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Abstract: Pervasiveness of power converters in the electric power system is expected in the future.
Such large penetration will change the current power system dynamics leading to uncertain,
unexpected, and potentially critical responses. This paper investigates the stability and resonance
of a VSC-HVDC (Voltage Source Converter High Voltage Direct Current) link within an AC grid,
whilst providing insights into resonances having a role on the grid. This is studied through the
impedance-based modelling of the entire system (AC and DC grids), including controls of converters.
Additionally, the impact of the different parameters of the hybrid AC-DC power system such as
control systems and grid components on the system dynamics and stability is investigated. From this
study, the impact of the system components and the controls of the converter on overall resonance
response and stability is shown, including potential undesired sub-synchronous and harmonic
resonances due to AC-DC system interactions. The analytical impedance-based models developed
and obtained is validated through time-domain simulations, the physical model of the whole system
is built in Simscape™ Power Systems™ and control systems in MATLAB/Simulink® (R2017b). This
has demonstrated the validity of the model to deal with and detect such dynamics.
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1. Introduction

The rapid increase and integration of renewable energy sources (RES) and new generation
technologies such as electric vehicles, fuel cells, and battery storage has led to a huge demand for
power electronic converters in today’s power systems. Such penetration level is expected to further
increase into the future [1]. The voltage source converter (VSC) is the state-of-art of power converters
for the transmission system and, indeed, a majority of these resources are expected to be integrated
through power electronic converters based on VSC technology [2], and further use driven by the
undesirable characteristics of line commutated converter (LCC) technology [3]. The VSC-HVDC
(Voltage source converter High voltage direct current) is fast becoming the technology of choice
for high power transmission, grid expansion, and strengthening, with the potentials to become the
backbone of future transmission system [4]. Evidently, the power system is progressing towards
a hybrid nature, combining the AC and DC grids, modifying its dynamic response and behaviour.
Therefore, with the expected ubiquity of converter interfaces, particularly VSC technologies at the
transmission level, harmonic stability and resonance issues must be revisited.
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The challenges of extensive use of power converters cannot be overemphasized as detailed in the
surveys, [5,6]. A growing issue in the industrial community is the influence of often complex control
strategies of converters and grid parameters (AC/DC) on the resonance and oscillatory behaviour of the
entire system. A significant number of ground-breaking works have studied the harmonic resonance
and interactions due to power electronic interfaces in distributed generation systems interfaced with
the AC grid [7–13]. However, many of research efforts have focused mainly on the AC grid, effectively
neglecting the DC side dynamics; nevertheless, this is justifiable at a microgrid level where there is
only one source. However, at higher voltage levels, DC voltage control is a prerequisite. At such a
level, the DC voltage is a carrier of oscillations of varying bandwidths that could potentially transfer
to the AC grid through the control. These are network and control induced oscillations and there is
little literature on identifying which network components and control parameters play a role.

A method that has been gaining considerable attention and successfully applied in literature is
the impedance-based modelling methodology as a tool for resonance and interaction analysis [13–19].
The research community have attempted to apply impedance-based models considering the influence
of power electronic converters to understand sources of resonances at the device level [15,20–23].
Similarly to most of the works, the network is often assumed to be ideal; particularly, the DC side.
Furthermore, with countless variables across two distinct grids, linked by a tightly controlled device,
it is not clear exactly what influences the observed oscillatory responses despite the device itself been
clearly stable.

