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Abstract: The microgrid containing a large amount of high frequency power switches and nonlinear
components has put forward high requirements for power system real-time simulation technology.
Multivalued coefficient prestorage can reduce the calculation steps in real-time simulation. In order
to reduce the storage pressure of the multivalued coefficients, the whole network is divided into
multiple subnetworks that can be simulated in parallel, and only the parameters for computing
input variables and internal variables are prestored. The multiport hybrid equivalent is performed to
reduce the number of simultaneous network equations. The input variables are tied to state variables
of the circuit so that the iterative calculation is limited to the local network. The devised methodology
is validated through simulation of a low-voltage microgrid on a field programmable gate array
(FPGA)-based real-time digital simulation (FRTDS) platform at a 5 µs time step. Comparison with a
power systems computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC)
model shows that the proposed method is effective.

Keywords: microgrid; real-time simulation; field programmable gate array-based real-time digital
simulation (FRTDS); multivalued coefficient prestorage; network partitioning; multiport hybrid
equivalent; local iterative calculation

1. Introduction

The energy Internet aims to build a clean, low-carbon, safe and efficient modern energy system,
which supports the access of high proportion, distributed clean energy power to improve the efficiency
of energy utilization and the utilization of renewable energy [1–3]. Microgrid is an important part of
the new generation energy system as an effective way to play the role of distributed power supply.

A hardware-in-the-loop simulation (HILS) of a microgrid is a kind of semi-physical simulation,
and its real-time simulator uses mathematical models to simulate microgrid electrical system, the
actual manager or controller to manage or control its models. The HILS technique is used to test the
real device and the dynamic performance of a microgrid in different operation modes and control
modes, which plays an important role in the construction and development of a microgrid [4–6].

At present, the mainstream real-time simulators in the field of electrical engineering are real-time
digital simulator (RTDS) and real time lab (RT-LAB). RTDS is a combination of specialized computer
hardware and software designed specifically for the solution of power system electromagnetic
transients, which simulates power system components to test power control equipment and protection
devices in real time with a typically time-step size of about 50 µs [7]. RT-LAB runs real-time simulation
of a Simulink model on multi-CPU computer with shared memory, which integrates dynamic system
mathematical models established by MATLAB/Simulink (R2015b, The MathWorks, Inc., Natick,
MA, USA) and is mainly used for a power electronic controller verification test with time-steps
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in the 10–15 µs range [8]. RTDS and RT-LAB provide good experimental conditions for design
and device debugging when applied to microgrid real-time simulation, but they are comparatively
expensive. The field programmable gate array (FPGA) is increasingly becoming the mainstream
hardware in the field of power system real-time simulation, the main advantages of which over
sequential hardware are wide parallelism, deep pipelining and flexible memory architecture [9–11].
A parallel implementation method was proposed for the real-time simulation of the alternating current
(AC) motor and transformer, respectively, based on FPGA in [12,13]. Chen et al. [14] proposed a
multi-FPGA design based on the functional decomposition methodology for hardware emulation
of systems using detailed modelling of the individual components. The papers above designed the
determined hardware circuit according to the actual simulation object—the advantage of the method is
that it reduces the simulation calculation time maximally, but the disadvantage is asking programmers
for higher FPGA programming capabilities and power system expertise.

FPGA-based real-time digital simulation (FRTDS) platform is developed independently by the
Key Laboratory of the Intelligent Power Grid of Ministry of Education, Tianjin University, Tianjin,
China, where Virtex-7 FPGA VC709 from Xilinx (San Jose, CA, USA) is used as the development board
for the solver. Formulas and functions are encapsulated in operating components whose operating
frequency is 200 MHz via pipelining technology. The simulation parameters are indirectly modified
by the status word and effect word, the pipelining work of operation components is described by an
instruction stream similar to the assembly language and FRTDS provides a compiling software from an
operating script that is similar to a high-level language to instruction streams so that the user doesn’t
need to write programs on FPGA [15,16]. The core hardware of FRTDS is only a Xilinx Virtex-7 FPGA
VC709 development board, the price of which is relatively cheap. It has been successfully applied to a
number of substation training simulation systems.

The improvement of the microgrid real-time simulation speed is dependent on the hardware
condition of the simulation platform, and the other is related to the simulation algorithm.
The compensation method separates the nonlinear elements from the network, and the linear network
is reduced to an equivalent Thevenin circuit, which limits the iteration to the problem of solving the
nonlinear elements in [17]. Kato et al. [18] proposed a new method that divides the whole circuit into
subcircuits by applying an explicit integration formula to series inductors and/or parallel capacitors,
and then integrates subcircuits by applying an implicit formula with independent integration step
sizes. To maintain the entries of admittance matrix fixed irrespective of the switching states, the
associated discrete circuit (ADC) model is applied to the power electronic converters, but it is known
to introduce false numerical transients due to its convergence process that restricts its operation at
high switching frequencies [19]. The method generation of electric network equivalents (GENE) was
proposed in [20], where the overall solution process is decomposed hierarchically into parent and
child simulations. The parent simulation calculates the voltages at the terminal nodes of the child
subdivisions. In the child simulations, the local voltages at the nodes within the subdivisions are
calculated. However, the solving process of the parent and child simulations is the bottleneck of speed
improvement. The two-valued resistor model approach usually implies storing all network equations
for every switch status combination [21], the inverse matrix is precalculated and stored in memory
for the real-time implementation, but the memory requirement for inverse matrix is prohibitively
intolerable when applied to real-time simulation of a microgrid.

