimation. The prediction reliability is generally highest at the beginning of the predicted interval and
gradually decreases into the future. In simple words, shifting the appliance cycle far into the future
is not beneficial, because the corresponding price is predicted with only low probability.
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While this paper does not consider RTP tariffs, minimizing the criteria function below does not
provide any value added for this study; however, we present the relevant formula to demonstrate the
ability of the optimization algorithm. We have

ΨDE =
1
|A| ∑

a∈A
(sa − αa) . (40)

4.3. Maximization of Thermal Comfort

The minimization of Equation (41) ensures the observance of optimal temperature patterns
in individual rooms (maximizes the thermal comfort) because it penalizes higher values of slack
variables umin and umax, which constitute the difference between the real temperature and the
minimum/maximum temperature desired by the user under simultaneous adherence to the restricting
conditions for a concrete device. The optimum solution of this equation leads to maintaining
the temperature at the mean value between the minimum and maximum limits within the entire
planning horizon:

ΨTH =
1
|H|

T

∑
t=1

∑
h∈H

(
umin

h,t
2
+ umax

h,t
2
)

. (41)

4.4. Minimizing the Frequency of Control Actions

In cases when a control action in thermostatically controlled appliances is changed via
an electromechanical element (such as a servo drive), it appears suitable that the controller minimize
the frequency of desired control actions. To satisfy such a condition, we can either add rules which will
ensure the equality of control actions always in several neighboring action slots or adjust the criteria
function. For simplicity, this paper utilizes the method of modifying the said function by adding
Equation (42), which is to guarantee the minimization of the difference between control actions always
in two neighboring time slots. We define

ΨTH,P =
H
∑
h=1

T

∑
t=2

(ph,t − ph,t−1)
2 . (42)

4.5. Multicriteria Optimization and the Heuristic Algorithm

During multicriteria optimization, the setting of preferences (weights of individual members)
constitutes a key problem, especially because each of the variables ΨΘ, ΨDE, ΨTH , and ΨTH,P may
assume different values, and these may differ by up to several orders. At the same time, however,
the magnitudes of the variables change substantially in individual control cycles with receding horizon.

If, in optimization, the setting of the weights of particular members is to be meaningful, we have
to ensure that individual variables assume only values within certain limits. Thus, it is necessary
to establish the presumed lowest and highest values of each of the variables and perform normalization,
which will not only approximately unify (within an order) the values of the variables but also
compensate for their large variations during the run of the system.

The limits Ψmin and Ψmax of individual variables thus have to be determined before each
optimization process, always on the basis of actual input parameters. In this paper, a heuristic
algorithm to calculate the said limits is presented. This algorithm has to be invariably triggered
with current parameters before the optimization of the model within a new time slot. The algorithm
determines the price limits related to the consumed energy (ΨΘ for individual appliance classes:
ΨΘ,DE, ΨΘ,IN , ΨΘ,TH and ΨΘ,ST), the range of variables ΨDE and ΨTH for determining the comfort
of devices DE and TH, and the range of variable ΨTH,P for restricting the magnitude of the control
action of TH appliances.
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• In deferrable appliances, the procedure of determining the lower limit Ψmin
Θ,DE involves a simple

search of such positioning of the device within the user-preferred interval that will ensure the
lowest price of the consumed energy. The upper limit Ψmax

Θ,DE is then determined as the average
of several random simulated runs of the appliance within the said interval.

• The discussed procedure in interruptible appliances is trivial only if no additional rules are defined
for their run (Equations (10)–(12)). In such a case, the lower limit Ψmin

Θ,IN is calculated with
positioning the appliance cycles into the time slots that exhibit the lowest price, and the upper
limit Ψmax

Θ,IN is then established as the average price for several random cycle positions. As regards
the situation where further rules are defined for the running of interruptible appliances, a detailed
description is available in [30].