More recently, the impedance-based method has been applied to understand the sources of
harmonic instability and resonance phenomena in wind power plants integrated by VSC-HVDC
converters with outstanding results [24–28]. However, wind power plant networks often have unique
topologies, and controls, and observed oscillatory behaviours that are difficult to generalize. In
addition, in a significant number of works, the DC side is often ignored. In cases where the DC voltage
control loops were included, the DC voltage dynamics is often based only on the terminal capacitance
and neglecting the impact of network and impedances of other connected devices. Thus, very few
works have explicitly considered the DC side of the VSC-HVDC system. In [29,30], both AC and DC
grids were modelled by separating the rectifier and inverter, and impedance models of each derived.
However, authors mainly demonstrated the impact of power transfer level amongst other factors on
the DC resonances and instabilities. In other efforts, the DC grid was modelled based on a single-input
single-output (SISO) system, [31] and multiple-input multiple-output (MIMO) system [32]. However,
resonance analysis was restricted to the DC grid and the impact of DC resonances on AC systems
was not studied. More recently, the impedance model for resonance analysis has been applied to a
real back-to-back VSC-HVDC system to analyse resonances between the AC grid and converter [33].
In view of these, there is a lack of literature on a system level impact of the entire system; DC, AC
grids, and control on dynamic responses observed in a VSC-HVDC linked AC grid.

This paper explicitly considers the AC grid and entire DC grid dynamics modelled by the nodal
impedance matrix, which considers network topology, and impedances as seen from the view of
the grid connected converter. This offers flexibility in terms of connection or disconnection of any
component, or simplifications thereof, without remodelling the entire system. Furthermore, this
paper provides a clear understanding to the interactions between VSC based HVDC system linked
with an AC grid, through analytical and simple model development of both grids. This paper also
attempts to fill the gaps on AC/DC interaction by employing the impedance-based modelling to a
VSC-HVDC link integrated with an AC grid. In this case, this is carried out by considering models
of both sides, trying to cope with both at the same time without special focus on AC or DC, as
usually is done. Additionally, the model in frequency domain has been derived allowing to include
explicitly the control system in analysis. Additionally, the equivalent feedback impedances on both
sides of the converter are derived in a tractable manner suitable for studies. Subsequently, parametric
sensitivities on frequency response of derived impedances is carried out to identify parameters that
impact the shape of these impedances. This is an attempt in understanding how parametric changes
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may contribute to detrimental oscillations in the AC grid transferred from the DC grid. Furthermore,
the effect of DC grid and controller parameters are emphasized and stability analysis carried out.
Ultimately with this method, computationally expensive and time-consuming analysis would not be
necessary if similar conclusions can be drawn from the frequency domain analysis.

The paper is organized as follows: Section 2 presents the system under study, Section 3 introduces
the impedance-modelling procedures of the system under study from the physical system, to each
control in the cascaded structure and subsequently the aggregation of all derivations. Parametric
sensitivities to obtain insight on how parametric changes impact system responses during disturbances
are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. System Description and Control System

The system under study is a VSC-HVDC monopole link depicted in Figure 1. The AC side consists
of the converter filter inductor, filter capacitor, transformer, and the Thévenin equivalent impedance of
the connected AC grid, whereas the DC side is modelled by equivalent capacitances at each converter
terminal and DC cable impedance. Figure 2 depicts the impedance circuit model and associated control
system. The point of common connection (PCC) is taken as the high voltage side of the converter
transformer. VSC-1 controls the DC voltage while VSC-2 controls the active power.

AC
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Figure 1. HVDC (High voltage direct current) point-to-point link.
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Figure 2. HVDC impedance circuit and control architecture.

The control systems is implemented in the synchronous rotating dq-reference frame (SRF) using
Park’s transformation [34]. Therefore, allowing both active and reactive power components to be
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controlled independently. Thus, each VSC is equipped with a decoupled inner current controller
whose reference is provided by the outer controllers such as reactive power and DC voltage. In order
to properly understand the impact of different controller bandwidth, it is assumed that AC voltages
are perfectly sinusoidal. This is equivalent to assuming a strong grid connection. All controllers
including the inner current controller employ proportional-integral (PI) compensators. Reactive
power is assumed to be zero and the effect of q-axis on which the reactive power is implemented
is insignificant.