Microgrid contains a large amount of high frequency power switches and nonlinear components,
the frequency of the power switch is usually several kHz to several hundred thousand hertz [22].
In order to simulate the electromagnetic transient process of a microgrid, the simulation step should
be as short as the microsecond range, preferably the sub-microsecond range. Therefore, the prestored
coefficient matrix is a more suitable method for real-time simulation of a microgrid. The capacity
of dual-port block RAM (BRAM) of the chip XC7 VX690 T in the FPGA VC709 development board
is 1470 × 36 KB. When used to store the calculation parameters, the space is only 32 K × 64 B, it is
difficult to accommodate the coefficient matrix data. The aim of this paper, therefore, is to improve the
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speed of real-time simulation by means of multivalued coefficient prestorage, network partitioning,
multiport hybrid equivalent and local iterative calculation. The remainder of this paper is organized as
follows. The electromagnetic transient simulation model is presented in Section 2. Section 3 describes
the subnetwork multiport hybrid equivalent and its internal solution method. The process of writing
and solving the network equation is discussed in Section 4. Section 5 presents the local iterative method
for nonlinear networks. A low-voltage microgrid is simulated to verify the feasibility of the proposed
method in Section 6. Section 7 concludes this paper.

2. Electromagnetic Transient Simulation Model

In order to carry out the electromagnetic transient simulation of a microgrid, it is necessary to
obtain the network model that contains only the power supply and the resistor.

2.1. Power Supply and Lumped Resistor

The linear resistor has a determined resistance value by the volt-ampere characteristic, where the
voltage across the resistor is proportional to the current through it. In this paper, natural commutation
is simulated using the state machine technique illustrated in Figure 1a. The value of the resistive model
of the switch (Ron/Roff) depends on the voltage across the diode uD.
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Figure 1. Diode-status-updating state machines: (a) diode; (b) diode connected in parallel to an 
insulated gate bipolar transistor (IGBT). 

When the diode is connected in parallel to a forced commutation switch such as an insulated 
gate bipolar transistor (IGBT), the state machine in Figure 1b is used instead, where the gate signal is 
accounted for. 

When the voltage across the voltage source is independent of the current flowing through it, and 
the output current of the current source has nothing to do with the terminal voltage. The voltage 
source or current source is considered to be the ideal power source and its voltage or current output 
is known at each simulation step. The nonlinear elements such as photovoltaic power supply can be 
expressed using piecewise linear approximation model in Figure 2a, i.e., 
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where i = 1, 2, 3 is the number of segments, Ri is the equivalent resistance of the i-th segment, Ui is the 
equivalent voltage source for piecewise linearization. Equation (1) can be expressed as an equivalent 
circuit shown in Figure 2b. 
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Figure 2. Piecewise linearization and equivalent circuit of the nonlinear source: (a) current-voltage (I–
U) curve and piecewise linearization; (b) equivalent circuit. 

Figure 1. Diode-status-updating state machines: (a) diode; (b) diode connected in parallel to an
insulated gate bipolar transistor (IGBT).

When the diode is connected in parallel to a forced commutation switch such as an insulated gate
bipolar transistor (IGBT), the state machine in Figure 1b is used instead, where the gate signal is accounted for.

When the voltage across the voltage source is independent of the current flowing through it, and
the output current of the current source has nothing to do with the terminal voltage. The voltage
source or current source is considered to be the ideal power source and its voltage or current output is
known at each simulation step. The nonlinear elements such as photovoltaic power supply can be
expressed using piecewise linear approximation model in Figure 2a, i.e.,

U = Ri I + Ui (1)

where i = 1, 2, 3 is the number of segments, Ri is the equivalent resistance of the i-th segment, Ui is the
equivalent voltage source for piecewise linearization. Equation (1) can be expressed as an equivalent
circuit shown in Figure 2b.
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Figure 2. Piecewise linearization and equivalent circuit of the nonlinear source: (a) current-voltage
(I–U) curve and piecewise linearization; (b) equivalent circuit.
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2.2. Lumped Elements (L, C)

The lumped elements (L, C) are represented by an equivalent conductance in parallel with a
current source representing the historical values. The values for the equivalent conductance and the
historical current source are determined by the element type together with the adopted numerical
integration method. The excitation inductor of power transformer and the inductor of reactor are
nonlinear because of saturation. The characteristic equation of the nonlinear inductor can be described
as: u = dψ/dt, by using the implicit trapezoidal rule, the following equation is derived:

ψ(t) =
∆t
2

u(t) +
∆t
2

u(t − ∆t) + ψ(t − ∆t) (2)

where the latter two are the equivalent flux linkage.
The process of determining the current by the flux linkage can be done using the piecewise

linearization method. Figure 3a presents the piecewise linear representation of the nonlinear inductor.
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The piecewise linear representation of the nonlinear inductor is reduced to

ψ = Lki + ψk (3)

where k = 1, 2, 3 is the number of segments, Lk is the equivalent inductance of the k-th segment, and ψk
is the equivalent flux linkage generated by piecewise linearization.