• In thermostatically controlled appliances, the upper limit Ψmax
Θ,TH is determined by the algorithm,

which simulates a simple two-state regulator on the prediction horizon. The lower limit Ψmin
Θ,TH

is then established via calculation as a proportional part of the upper limit or based on the results
of previous optimizations.

• The boundaries for the index of comfort violation in deferrable appliances, Ψmin
DE or Ψmax

DE ,
can be easily determined from the knowledge of the user-preferred time window to run the
appliance. If no explicit definition of the preferred time window is available, we can use
its beginning or, possibly, a half of the whole interval. The limits of the other variables,
such as the comfort violation levels ΨTH and ΨTH,P, are obtained based on empirically defined
input parameters.

After establishing the above-presented parameters, individual variables in the criteria function
can be normalized according to formulas (43)–(46). We have

ΨΘ =
ΨΘ − Ψmin

Θ

Ψmax
Θ − Ψmin

Θ
(43)

ΨDE =
ΨDE − Ψmin

DE
Ψmax

DE − Ψmin
DE

(44)

ΨTH =
ΨTH − Ψmin

TH
Ψmax

TH − Ψmin
TH

(45)

ΨTH,P =
ΨTH,P − Ψmin

TH,P

Ψmax
TH,P − Ψmin

TH,P
(46)

ΨPP = ΨPP. (47)

4.6. Weight Setting

Upon user decision, each of the specified criteria, ΨΘ(· ), ΨDE(· ), ΨTH(· ), and ΨTH,P(· ),
is assigned a weight w, which then decides on the relative importance of the given criterion. While
cost-conscious users accentuate price minimization, and thus a higher weight has to be allocated to this
objective, those preferring thermal comfort naturally behave in a different manner. Optimization
therefore enables us to set all the criteria in the required balance, and some of them can also be excluded
from the calculation by assigning zero value to the corresponding weights. The resulting criteria
function for the energy manager then corresponds to the sum of individual weighted variables, and the
whole optimization task is formally defined as

minimize ωΘ · ΨΘ + ωDE · ΨDE + ωTH · ΨTH + ωTH,P · ΨTH,P + ΨPP

based on rules (3)–(34). (48)
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Due to the normalization described within the last subsection, we can set the individual weighting
coefficients as indicated below:

∑ (ωΘ + ωDE + ωTH + ωTH,P) = 1. (49)

The optimization problem solution can be found using algorithms specialized in searching
a solution to combinatorial optimization problems. In this paper, the CPLEX solver [50] is exploited
as a tool to effectively compute the overall optimization problem solution.

5. Case Study

To verify the functionality of the proposed method, we use in this section a concrete mathematical
model of a system for all types of appliances.

5.1. Building Energy Management Model

Within this section, we define five groups of appliances, corresponding to the classification
introduced previously in Section 3.

5.1.1. Deferrable Appliances

We modeled three deferrable appliances: a washing machine (WM), a dishwasher (DW),
and a tumble dryer (TD). According to source [51], we determined the average number of cycles
per year to obtain the probability of running a specific appliance during a specific simulation
day (Table 1). The energy consumption and peak power cycles were yielded through a measurement
of real appliances. Relevant examples are shown in Figure 1. The user preferences for a particular
appliances’ schedule are summarized within Table 2 (the earliest start and latest end of an appliance
cycle for a simulation day are uniformly distributed values).

Table 1. The average number of cycles for specific DE appliances.

Appliance Cycles Per Year Probability for a Concrete Day

WM 220 0.6023
DW 240 0.6570
TD 147 0.4024

Figure 1. The detailed power cycles for the WMs and DWs.
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Table 2. The user preferences for the related DE appliances’ schedule.

Appliance Earliest Start Time Slot Latest End Time Slot

WM XDE
WM,s ∼ U (24, 48) XDE

WM, f ∼ U (60, 80)
DW XDE

DW,s ∼ U (16, 40) XDE
DW, f ∼ U (60, 80)

TD XDE
TD,s ∼ U (24, 48) XDE

TD, f ∼ U (50, 80)

5.1.2. Interruptible Appliances

We modeled two interruptible appliances: a pool pump (PP) and an electric water heater (EWH).
Table 3 summarizes all the necessary parameters for these appliances. Both the devices are scheduled
for all the simulation days. The restriction for scheduling a specific appliance only during particular
time slots was not applied in this case study.