3. Impedance Modelling of the System

At a physical level, resonances and oscillatory behaviour in a system are mainly dictated by the
primitive impedances and topology of the network. In the presence of a tightly controlled device
such as a converter, its control interacts with the physical system made of primitive impedances in a
complicated manner. That is, the converter through its control changes the primitive impedance of the
system at the point of connection. Hence, the converter and the dynamics of its control can be modelled
by a feedback impedance at the point of connection on both sides (AC and DC). In literature, this
impedance is generally referred to as output or input impedance depending on the power direction.
Thus, AC output impedance (or admittance) implies the converter is in inversion mode and the
corresponding impedance on the DC side is an input impedance. Note, impedance and admittance
without loss of generality may be used interchangeably as employed in this work. This makes no
difference and is only used to maintain consistency of mathematical equations where necessary.

Therefore, the final goal in this section is to obtain the feedback impedance of the converter and
its control, starting with the physical system, next, the lowest level control, up to the outermost loop.
Each control loop imposes a corresponding impedance at the input or output of the converter. As such,
the impedance of an outer loop would evidently include that of the inner loop, whilst the inner loop
would include the impedance of the physical system as depicted in Figure 3. This is evident in the
following sections. Subsequently, the control loops are tuned to obtain a reference case for comparison
in a later section on sensitivity.
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Figure 3. Inner current loop and physical grid.

3.1. Analytical Modelling of the Inner Current Controller

The AC grid is modelled based on balanced three-phase controllable voltage sources, thus
allowing us to model one phase. From Figure 2, the AC current dynamics in the dq domain can be
modelled by the open-loop (circuit) expression given by

ic,dq(s) = Yc(s)Uc,dq(s)− Ys(s)Us,dq(s), (1)
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where ic,dq is the converter AC side current in the dq frame; Yc(s) and Ys(s) define the primitive
admittances as seen from the converter and grid respectively, given in Equations (2) and (3)

Yc(s) =
Zt(s) + Zc f (s)

Zt(s)Zc f (s) + Zt(s)Z f (s) + Zc f (s)Z f (s),
(2)

Ys(s) =
Zc f (s)

Zt(s)Zc f (s) + Zt(s)Z f (s) + Zc f (s)Z f (s),
(3)

where Zt(s) = Rt + sLt, Z f (s) = sL f , Zc f (s) = 1/sC f are the transformer, filter inductor, and filter
capacitor impedances, respectively. Figure 4 depicts the analytical block diagram of the AC current
loop on the d-axis with the primitive admittances from the AC side reflected on the control system.
The closed-loop response equation can be derived as

ic,dq(s) = Hcl,i(s)i∗c,dq(s)− Yoc,i(s)Us,dq(s), (4)

where Hcl,i(s) (see Appendix B) is the closed-loop transfer function, given as

Hcl,i(s) =
Hol,i(s)

1 + Hol,i(s),
(5)

and Hol,i(s) is the open-loop gain, given as

Hol,i(s) =
Kc(s)Gd(s)(Zt(s) + Zc f (s))

Zt(s)Zc f (s) + Zt(s)Z f (s) + Zc f (s)Z f (s)
, (6)

and Yoc,i (see Appendix B) is the converter closed-loop output admittance on the AC side with only
the inner current controller modelled, that is, the feedback impedance and can be derived as

Yoc,i(s) =
Ys(s)

1 + Hol,i(s)
, (7)

where Kc(s) = kpi +
kii
s is the inner-loop compensator, and Gd(s) = 1

τds+1 approximates the converter
internal delay.
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Figure 4. Analytical block diagram of the d-axis current controller.

Figure 5 depicts the circuit representation of Equation (4) pre-connection with the AC grid.
In order to establish a base case for the current controlled system, the current controller is tuned.
Several methods are available in literature to find a controller Kc(s) that meets specifications for the
inner-loop. The internal model control (IMC), [35], is employed for tuning the AC inner-loop as it
results in an ideal current controller and resonance-free feedback impedance (without considering
grid impedance). Based on the IMC technique, the current controller is tuned to obtain a time constant
τ of 2.5 ms. The impact of varying this time constant would be seen in later sections. Based on the
IMC technique,
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kpi =
L
τ

; kii =
Rt

τ
, (8)

L = Lt + L f is the total inductance of the transformer and filter, and Rt is the resistance of transformer.
Figure 6 depicts the frequency response plots of closed-loop output to reference transfer function,
feedback impedance of the AC inner-loop, and time domain response of converter AC currents for step
change in current. Particularly, the frequency response of feedback admittance show a flat response.
Physically, this results in a resonance free operation as can be observed in the time domain response.