Substituting Label (3) in Label (2), the relation between voltage and current of the nonlinear
inductor is derived:

u(t) =
2

∆t
Lki(t) +

2
∆t

ψk − [u(t − ∆t) +
2

∆t
ψ(t − ∆t)] (4)

Equation (4) can be reduced to (5), which can be expressed as an equivalent circuit shown in
Figure 3b:

u(t) = Rki(t) + ukLine + ukdi f (t − ∆t) (5)

where Rk is the equivalent resistance of the k-th segment, ukLine is the equivalent voltage source
generated by piecewise linearization, and ukdi f is the equivalent historical voltage source because of
the discretization.

The equivalent method for the nonlinear capacitor can be derived similarly. First, discretize the
characteristic equation of the nonlinear capacitor i = dQ/dt and then use the piecewise linearization
method to obtain the relation between voltage and current of the nonlinear capacitor.

2.3. Fault Model and Circuit Breaker Model

To simulate the various types of faults that occur in microgrid better, the fault model is shown in
Figure 4a. When a single phase(a)-to-ground short-circuit fault occurs, let Ra be a small resistance and
Rb, Rc be large resistances, and Rg, Lg be small values. When an interphase (b, c) short-circuit fault
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occurs, let Ra, Rg be large resistances and Rb, Rc be small resistances. In order to obtain the equivalent
circuit model for transient simulation, discretize the fault model by applying the implicit trapezoidal
rule as shown in Figure 4b.
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Circuit breaker model is illustrated in Figure 5. Ra, Rb, Rc are, respectively, the resistance of the
three phases. Ra, Rb, Rc are equal to a small resistance in the normal case (circuit breakers closed) to
indicate the circuit breakers are switched on. When the circuit breakers are switched off, the resistances
of the circuit breakers take a large value.
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Figure 5. Circuit breaker model.

When the resistance of fault model and circuit breaker model changes from a small value to a
large value, the zero-cross detection to the current should be applied. Because of the complexity of the
arc extinguishing process, it is hereby specified that the model can only trip when the current passes
through zero.

3. Subnetwork Multiport Hybrid Equivalent and Internal Solution Method

After electromagnetic transient simulation model, there are only two kinds of linear components,
power supply and resistance in the network. Any one-port network with linear source can be reduced
to an equivalent Norton/Thevenin circuit.

For the current port in the equivalent Thevenin circuit illustrated in Figure 6a, iA is the input
variable, uA is the output variable, i.e.,

uA = −ReqiA + Ueq (6)

where Ueq is the open-circuit voltage of the original network port, Req is equal to the voltage value on
the port when the input current is the unit value after all the independent sources are set to zero in the
original network.
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For the voltage port in the equivalent Norton circuit illustrated in Figure 6b, uB is the input
variable, iB is the output variable, i.e.,

iB = −GequB + Ieq (7)

where Ieq is the short-circuit current of the original network port, and Geq is equal to the current value
on the port when the input voltage is the unit value after all the independent sources are set to zero
in the original network. The sign of the ports is also shown: black circles stand for current ports and
white circles for voltage ports.
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The multiport hybrid equivalent is a general formulation of the Norton/Thevenin equivalents
for the complex network. The hybrid nature of the results from the fact that the equivalent circuit
encompasses voltage ports and current ports. For a circuit with k current ports (input variable
iA = [i1 . . . . . . ik]T, output variable uA = [u1 . . . . . . uk]T) and m voltage ports (input variable
uB = [u1 . . . . . . um]T, output variable iB = [i1 . . . . . . im]T), and the multiport hybrid equivalent of
the circuit is given by the exterior characteristic equation:[

uA

iB

]
= −

[
RAA KAB

HBA GBB

][
iA

uB

]
+

[
Ueq

Ieq

]
(8)

where [Ueq Ieq]T is the vector of the equivalent voltages/currents in the subnetwork, Ui(1 ≤ i ≤ k)
in Ueq and Ii(1 ≤ i ≤ m) in Ieq are, respectively, the voltage and current values of the i-th port in the
case all current ports are open and all voltage ports are shorted. Rij(1 ≤ i ≤ k; 1 ≤ j ≤ k) in RAA and
Hij(1 ≤ i ≤ m; 1 ≤ j ≤ k) in HBA are, respectively, the voltage and current values of the i-th port in the
case the voltage ports are all short and the current ports are open except for the j-th port with a unit
current source imposed. Kij(1 ≤ i ≤ k; 1 ≤ j ≤ m) in KAB and Gij(1 ≤ i ≤ m; 1 ≤ j ≤ m) in GBB are,
respectively, the voltage and current values of the i-th port in the case the current ports are all open
and the voltage ports are shorted except for the j-th port with a unit voltage source imposed. The
elements of matrices mentioned above need to be prestored as the multivalued coefficients, which are
constants after the state of the circuit element is determined.