Table 3. The parameters of the IN appliances.

Appliance Power (W) Power Cycle Length (h) Restrictions

PP 300 5 2 slots
EWH 2200 3.5 -

5.1.3. Thermostatically Controlled Appliances

We used a simplified model of a building with 4 equally large rooms [30]; for simplicity,
no windows are considered. Moreover, only the thermal conduction principle is used to exchange
thermal energy between the rooms. An electrical heating unit (2350 watts of input power) is employed
to heat each room. The inner dynamics of the unit are neglected as they are significantly faster than
the building thermal dynamics. The system of differential equations corresponds to the equivalent
electrical circuit described in [30]. Table 4 describes the physical parameters of the particular rooms,
while Table 5 characterizes the physical parameters of the walls. The thermal transmittance values
hin and hout are selected to be 7.6923, and 25, respectively. The thermal power of each heating
unit is 1170 watts, the corresponding hot air volume amounts to 106 m3·h−1, and the temperature
equals 43 °C.

Table 4. The physical parameters of the particular rooms.

Room V
(
m3) cr

(
kJ

kg·K

)
λ
(

W
m·K

)
ρ
(

kg
m3

)
r1, r2, r3, r4 62.5 ca 0.0252 1.188

Table 5. The physical parameters of the particular walls.

Wall d (m) S (m2) c
(

kJ
kg·K−1

)
λ
(

W
m·K

)
ρ
(

kg
m3

)
w1, w3, w5, w7 0.375 25.0 1000 0.150 850
w2, w4, w6, w8 0.100 12.5 1000 0.170 700

For the first stage of the simulation, the initial values for all the room temperatures are set to a half
of the interval specified by the user setpoints. The temperature of the walls is set to a half of the
temperature difference between neighboring rooms, or a half of the temperature difference between
the room and the ambient temperature.

For clarity, the user setpoints are equal for all the rooms and throughout the simulation.
The setpoints for a regular weekday are shown in Figure 2 on the left-hand side, whereas the setpoints
for the weekend are available on the right-hand side.
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Figure 2. The setpoints for all the 4 rooms related to a weekday and weekend.

5.1.4. Accumulators

In this case study, we model an accumulator used in a Nissan Leaf EV. A detailed description
of this accumulator and its technical parameters is provided in reference [52]. The first and last time
slots to connect or disconnect the accumulator in the EMS are characterized as uniformly distributed
random variables XST

c ∼ U (20, 32) and XST
d ∼ U (60, 76), respectively, for each day. The amount

of kilometers driven by the EV before its connection to the system is computed as XST
range ∼ N (40, 100)

for each day.

5.1.5. Wind Turbine

The wind energy generation problem comprises two parts. The probabilistic model adopted from
paper [53] was constructed based on historical wind speed measurements at Brno Airport (LKTB)
between the years of 2004 and 2014. All the values are handled as follows: The fractional parts are cut
and the values branched into categories; for each hour of the day, there are categories according
to the wind speed, namely, (0 m·s−1, 1 m·s−1], (1 m·s−1, 2 m·s−1], ..., (n − 1 m·s−1, n m·s−1].
Each of these describes the number of the occurrences of a particular wind speed at a particular
hour of the day. For each hour k, the first order Markov Chain with transition matrix Pk is created.
The elements (i, j) of this matrix then characterize the probability that the wind speed i m·s−1 will
change to the value j m·s−1 during the hour k. More details of the probabilistic model are defined
in study [30]. For the simulation, we selected a three blade wind turbine with the diameter of 2.5 m for
the nominal wind speed 8 m·s−1 (detailed information is available in [54]).