PCC

Hcl(s)I*
cd Yoc,i(s)

Zeq, ac(s)

Converter Grid

Us

Figure 5. Equivalent circuit representation of current controller relative to the grid.
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Figure 6. (Top left) Frequency response of closed-loop output to reference transfer function;
(Top right) frequency response of output admittance with current control (base case); (Bottom left) time
response of phase currents in the dq domain; (Bottom right) time response plot of phase currents in
the abc domain for a step change to validate base case.

3.2. Analytical Modelling of the DC Voltage Controller

As previously mentioned, in a VSC-HVDC system, the DC voltage is often controlled in addition
to the AC current control in a cascaded manner as depicted in Figure 2. Thus, the DC voltage control
loop changes the output impedance of the converter on the AC side in addition to the AC inner-loop,
and introduces an input impedance from the DC side. The DC voltage dynamics themselves depend
on the network topology and structure; therefore, the entire DC grid and its structure is modelled by
applying the nodal impedance matrix to obtain the DC voltage dynamics. The nodal equation of the
DC grid can be derived as
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
VDC,1

VDC,2

 =


Z11(s) Z12(s)

Z21(s) Z22(s)




IDC,1

IDC,2

 . (9)

The detailed derivation of the nodal equation of the DC grid can be found in Appendix A. From
Equation (9), the open-loop equation of the DC voltage at VSC-1 (plant to be controlled) can be
re-written as, Equation (10),

VDC,1(s) = Z11(s)IDC,1(s) + Z12(s)IDC,2(s), (10)

where Z11(s) is the Thévenin impedance of the DC grid as seen from VSC-1 and Z12(s) is the transfer
impedance from the converter at VSC-2, derived as Equations (11) and (12). The DC cable is modelled
by a Π equivalent with the end capacitances added to the DC terminal impedance as they are in
parallel. Figure 7 depicts a proposed control system that directly reflects the dynamics of the DC grid
on the DC voltage control loop, which provides reference to the AC inner-loop. The AC inner-loop is
represented within the dashed line based on Equation (4):

Z11(s) =
Zc1(s)(ZDC,cab(s) + Zc2(s))
Zc1(s) + ZDC,cab(s) + Zc2(s)

, (11)

Z12(s) =
Zc1(s)Zc2(s)

Zc1(s) + ZDC,cab(s) + Zc2(s)
, (12)

where Zc1(s) = 1/sC1, Zc2(s) = 1/sC2, ZDC,cab(s) = sLDC,cab, are the impedances of the total
capacitances C1 and C2 at each terminal (capacitance of cable included), and DC cable, respectively.

++

-

++ -

Eqn. (4)
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Usd
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Figure 7. Control block diagram of the DC voltage control.

Employing block reduction techniques on Figure 7, the closed-loop response with the DC voltage
controller can be derived as Equation (13):

VDC,1 = Hcl,v(s)V∗
DC,1 − HAC/DC(s)Us,d + Zic(s)IDC,2, (13)

Hcl,v(s) =
Hol,v(s)

1 + Hol,v(s)
; Hol,v(s) = CKv(s)Hcl,i(s)Z11(s), (14)

HAC/DC(s) =
CYoc,i(s)Z11(s)

1 + Hol,v(s)
, (15)

Zic(s) =
Z12(s)

1 + Hol,v(s)
, (16)

where Hol,v(s), is the open-loop gain of the DC voltage control loop (see Appendix B), HAC/DC(s) is
a disturbance gain from the AC-DC side, Zic(s) is the DC input impedance, Kv(s) is the DC voltage
compensator based on PI, C is a constant obtained from the active power balance in Equation (17) [36],
and Pac = PDC assuming a loss-less converter

3
2
(Usdicd + Usqicq) = VDC IDC. (17)
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From Equation (15), the output admittance on the AC side considering the impact of DC grid and
DC voltage controller can be written as Equation (18)