Assume that the numbers of historical voltage source Uh, historical current source Ih, independent
voltage source Us, independent current source Is in the subnetwork are a, b, c, d. The [Ueq Ieq]T in
Equation (8) are associated with the historical source vector [Uh Ih]T and independent source vector
[Us Is]T, i.e., [

Ueq

Ieq

]
=

[
Kh Rh
Gh Hh

][
Uh
Ih

]
+

[
Ks Rs

Gs Hs

][
Us

Is

]
(9)

where in the condition that Us and Is are set to zero, Kij(1 ≤ i ≤ k; 1 ≤ j ≤ a) in Kh and
Gij(1 ≤ i ≤ m; 1 ≤ j ≤ a) in Gh are, respectively, the voltage and current values of the i-th equivalent
source in the case Ih are set to zero and Uh are set to zero except for the j-th historical voltage source
with a unit voltage source imposed. Rij(1 ≤ i ≤ k; 1 ≤ j ≤ b) in Rh and Hij(1 ≤ i ≤ m; 1 ≤ j ≤ b)
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in Hh are, respectively, the voltage and current values of the i-th equivalent source in the case Uh
are set to zero and Ih are set to zero except for the j-th historical current source with a unit current
source imposed. In the condition that Uh and Ih are set to zero, the elements of Ks, Rs, Gs, Hs are
derived similarly. The elements of matrices mentioned above need to be prestored as the multivalued
coefficients, which are constants after the state of the circuit element is determined.

The unknown internal variables w within each subnetwork can be solved after the input variables
of each subnetwork are determined, i.e.,

w =
[

A1 A2

][ iA

uB

]
+

[
B1 B2

][ Us

Is

]
+

[
C1 C2

][ Uh
Ih

]
(10)

where [A1 A2] is the coefficient matrix associated with the input variables, [B1 B2] is the coefficient
matrix associated with the independent sources, and [C1 C2] is the coefficient matrix associated with
the historical sources. The elements of [A1 A2], [B1 B2], and [C1 C2] need to be prestored as the
multivalued coefficients, which are constants after the state of the circuit element is determined.

4. Network Equation and Solving Method

4.1. Write the Network Equation

Two two-port hybrid equivalents connected to solve interface input currents/voltages shown in
Figure 7 are used as an example to introduce the process of writing the network equation. There are
two distinct subcircuits identified by a circled number, and subcircuit 1 is reduced to[

u1
A1

i1B2

]
= −

[
R1

11 K1
12

H1
21 G1

22

][
i1A1
u1

B2

]
+

[
U1

eq
I1
eq

]
(11)

whereas subcircuit 2 is reduced to[
u2

A1
i2B2

]
= −

[
R2

11 K2
12

H2
21 G2

22

][
i2A1
u2

B2

]
+

[
U2

eq
I2
eq

]
(12)

Consider the Kirchhoff Voltage Law (KVL) and Kirchhoff Current Law (KCL) constraints of the
input and output variables in Figure 7, and i1A1, u1

B2 are selected as the independent input variables.
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For the independent input current i1A1, the loop equation can be reduced to

(R1
11 + R2

11)i
1
A1 = U1

eq − U2
eq − (K1

12 − K2
12)u

1
B2 (13)

For the independent input voltage u1
B2, the node equation can be reduced to

(G1
22 + G2

22)u
1
B2 = I1

eq + I2
eq − (H1

21 − H2
21)i

1
A1 (14)
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Equations (13) and (14) constitute the network equations of Figure 7, and the input variables of
the whole network can be obtained by solving the network equations simultaneously.

As shown in Figure 8a, there is a KCL constraint: i1A = i2A = −i3A = −i4A, and the ports are
connected in series with current as input variables. There is KVL constraint: u1

B = u2
B = u3

B = u4
B, and

the ports are connected in parallel with voltage as input variables as shown in Figure 8b. All the port
input variables can be obtained by solving only one independent current or voltage variable.

As justified and mentioned above, equivalent Thevenin circuit with the input current variables
should be selected when the ports are connected in series, and an equivalent Norton circuit with the
input voltage variables should be chosen when the ports are connected in parallel.
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4.2. Solve the Network Equation

The input variables can be solved by the elimination method after forming the network equation.
The basic idea of the elimination method is to convert the coefficient matrix of the network equation
into a form that an equation only contains one input variable through the equivalent transformation,
including two steps: the matrix is converted to echelon form and a back substitution process
sequentially solves for each unknown.