5.1.6. Other Simulation Parameters

To simulate the system behavior, a winter period (November 2014–January 2015) was considered.
The ambient temperature (Figure 3) was adopted from source [55]. The model is influenced
by not only the ambient temperature but also the wind speed. Based on the parameters described
within Section 5.1.5, we calculated the expected power to be generated through the wind turbine.
The computed values for the first simulation month are available in Figure 4.

Figure 3. The ambient temperatures for the simulation period.
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Figure 4. The power generated by the wind turbine during the first 31 simulation days.

5.2. Results

The case study contains two interconnected parts. While the former section verifies
the functionality of the complete proposed model, the latter one responds to the question
of how it is possible to simulate various user preferences (reduced costs—timely triggering
of appliances—maintenance of thermal comfort & technical aspects) by tuning the individual
parameters of the optimization function; the above-outlined user settings are then used to describe
differences in the system behavior. Thus, the heuristic algorithm functionality is verified to facilitate
the estimation of the limits of the criteria function variables.

The study encompasses a period of three months, during which we simulate the use of home
appliances according to preassigned parameters over weekdays, weekends, and holidays (this being
a time when the users are not present in the monitored homes). Based on the type of day, the actual
manner of running the individual appliances progressively changes.

For each simulated day, the data are processed by means of the heuristic algorithm to calculate the
normalization coefficients. The mean values of the coefficients are summarized in the corresponding
Table 6, and Figure 5 then shows the graphically represented values for the individual components
of the total cost (each concrete color field denotes, for separate days, the lowest Ψmin

♦ and highest Ψmax
♦

values for concrete appliance types. Thus, for instance, the first simulated day shows the difference
between the minimum and maximum prices for the TCAs ΨDE

Θ amounting to 31 CZK.

Table 6. The normalization coefficients calculated by the heuristic algorithm.

Appliances Type Symbol Minimal Ψmin
♦ Maximal Ψmax

♦

DE Price ΨΘ,DE 0 11.41
DE Comfort ΨDE 0 732.5

TCA Price ΨΘ,TH 19.61 69.15
TCA Comfort ΨTH 0 16
TCA Control action ΨTH,P 2.788 × 10−3 2.788 × 10−2

IN Price ΨΘ,IN 3.58 30.32
ST Price ΨΘ,ST 0 31.58

The diagram in Figure 5 indicates the evolution of the lowest and highest values of the individual
cost components during the simulation interval. Here, it becomes obvious that, while the cost
of operating thermostatically controlled appliances remains (excepting the holiday) without major
differences throughout the entire interval, the cost of operating deferrable appliances is markedly
volatile, depending on which appliances are triggered and run during a concrete day. Generally,
the price fluctuation would not constitute an essential problem if absolute values for the other
normalization coefficients did not differ by up to several orders, as outlined in Table 6. The optimization
function specified as Equation (48) therefore must comprise the normalized values obtained
by substituting the calculated coefficients Ψmin

♦ a Ψmax
♦ into the expressions in Equations (43)–(46).
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Figure 5. The minimal and maximal values of ΨΘ for all types of appliances.

After normalization, the individual members of the optimization function can be weighted via
multiplication by the constants. This action enables emphasizing or suppressing the significance of the
cost reduction (ωΘ), preferred running interval of deferrable appliances (ωDE), maintenance of thermal
comfort (ωTH), and reduction of the magnitude and frequency of control action in thermostatically
controlled appliances (ωTH,P).

5.3. Verification of the System Model

In this section, we simulate the system behavior with the weights set to ωΘ = 0.33, ωDE = 0.33,
ωTH = 0.33, and ωTH,P = 0.01. Figure 6 indicates the cost of running the individual types of appliances
during the simulated period. As regards the days on which the values of the diagram start from
the negative section of the price axis Θt, the local generator supplied the system with energy
at a corresponding cost, and the total bill is thus reduced by this amount. The diagram shows
a marked drop of cost in interruptible appliances and accumulator charging between the 30th and 40th
days defined within the input conditions. Although the said days involved also reduction of the desired
temperature in the building, this fact did not visually reflect in the cost of energy for thermostatically
controlled appliances; such behavior can be attributed to the lower outer temperature during the
monitored period, and thus the difference between the outer and inner desired temperatures was
approximately the same as in other periods of simulation.