Yoc,v(s) =
Yoc,i(s)

1 + Hol,v(s)
. (18)

The DC voltage loop is tuned based on second order techniques considering the dynamics of
the DC grid as a whole to obtain a response slower than the AC current controller. Figure 8 depicts
the frequency response and time domain response of the HVDC system for a step change in power
reference from 0 MW to 200 MW (inversion) at VSC-2. Clearly, considering all dynamics involved
results in a fairly smooth response without resonant frequencies. Figure 9 depicts the model of the
converter considering the dynamics involved—ac terminal, DC grid, and controllers.
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3.3. Harmonic Stability Derivation

All previous derivations did not consider the influence of AC grid impedance. Even though
effort is made to ensure the converter is stable by itself, the same cannot be said when the converter
is connected to a grid with fairly unpredictable impedance that could not be taken into account in
the tuning process. Hence, there is the issue of stability with the grid. However, with impedances,
such stability is referred to as harmonic or resonance stability. Traditional methods such as eigenvalue
analysis do not give information about such stability. However, Nyquist’s stability criterion as a
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classical frequency domain analysis tool has been applied widely to establish the harmonic stability of
grid connected converters [12,15,37–39].

Figure 10 depicts the connected AC side of the converter as previously derived. From the figure,
keeping a consistent notation, the closed loop expression can be derived as

icd = Hcl,i(s)i∗cd
Yeq,ac(s)

Yeq,ac(s) + Yoc,v(s)
, (19)

icd
i∗cd

= Hcl,i(s)
1

1 + Zeq,acYoc,v
. (20)

If the unconnected converter is assumed closed-loop stable, i.e., Hcl,i(s) is stable, then Nyquist’s

criterion can be applied to the “minor-loop gain” given by the ratio Zac,eqYoc,v =
Zac,eq
Zoc,v

. From this,
parametric sensitivity can be employed to observe how the relative stability changes as parameters
are modified. This can potentially provide insights into how control is used to manipulate the output
impedance to ensure stability and mitigate resonances under uncertainty.

In reference to classical methods, Nyquist’s criterion as a tool is applied to the open-loop gain of a
closed-loop system to establish its stability.

Vdc1
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-
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Hcl,i(s)i*cd Yoc,v(s)

Zeq, ac(s)
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Us
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Figure 10. Impedance model of converter and connected grid impedance.

4. Parametric Sensitivity and Stability Analysis

Often times, the main interest in resonance and interaction studies are the frequencies and
magnitude of resonances. Particularly, the impact of control gains and grid parameters on the frequency
responses observed in the AC grid. Such impacts are usually observed in the system responses during
disturbances and parametric changes. Therefore, parametric sensitivity of derived impedances and
admittances are carried out to obtain insights into the role of several important parameters in responses
and the range of frequencies they influence. Secondly, parametric analysis provide a means to validate
the efficacy of the technique in predicting the frequency response.

4.1. Sensitivity Analysis to Controller Dynamics

In this section, sensitivity analysis of the derived impedances/admittances to controller
parameters is done. Specifically, the bandwidth of the inner current controller, in order to determine
the impact on system responses.

4.1.1. Output Admittance with Current Control Loop

Figure 11 depicts the frequency response plot of the output admittance (without the DC voltage
loop) to inner-loop proportional gain sensitivity. Clearly, the proportional gain based on internal
model control behaves as a virtual damper. Ideally, to prevent the AC grid voltage from acting
as a disturbance, it is required that Yoc,i(s) is as low as possible. However, kpi cannot be infinitely
increased as this would result to chaotic oscillations in AC voltage, which was assumed to be perfect.
However, it should be noted that Yoc,i(s) also depends on the sensitivity function of the control system
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S(s). Therefore, any means to obtain controller gains by minimizing Yoc,i(s) must also consider the
closed-loop transfer function. Figure 12 depicts the time domain plot of the AC currents in the abc
domain for the first case with 0.01 × kpi and the base case. The case with 0.01 × kpi shows a resonance
at a frequency matching that was obtained from the frequency response plot of the output admittance
in Figure 11.
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Figure 11. Sensitivity of Output Admittance Yoc,i(s) to kpi in increasing order of 0.01×, 0.1×, 1×,
and= 10 × kpi (base case).
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Figure 12. (Top plot) time domain plot of phase currents in abc frame, showing sustained resonances for
the case with 0.01 × kpi with a matching frequency with that of frequency response; (Bottom plot) base
case with no resonance.