In order to arrange the elimination order of the independent input variables and reduce the
computation time, each desired input variable is regarded as a node, and the association of the nodes
is represented by the undirected graph G = (V, E). Equation (13) is used as an example to illustrate
the forming process of the undirected graph, and the independent input variable i1A1 is relevant to
u1

B2. The undirected graph of the network equation can be obtained by the relation between each
independent input variable searched in turn according to the network equations. The number of
connections between the node and associated nodes is called the degree of the node. In order to
reduce the computational burden, the node with the least degree should be eliminated preferentially.
The degree of the remaining nodes needs to be recalculated after each process of elimination since the
degree of the remaining nodes may change. The so-called minimum degree method means that the
node with the least degree in the remaining nodes is given the priority of being eliminated.

The degree of the nodes adjacent to the eliminated node may change after each process of
elimination, which has nothing to do with the rest of the node. To improve the parallelism of the
elimination, it is necessary to find all nodes that can be simultaneously eliminated, i.e., the maximum
node independent set.

In order to realize the two points mentioned above, the minimum degree maximum independent
set method is adopted to arrange the elimination order of the network nodes. The node with the least
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degree is selected as the starting node to be eliminated, the nodes adjacent to which are marked as
visited, and the node with the least degree is selected as the next node to be eliminated that has not been
visited until the nodes left are already visited. These nodes form a maximum node independent set.
The same method is applied to find the next maximum independent set until all nodes are arranged.

5. Local Iterative Method for Nonlinear Networks

The multivalued coefficients in the coefficient matrixes of the exterior characteristic Equation (8),
the equivalent source Equation (9) and the unknown internal variables Equation (10) need to be stored
in advance. The analysis above suggests that there are three steps of the block parallel real-time
simulation algorithm. (1) Determine the parameters of the coefficient matrix in Labels (8), (9) and (10)
according to the state of the components in each subnetwork, and calculate the equivalent voltage
source vector Ueq and the equivalent current source vector Ieq; (2) Compute the parameters of the
coefficient matrix and the equivalent power vector in the network equations, and calculate the input
variables of each subnetwork; (3) Solve for the unknown internal variables w within each subnetwork.

The voltage across each nonlinear element in the subnetwork is related to independent source
vector [Us Is]T, historical source vector [Uh Ih]T, as well as input variables iA and uB. On the other
hand, the nonlinear element status affects the selected multivalued coefficients, which, in turn, affects
the input variables. When updating the status of nonlinear elements, it is necessary to modify the
network equation repeatedly and compute the input variables in each subnetwork to determine the
state of the nonlinear element. This constraint can be time consuming. In certain situations, this
requirement can be relaxed. This is the case when input variables are tied to state variables (inductor
current or capacitor voltage), which can not change all at once. It can be considered that the change of
the nonlinear element status has very little influence on the external characteristic equation, so that the
whole network equation needn’t be solved again. Under this assumption, the local iteration method
shown in Figure 9 can be used to describe the simulation algorithm.
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Note that when dealing with the nonlinear inductor and capacitor, it is necessary to apply
an integration formula first and then use piecewise linear approximation model to determine the
relationship between voltage and current according to the phenomenon that the flux linkage and the
quantity of electric charge do not change all at once.

It is worth mentioning that, when dividing the network into equivalent block, the following
principles should be observed: (1) assemble the switching elements and nonlinear elements into
different subnetworks as far as possible and ensure the input variables of the subnetwork containing
the switching element are tied to state variables, which limits the iterative calculation of determining
the switching status to the local network; (2) reduce the storage pressure of multivalued coefficients by
network partitioning as much as possible.

6. Real-Time Simulation Case Study

6.1. Simulation Platform

In the FRTDS real-time simulation platform, as shown in Figure 10, a Xilinx Virtex-7 VC709 FPGA
development board is adopted for calculation and simulation as a simulator with the XC7 VX690 T-2
FFG1761 as the FPGA chip. It has the following features: 693,120 logic cells, 108,300 configurable logic
elements, 3600 digital signal processing (DSP) blocks, 36 KB of 1470 dual-port BRAMs.
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Figure 10. Virtex-7 Field-Programmable Gate Array (FPGA) VC709 development board.

The core components of the solver include eight microprocessor cores consisting of arithmetic
component, data memory, program memory and instruction controller, eight data interchanges, three
shared pipes, and one step controller. In addition, the solver with a 200 MHz clock frequency has rich
peripheral interfaces, which can connect a digital relay protection device, industrial control machine
and input/output board. It is easy to form an HIL multi-solver real-time simulation platform, as
shown in Figure 11. The arithmetic component can simultaneously and effectively execute 13 operators
because the function selection line contains the data memory address automatically increased by one
piece of information and the arithmetic component input port has data auto-latch function. Program
memory is up to 8 K × 256 B, at least able to accommodate 40.96 µs execution time instructions.
The data interchange station is composed of four sets of dual-port memory, the number of which
is the same as the microprocessor core. The data interchange station and the microprocessor core
constitutes a hand-in-hand data transmission channel where data interchange stations are embedded
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in microprocessor cores. The entrance of the shared pipeline is connected to the microprocessor core
via first-in-first-out (FIFO), and the exit end is connected to the data exchange station.
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simulation (FRTDS).