Figure 6. The incremental costs of appliances run during simulation period.

Figure 7 then presents, for the entire simulated period, the resulting values of the individual
parts of the criterion after the end of the optimization. It is obvious from this figure that the values
correspond to the input requirements given by the individual weights: the first three values (ΨΘ, ΨDE,
and ΨTH), roughly oscillate between 0 and 1, while the last one, (ΨTH,P), whose weight was markedly
lower, reached multiply higher levels. We can also notice that the values are not strictly enclosed
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in the above interval, and thus, for example, the price criterion values (ΨΘ) assume also a negative
character. This is given by both the design of the heuristic algorithm and the fact that the calculated
values constitute only estimates of the upper and lower limits of the individual values. Such behavior,
however, is not a difficulty.

Figure 7. The values of the individual parts of the criteria function.

The operation of separate appliances within the first four simulation days is shown in Figures 8–10.
For all the figures, the deepness of the red in the background corresponds to the energy price fluctuation
in time (the deeper the color, the more expensive the energy for the time slot). The first of the
figures referred to above, Figure 8, describes the activity of interruptible (patterns WM, DW, TD) and
deferrable (patterns PP, EWH) appliances. In the diagram, the gray tinge indicates the user preferences,
or the allowed run intervals in separate appliances. Even though the scheduling of these intervals may
appear flawed because some appliances are run at times when the cost of energy stands at the highest
level, Figure 11 informs us that the power needed for the actual triggering was not taken off the grid
but acquired from an accumulator or a local energy source.

Figure 8. The DE and IN appliance cycles for the first 96 simulation hours.

Figure 9 displays the behavior of temperatures in separate spaces. For simplicity, we chose the
same patterns for all four rooms involved, and as these rooms and the relationships between them are
modeled identically, we also obtain identical optimal patterns of the desired values.

Figure 10 then shows the optimal behavior of residual energy in the accumulator for each
day between its connection (accumulator discharged, start of the green block) and disconnection
(accumulator charged, end of the green block). The connection and disconnection times, as well
as the residual capacity at connection and the desired capacity at disconnection, are given by the
input conditions.
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Figure 9. The temperatures for the first 96 simulation hours.

Figure 10. The energy accumulated in the battery for the first 96 simulation hours.

The figure below (Figure 11) presents the balance between the energy input and output during
the first four days of simulation, and it captures the expected optimal behavior of the system in
time. The negative section of the diagram relates to the power supplied to the system, and the
concrete power sources are as follows: the black path determines the power taken off the distribution
grid (limited to the value of 3850 W indicated via the dashed line; the green path indicates the output
provided by the accumulator; and the yellow one defines the predicated output supplied by the local
generator. The positive values represent the inputs of the individual appliance classes, namely, the
deferrable (violet), interruptible (cyan), and thermostatically controlled (blue) groups. The power
loaded in the accumulator is then displayed with the red path. The sum of the outputs in each time
slot equals zero.

Figure 11. The power balance for the first 96 h.

The text above summarizes the results obtained for one concrete setting of the weights of the
criteria function members. The presented diagrams were outlined to provide the simplest possible
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view of the functionality of the model of the entire system; the correct functioning of the model for
EMSs was verified via the testing and detailed analysis of both the patterns and the numerical results.

5.4. Heuristic Algorithm Validation

As we have already pointed out, multicriteria optimization was used in several studies published
previously; however, in all these papers it was necessary to set experimentally the weights of the
members in the optimization function. The said drawback is effectively solved via applying the
heuristic algorithm; then, based on the obtained result, the optimization function members can
be simply weighted.