A similar sensitivity analysis was carried out for the integral gain as depicted in the frequency
response plot in Figure 13. In general, the integral gain has no influence on harmonic resonance as can
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be observed from the plot, where the output admittance response remained negligibly low in all cases.
However, the integral gain plays a role in control system performance, most importantly, reference
tracking and settling time. Thus, the integral gain can be estimated based on best tracking response.
On the contrary, as integral gain is increased substantially, integral gain induced oscillations start to
appear. The time domain plot in Figure 14 shows that the integral plays little role in resonances for
reasonable values. However, too low integral gain leads to very poor steady-state tracking.
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Figure 13. Sensitivity of Output Admittance Yoc,i(s) to kii in increasing order of 0.01×, 0.1×, 1×, 10×,
and 10 × kii (base case).
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Figure 14. (Top plot) time domain plot of phase currents in abc frame, for the case with 0.01 × kii

showing poor steady-state accuracy; (Bottom plot) 100 × kii.

4.1.2. Output Admittance with DC Voltage Control Loop

This section details the sensitivity analysis of derived theoretical impedances due to the inclusion
of the DC grid dynamics and DC voltage control loop. The DC voltage loop is in part influenced by
the AC inner-loop and vice versa and this is of interest in the event that the converter is bidirectional.
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Additionally, the DC grid dynamics results in an input impedance as derived in (16). Both the AC
output admittance and the DC input impedance provide information about resonances and possible
instabilities on both sides of the converter.

Figure 15 depicts the plot of sensitivity of the output admittance due to DC voltage loop to
variation in proportional gain of the inner controller. As depicted, a low proportional gain of the AC
controller results in a resonance around 12 Hz. However, compared to the plot of output admittance
with an AC inner-loop depicted in Figure 11, red plot, for the same parameter, the resonance magnitude
is lower and the frequency is around 7.2 Hz. This clearly shows a remarkable difference between
assuming a constant DC voltage, i.e., DC grid and voltage dynamics are ignored, and including the
said dynamics. Figure 16 depicts the frequency response of the DC input impedance to kpi sensitivity,
showing a similar resonance point as the output admittance Yoc,v. It also shows that the influence of
kpi gain diminishes beyond the stable case as the responses almost match. Time domain plot of phase
current in Figure 17 (top plot) shows the resonance with a matching frequency. However, beyond the
base case value, kpi, the influence of AC inner-loop proportional gain on AC resonance diminishes
as overall admittance remains negligibly low without resonance points. This shows the benefits of
applying IMC principle in obtaining a perfect AC current compensator.
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Figure 15. Sensitivity of output admittance Yoc,v to kpi in increasing order of 0.1×, 1×, 10×, and 100 ×
kpi (base case).

Figure 18 depicts the time domain plot of the DC voltages of grid side converter with time domain
response matching the frequency response in Figure 16. It also shows that beyond the base case, kpi
gain plays no role on the DC side response, as plot of DC voltages are similar.

Similarly, for the integral gain of inner-loop, no influence on resonance was observed, as depicted
in Figure 19; however, the integral gain still plays a role in steady-state tracking performance. The same
applies to the DC voltages shown in Figure 20.
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Figure 16. Sensitivity of DC input impedance to kpi in increasing order of 0.1×, 1×, 10×, and 100 × kpi

(base case).
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Figure 17. (Top plot) time domain plot of phase currents in abc frame, for the case with 0.1 × kpi

showing resonances at around 12 Hz; (Bottom plot) base case with kpi.
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Figure 18. Time domain plot of grid side DC voltage to sensitivity of inner-controller proportional gain, kpi.
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Figure 19. Sensitivity of output admittance Yoc,v to kii in increasing order of 0.1×, 1×, 10×, and 100× kii

(base case).
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Figure 20. Time domain plot of grid side DC voltage to sensitivity of inner-controller integral gain, kii.