The step size for the electromagnetic transient simulation of the power system including
commutators is generally in the microsecond range, which is usually achieved by reducing the
calculation steps, and the multivalued coefficient prestorage is an effective method. When the impact
factors of the multivalued coefficient are the analog, several typical multivalued coefficients can be
prestored or calculated in accordance with the set value of the analog. The multivalued coefficients can
be stored in an industrial control machine or BRAM/DDR3 of the solver. When the impact factors of
the multivalued coefficient are only the hypothetical information (such as line fault location and fault
types), multivalued coefficients possible values are stored in the industrial control machine and only the
current values are sent to BRAM of the solver when used. When the impact factors are the calculated
information (such as the voltage on freewheeling diode) and the input from the real device (e.g., the
IGBT switching pulse), the relevant multivalued coefficient should be stored in the BRAM. When the
impact factors of some multivalued coefficients are the same and have many possible values, these
multivalued coefficients are treated as a whole and stored in DDR3, and the current values are quickly
sent to BRAM when they are used. The value guide of the multivalued coefficients includes impact
factor (15 bits), the offset word (5 bits) and the base address (12 bits). The impact factor consists of
external contributors (settings, inputs) and internal contributors (the calculated information), wherein
the data memory of the external contributors is a ping-pong mechanism. The offset word shows the
method of calculating the offset by the impact factor. The hardware circuit is reconfigurable and the
user can customize the offset word. The solver has 32 K × 64 B total BRAM bits and 128 M × 64 B
total DDR3 bits for storing multivalued coefficients and provides a detection circuit to guarantee that
external contributors are changed under specified conditions.

The operation formula that the solver can handle is regarded as a task, and the parallelism and
dependence between these tasks are described by the undirected graph. The influence function is
defined to express the relation between the multivalued coefficients and the internal impact factors,
thus reflecting the role of piecewise linearization process in electromagnetic transient simulation of the
power system. The tasks that are ready for the independent variables are assigned to the microprocessor
core according to the data access convenience criteria. The microprocessor core prioritizes the task with
the earliest of the latest scheduled time (later than this time will extend the program execution time)
that can be performed. The scheduled tasks that are not arranged are queued from ahead to behind in
the order of the latest scheduled time, and then assigned to the most convenient microprocessor core
that has the ability to execute data. The task can be executed with three conditions: the instruction
length does not exceed the specified value, the arithmetic component has resources, and the read and
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write memory does not conflict. When data memory addresses of the two operation component ports
are the same, the last data memory address is ignored by the auto-latch function. When certain port
data storage addresses satisfy the auto-increment feature, the data storage addresses are replaced
by the status of corresponding function select line. When the read and write memory data are in
conflict, the memory block stored the arguments can be changed or the arguments data can be sent
to the arithmetic component port in advance, or the independent variables can be copied to other
blocks in advance (included the shared area and give priority to the use of internal resources in the
microprocessor core). The average allocation method and limited use strategy are used to arrange the
storage of temporary data, and the overdue temporary data is used to avoid unnecessary waste of
arithmetic components and instruction resources. In order to shorten the simulation step as much as
possible, a genetic algorithm is used to optimize the storage scheme of multivalued coefficients and
cyclic data, and the execution time of the program is reduced.

6.2. Simulation and Analysis

The considered case study refers to a benchmark low voltage network developed by the European
Union (EU) project “Microgrids”. The system can be configured with a variety of line and load
models, as well as various forms of distributed power generation systems, which fully embodies
the microgrid structure and operation complexity. As shown in Figure 12, a photovoltaic system,
a photovoltaic-battery system, a wind turbine system, a micro-gas turbine system, and a fuel cell
system are arranged in the example microgrid. The photovoltaic array is simulated by a single-diode
equivalent circuit model consisting of a photogenerated current source and a nonlinear diode in
parallel to consider the internal loss of the battery [23]. Universal model equivalent circuit is selected
for the battery, composed of internal resistance and controlled voltage source connected in series [24].
The wind turbine is modeled as double-fed wind power generation system, with the stator winding
directly connected to the network and the rotor winding connected to the converter [25]. The micro-gas
turbine adopts single shaft structure with high-frequency alternating current (AC) at the motor
outlet [26]. The fuel cell uses the mid-term dynamic model, with a fixed impedance to indicate
the internal overvoltage of the fuel cell [27]. The detailed parameters of other components of the
low-voltage microgrid are shown in [28].