This chapter describes four optimization cases to which there correspond four members in the
optimization function and four different weighting variables. The actual testing was performed such
that for each of the weights ω♦ we progressively set the values 0, 0.01, 0.1, 0.2,. . .,0.8, 0.9, 0.99, 1, and the
other weights ω� were invariably assigned values according to the formula ω� = 1

3 · (1−ω♦).

5.4.1. Price Preference

Figure 12 displays the patterns of the individual optimization function members. The member
ΨΘ represents the gradually decreasing price in relation to its increasing preference ωΘ. It becomes
obvious that as soon as we have ωΘ = 0, the price is not included in the optimization function and thus
exhibits a high value (the vertical axis of the diagram has a logarithmic scale). With the progressive
price preference growth, the price decreases at the expense of the other three properties of the system.
At the moment when the weight ωΘ = 1 is set, the price is optimized regardless of the values of the
other members, and the cost specification for this variant is missing in the logarithmic diagram because
the calculation here yields a small negative value (the negative value of the member does not constitute
a problem: it only refers to the fact that the heuristic normalization algorithm did not calculate the
minimum value precisely. In this case, at ωΘ = 1, the system reaches a state when (for example) TCA
appliances are not triggered at all, a condition for which the algorithm is not designed). The values of
the other three members then increase abruptly.

Figure 12. The criteria function member values as the function of ωΘ.

5.4.2. Preference of the Deferrable Appliances Comfort

The results of this option are presented in Figure 13. The first sight reveals that a change of the
weight ωDE does not markedly affect the behavior of the system in the given case; this is caused
by a favorable combination of the time behavior of the energy price, the user preferences in deferrable
appliances, and the fact that the discussed member is not too closely connected with the other members
considered. Thus, during optimization, it is not difficult to set up an optimal value of the member ΨDE
to obtain an optimal solution. In an extreme case, ωDE = 1, the other members of the criteria function
are weighted by the value of 0 (the price member ΨΘ in particular), a large number of the model parts
are not applied, and the optimization process generates incorrect results.
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Figure 13. The criteria function member values as the function of ωDE.

5.4.3. Thermal Comfort Preference

The variation of the system behavior based on a weight change in the thermal comfort member
ωTH is shown in Figure 14. The model behavior becomes extreme also in cases ωTH = 0 and ωTH = 1.
As regards the former case, then again no triggering of thermostatically controlled appliances occurs:
the normalized member for price minimization, ΨΘ, equals 0, in the same manner as the member
to minimize the control action for TCA ΨTH,P (which is a logical condition, given the fact that the said
member is defined in the criteria function as a sum of the output differences characterizing the TCA
appliances in the adjacent time slots). With the growing weight of ωTH , we can observe a gradual
decrease of the member ΨTH , meaning an improvement in the quality of the thermal comfort within
the building. However, excessive suppression of the other weights (ωTH > 0.9) affects the magnitude
of the other members: the optimization algorithm is not forced to minimize their sizes, and again the
system behaves incorrectly.

Figure 14. The criteria function member values as the function of ωTH .

5.4.4. Preference of Reducing the Control Action of TCA

The pattern of the values of the individual members of the optimization function at various
weight levels, ωTH,P, is presented in Figure 15. As its magnitude grows, the value of this weight
becomes an influence on “softening” the alteration of the control action for TCAs. This characteristic
then manifests itself especially via a decrease of thermal comfort, in which—assuming this concrete
case—the system is not capable of reacting to fast demand changes. In the case of ωTH,P = 0,
the member ΨTH,P is ignored, and the control action is not modified in any manner. The opposite
condition, ωTH,P = 1, again involves the suppression of the weights of the other criteria function
members, which then reflects in a rapid increase of their values, and the system ceases to function
as required.
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Figure 15. The criteria function member values as the function of ωTH,P.

6. Evaluation and Conclusions

The above-presented scenarios indicate how the behavior of the system changes under variation
of the constants weighting individual members of the criteria function. Generally, the investigation
of the discussed cases and patterns allows us to formulate the following points:

• As the individual members of the optimization function are normalized using values obtained
through applying the heuristic algorithm, it is possible to influence the system behavior
comprehensively via multiplying the normalized members by weighting coefficients within
the range of between 0 and 1. The sum of all weighting coefficients may equal 1, but this does
not constitute a necessary precondition. However, if the weighting coefficients were set directly
by the user over the corresponding system interface, the sum of the individual request weights
equal to 1 (or 100%) would retain in the user an awareness of the quid pro quo principle.

• Setting any of the weights to the value of 0 or 1 would lead to its complete omission or one-sided
preference; however, the technique of defining the optimization problem is not ready for such
a scenario, and the results are unusable. For this reason, the discussed type of setting has
to be avoided to preclude unnecessary difficulties.

This work presents a design of a universal method for optimal electricity consumption planning
in a smart home. The technique was validated via software implementation. We considered not
only home appliances but also local electricity sources, and these entities were classified into five
categories (according to their typical use and related properties) as follows: devices with deferrable and
uninterruptible cycles; interruptible cycle appliances; thermostatically controlled devices; accumulators
and local generators operating on the basis of renewable sources. Each of the categories was
subsequently complemented with a relevant mathematical model. By extension, the article also
partly considers the problem of non-controllable appliances. The proposed method enables the end
user to utilize the demand response principle in optimizing the cost of consumed electricity. In view
of the above facts, it is important to note that the concept introduced herein assumes the inclusion
of an energy manager, namely, a tool to coordinate the triggering of individual smart home appliances
based on a series of input data, including information acquired from the distributor’s infrastructure.
An energy manager is a comprehensive instrument for maintaining a mathematical model synthetized
from models of separate appliances, and this instrument also secures the implementation of the
method designed to resolve the complex optimization problem. The basic purpose of the manager
consists in ensuring cost reduction at the level of appliance operation comfort adopted by the user.
Significantly, the discussed tool is also capable of respecting the technical limitations of the individual
devices. Within this paper, we solve a part of the above-defined task, which relates to optimizing the
run of appliances in a single home. The solution of the optimization task consists in minimizing the
quadratic function formed by a weighted sum of partial functions representing individual demands
with respect to linear bounds, namely, the function defined for separate appliances and also user
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preferences (the problem is therefore one of mixed integer quadratic programming). Considering the
fact that the requirements are often contradictory, the optimization task solution falls within the set
of multicriteria combinatorial problems. By changing the values of the weighting constants of the
individual parts of the criteria function, we can then emphasize or suppress a certain behavioral aspect.

The proposed method, extended with the heuristic algorithm, was validated using a pair
of universal software tools: Matlab (MathWorks, Massachusetts, United States) and CPLEX (IBM,
New York, United States) Optimization Studio. While the former toolkit enabled us to generate the
input parameters and present the results, the latter one ensured the solution of the actual optimization
task. Within the research related to this paper, we also created a software simulation tool to model
the behavior of a group of deferrable cycle appliances on a receding horizon. This tool was compiled
as a contribution to project FP7-ARTEMIS (333020-ACCUS-Adaptive Cooperative Control in Urban
Subsystems). Using the described software, we then carried out several case studies facilitating the
verification of the desired properties of the system.

The implementation of the above-specified technique into a device coordinating the run
of appliances in a smart home system will enable us to materialize the demand response principle;
thus, the system will be capable of swiftly reacting to a change in the input conditions by adjusting
the electricity consumption rate. Importantly, the case study has shown that the proposed solution
satisfies the conditions stipulated within the underlying research presented via this paper.
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Abbreviations

Symbol Description
T Number of coarse timeslots
t Coarse timeslot index
∆ Length of a coarse timeslot (hours)
T′ Number of fine timeslots
t′ Fine timeslot index
∆′ Length of a fine timeslot (hours)
Θ Vector describing hourly electricity prices over a prediction horizon
PMAINS