The microgrid HIL test system is built by a multi-functional converter controller developed by Key
Laboratory of Intelligent Power Grid of Ministry of Education, Tianjin University and relay protection
device process control system (PCS)-931 GM-D. The multi-function converter controller uses Altera’s
FPGA EP3 C25, which integrates the maximum power point tracking control, the proportional-integral
(PI) control for the chopper circuit, the constant power control of the inverter, inverter constant DC
voltage and constant reactive power control, and other programs. It is capable of handling control tasks
of distributed power generation systems in a low-voltage microgrid. In order to test the performance
of the converter controller and the protection device, various short-circuit faults and ground faults that
may occur at the nodes 14, 16, 18, 20, 22, 24, 26, and 28 are described by the fault model.

The low-voltage microgrid is divided at the nodes 3, 8, 30, 31, 32, 33, 35, 36, 38, 39, 41, 42, 44,
45, and 46, the DC–AC inverters and AC–AC converters are, respectively, divided into three and
six subnetworks, so that the whole low-voltage microgrid system is divided into 36 subnetworks.
After applying multiport hybrid equivalent method to the 36 subnetworks, the input variables can be
obtained by solving a 38-dimensional network equations that are simplified by the constraints of the
input and output variables, thus the low-voltage microgrid was decomposed into 36 subnetworks of
independent parallel computing.

The photovoltaic-battery hybrid generation system is used as an example to introduce the
proposed block parallel method as shown in Figure 13. The network is divided into nine subnetworks
according to the principles of network partitioning as illustrated in Figure 14.
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Figure 15 presents the port connection relationship after applying multiport hybrid equivalent
method to the nine subnetworks. Consider the constraints of the input and output variables: u1

B1 = u3
B1,

u1
B2 = u3

B2, u2
B1 = u4

B1, u2
B2 = u4

B2, u3
B3 = u4

B3 = u5
B1 = u6

B1 = u7
B1, u3

B4 = u4
B4 = u5

B2 = u6
B2 = u7

B2,
i5A3 = −i8A1, i6A3 = −i8A2, i7A3 = i8A1 + i8A2, i8A3 = i9A1, i8A4 = i9A2. The state variables u1

B1, u1
B2, u2

B1, u2
B2,

u3
B3, u3

B4 and i5A3, i6A3, i8A3, i8A4 are selected as the independent input variables. Six node equations and
four loop equations are written for the ten independent input variables, which can be obtained by
solving the 10-dimensional network equations.Energies 2017, 10, 1248 14 of 18 
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Taking subnetwork 3 as an example, the number of ports is 4, the number of L and C is 3,
the number of independent power supplies is 0, the number of unknown internal variables w is
1, the number of nonlinear components is 0, and the number of switches is 3. The numbers of
the multivalued coefficients to be stored are, respectively, 16, 12 and 7 according to the exterior
characteristic Equation (8), the equivalent source Equation (9), unknown internal variables Equation
(10), and the total number x is 35. Each multivalued coefficient variable has eight possible values, and it
can be seen that the total amount y of multivalued coefficients that need to be prestored is 280. Table 1
shows the numbers of the relevant data with the multivalued coefficients of the nine subnetworks.

Table 1. The numbers of the relevant data with multivalued coefficients.

Subnetwork Label 1© 2© 3© 4© 5© 6© 7© 8© 9©

x 20 15 35 49 27 27 27 52 40
y 200 75 280 392 1728 1728 1728 52 1080

In the real-time simulation calculation of the whole low-voltage microgrid system, the numbers of
ports, inductors and capacitors, independent power supplies, unknown internal variables w, nonlinear
components and switches need to be known, thus the number x of the multivalued coefficients is
1196 and the total amount y of the multivalued coefficients is 17,135. At a step size of 5 µs, each
microprocessor core can execute up to 1000 instructions. The equations of each subnetwork include the
network equation to solve the input variables and the unknown internal variables equation, and the
control instruction contains the operation instruction of the direct conversion from the equation and
the communication command among the microprocessor cores. The real-time simulation operation can
be carried out after initialization in the FRTDS platform. The numbers of the operations and the valid
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instructions for each microprocessor core are shown in Table 2. It can be seen that each microprocessor
core can complete the real-time simulation operation of a 5 µs simulation step.

Table 2. The numbers of the operations and the valid instructions.