MAX Maximum peak power consumed from mains
A Set of all DE appliances
a Index of a specific DE appliance
τ Number of timeslots corresponding to the longest DE appliance cycle
PDE Matrix (|A| × τ) specifying the peak power of DE appliances during their cycles;

vector pDE
a defines the peak power of appliance a during the planning horizon;

element pDE
a,t denotes the peak power of appliance a during timeslot t

EDE Matrix (|A| × τ) specifying the energy consumed by DE appliances during their cycles; the meaning
of vector eDE

a and the element eDE
a,t is identical with the description above

CDE Matrix (|A| × α) of time consequences for DE appliances
lDE Vector |A| specifying the integer multiple of timeslots corresponding to the DE appliance cycle length
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αDE Vector |A| of user preferences for DE appliance starts
βDE Vector |A| of user preferences for DE appliance ends
I Set of all IN appliances
i Index of a specific IN appliance
lIN Vector |I| denoting the requested number of timeslots for IN appliance run
sIN Vector |I| denoting the maximum time an IN appliance is allowed to run
uIN Vector |I| denoting the minimal time an IN appliance is required to run after switch-on
dIN Vector |I| denoting the minimal time an IN appliance is required to stand by after switch-off
αIN Vector |I| of user preferences for IN appliance starts
βIN Vector |I| of user preferences for IN appliance ends
eIN Vector |I| denoting the energy consumed by IN appliances
H Set of all TC appliances
h Index of a specific TC appliance
ζmin Matrix (|H| × T) specifying the minimal temperature accepted by a user for all the rooms and timeslots
ζmax Matrix (|H| × T) specifying the maximal temperature accepted by a user for all the rooms and timeslots
tamb Vector of ambient temperatures
Pmax,h Maximum output power of TC appliance h
A, B, C Matrices of a thermodynamical model
pTC

max Vector |H| of the TCAs’ peak power
vw Vector of wind speed prediction over the scheduling horizon
pRE Vector of the electrical energy amount generated over the scheduling horizon
vα Cut-in speed of the wind turbine
vβ Rated output speed of the wind turbine
vγ Cut-out speed of the wind turbine
Θ(· ) Function denoting the power generated for wind speed interval vα − vβ

Pn Maximal power generated by the wind turbine for wind speed interval vβ − vγ

eST
min Minimal amount of energy remaining in the battery

eST
max Maximal amount of energy remaining in the battery

eST
α , qST

α Remaining amount of energy when connected to the EMS system
eST

β , qST
β Requested amount of energy when disconnected from the EMS system

αST Timeslot before which the battery is connected to the EMS system
βST Timeslot after which the battery is disconnected from the EMS system
cST

max Largest amount of energy charged within one timeslot
dST

max Largest amount of energy discharged within one timeslot
κ Self-discharge coefficient
ηc Charging efficiency
ηd Discharging efficiency
pMAINS

t Vector denoting the maximal power consumed from mains during the prediction horizon
ra,t Binary variable denoting whether a DE appliance a starts its cycle in timeslot t
sa Integer index of the timeslot during which a DE appliance a starts its cycle
mi,t Binary variable denoting whether an IN appliance i performs its cycle in timeslot t
ni,t Auxiliary binary variable for an IN appliance i and timeslot t
umin

h,t Relaxing variable for the minimal acceptable temperature of a room h and timeslot t
umax

h,t Relaxing variable for the maximal acceptable temperature of a room h and timeslot t
xt,i State variable for timeslot t and state i
th,t Room h temperature for timeslot t
ph,t TCA h power for timeslot t
ct Variable denoting the amount of energy charged to the battery in timeslot t
dt Variable denoting the amount of energy discharged from the battery in timeslot t
ft Auxiliary binary variable for charging the battery in timeslot t
gt Auxiliary binary variable for discharging the battery in timeslot t
qt Variable denoting the remaining battery capacity in timeslot t
umains

t Relaxing variable for ensuring the feasibility of the model in timeslot t
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