Microprocessor Core Label 1 2 3 4 5 6 7 8

x 1575 1496 1884 1736 1707 1345 1526 1683
y 824 793 913 867 869 851 832 873

In order to verify the accuracy of the proposed method, the same low-voltage microgrid
simulation model with the same parameters is set up in a power systems computer aided design
(PSCAD)/electromagnetic transients including DC (EMTDC) offline simulation tool. The simulation
step is also set to 5 µs. Figure 16 shows the comparison of FRTDS and PSCAD simulation results of the
photovoltaic-battery hybrid generation system after the change of light intensity and inverter active
power command.
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Figure 16. Simulation results of FPGA-based real-time digital simulation (FRTDS) and power systems 
computer aided design (PSCAD): (a) inverter output power; (b) photovoltaic array output power; (c) 

Figure 16. Simulation results of FPGA-based real-time digital simulation (FRTDS) and power systems
computer aided design (PSCAD): (a) inverter output power; (b) photovoltaic array output power;
(c) battery output power; (d) photovoltaic output voltage; (e) inverter Direct Current (DC) side voltage;
(f) The filter output a phase current.
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The initial light intensity of the system is 1000 W/m2, the active power of the inverter is 9.8 kW.
After the system reaches steady state, the light intensity decreases to 800 W/m2 at t = 1.5 s, and the
active power is reduced to 6 kW at t = 3 s. As shown in Figure 17, the inverter output power is about
9.8 kW, and photovoltaic (PV) array output power is also 9.8 kW, so the battery does not output active
power after the system reaches steady state, the best operation voltage of the PV array is about 356 V
through the maximum power point tracking (MPPT) control. When the light intensity is reduced to
800 W/m2, the optimum operating point of the PV array is reduced to 343 V from 356 V because of
the MPPT control, and the PV array output power is reduced to 7.6 kW. The output power of the
inverter is still 9.8 kW. Thus, the battery is in the state of power generation and issued 2.2 kW active
power. At t = 3 s, the inverter’s active power is reduced to 6 kW, the current of the inverter is decreased
accordingly, the battery is charged by the PV array, and the charging power is 1.6 kW. The DC bus
voltage is continuously controlled to about 400 V in this process.
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As can be seen from Figure 17, there is a good agreement between the results of FRTDS and 
PSCAD, and the feasibility of the multivalued coefficient prestorage and block parallel method is 
verified. In the partial magnification of the waveforms, we can see that some of the transient features 
are not completely coincident, which is mainly due to the fact that: (1) the selected input variables are 
state variables, but they might change slightly sometimes; and (2) there are some errors because the 
state of the nonlinear element is determined by the local iterative algorithm. Considering that the 
whole waveform is consistent and the error is within 1%, it is shown that the multivalued coefficient 
prestorage and block parallel method proposed in this paper has high simulation accuracy. 

7. Conclusions 

In the paper, a novel multivalued coefficient prestorage and block parallel method for real-time 
simulation of a microgrid on FRTDS is proposed. It alleviates memory requirements, and reduces the 
computational burden. Neither of these results is obtained by compromising the accuracy of the 
simulation. Equivalent Thevenin circuit with the input current variables should be selected when the 
ports are connected in series, and an equivalent Norton circuit with the input voltage variables should 
be chosen when the ports are connected in parallel. It can reduce the number of simultaneous network 
equations. The input variables are tied to state variables of the circuit, which can limit the iterative 
calculation of determining the nonlinear elements status to the local network. It allows smaller time 
steps to be reached for the real-time simulation of a microgrid. The multivalued coefficient prestorage 
and block parallel method solves the contradiction in real-time simulation between data storage and 
computing speed, which meets the requirements for large-scale real-time simulation of a microgrid. 
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Figure 17. Simulation results of FRTDS and PSCAD: (a) the filter output a phase current; (b) inverter
DC side voltage.

The waveforms of the filter outlet a phase current and inverter DC side voltage are presented in
Figure 17 when a three-phase short-circuit fault at node 24 occurs in a photovoltaic-battery hybrid
generation system.

As can be seen from Figure 17, there is a good agreement between the results of FRTDS and
PSCAD, and the feasibility of the multivalued coefficient prestorage and block parallel method is
verified. In the partial magnification of the waveforms, we can see that some of the transient features
are not completely coincident, which is mainly due to the fact that: (1) the selected input variables
are state variables, but they might change slightly sometimes; and (2) there are some errors because
the state of the nonlinear element is determined by the local iterative algorithm. Considering that the
whole waveform is consistent and the error is within 1%, it is shown that the multivalued coefficient
prestorage and block parallel method proposed in this paper has high simulation accuracy.

7. Conclusions

In the paper, a novel multivalued coefficient prestorage and block parallel method for real-time
simulation of a microgrid on FRTDS is proposed. It alleviates memory requirements, and reduces
the computational burden. Neither of these results is obtained by compromising the accuracy of the
simulation. Equivalent Thevenin circuit with the input current variables should be selected when the
ports are connected in series, and an equivalent Norton circuit with the input voltage variables should
be chosen when the ports are connected in parallel. It can reduce the number of simultaneous network
equations. The input variables are tied to state variables of the circuit, which can limit the iterative
calculation of determining the nonlinear elements status to the local network. It allows smaller time
steps to be reached for the real-time simulation of a microgrid. The multivalued coefficient prestorage
and block parallel method solves the contradiction in real-time simulation between data storage and
computing speed, which meets the requirements for large-scale real-time simulation of a microgrid.
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