Figure 21 depicts the frequency response of the output admittance with DC dynamics. For low
values of kpv, resonances are prevalent. This is further observed in the time domain plot of Figure 22.
Figure 23 depicts the time domain plot for the DC voltages. Contrary to expectations, above the base
case, resonances are also observed. This establishes that the proportional gain cannot be increased
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infinitely degrading responses. A possible explanation for this is that at a DC voltage loop gain,
the time response of the outer-loop becomes as fast, or even faster than the inner-loop, leading to
interactions, resonances, and instabilities.
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Figure 21. Sensitivity of DC input Impedance Zic to kpv in increasing order of 0.1×, 0.1×, 1×, and 10×
kpv (base case).
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Figure 22. (Top plot) time domain plot of Phase AC currents in the abc frame for the case of 0.1kpv;
(Bottom plot) case of 10kpv.

The integral gain of the outer-loop, kiv behaves similarly to that of inner-loop by having an
insignificant impact on resonances. However, the integral gain is required for control system
performance, particularly steady-state tracking. Thus, it cannot be completely disregarded.
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Figure 23. Time domain plot of grid side DC voltage to sensitivity of outer-loop proportional gain, kpv.

4.2. DC Grid Parameters

In this subsection, the impact of DC grid and its components on dynamic responses are studied.
It has been shown from derivations that some dynamics from these components are transferred to the
AC grid. An advantage of the theoretical procedure detailed in Section 3 is the capability to see from
equations how components interact. From derived equations, the receiving terminal ‘sees’ the total
sum of all capacitances directly connected to it. That is, for the HVDC link, equivalent capacitances at
the receiving terminal C1 and, similarly, C2 at the sending terminal reflects as (C1 + C2) at the receiving
end. This implies that the receiving terminal sees some dynamics from the sending terminal.

Subsequent to this, the DC bus capacitances are varied (cable capacitance was kept constant as
cable distance was not varied). Figure 24 shows the frequency response of the DC input impedance to
varying bus capacitances. For increasing total DC capacitance, resonance magnitude slightly decreases.
However, frequency of oscillations also moves to the low frequency region, and second resonant points
at the low frequency region start to appear as total capacitance is significantly increased. Particularly,
such low frequency oscillations (<2 Hz) result in sustained oscillations that are difficult to detect as
they are also of low magnitude, whereas, with lower capacitances, resonances are of higher frequency
and magnitude; however, they damp out fast (behaving more like impulse disturbances). Figure 25
depicts the time domain plot of DC voltages with varying capacitances.
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Figure 24. Input impedance sensitivity to total DC capacitance with capacitances 0.1×, 1×, 10×,
100 × CDC,bus at both terminals, where CDC,bus is the nominal bus capacitance of 300 µF.
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Figure 25. Time domain plot of grid side DC voltage varying DC capacitance.

Suffice to say, the influence of varying capacitances can be observed in AC side responses.
This represents a compromise that must be made, but caution must be applied as this affects both the
AC and DC grids and DC voltage oscillations may potentially transfer from one terminal to the other,
influencing control efforts. It will be interesting to see how multi-terminal DC grids with increased
capacitance will influence low frequency oscillations in the connected AC grid.

4.3. Harmonic Stability

Harmonic stability of the entire system on connection to a simplified AC grid (i.e., defined by
inductive impedance) of defined short circuit ratio (SCR) and the DC link is carried out based on
derivations in Section 3.3.

Figure 26 shows the Nyquist plot of sensitivity with varying SCR with the same base data. Clearly,
the system maintains stability for a realistic range of SCRs. As time domain plots of Figure 27 depicts,
although the system remains relatively stable, resonances and oscillations start to develop as SCR
reduces. Any reduction in SCR, change in DC grid, or controller parameter may lead to instability.
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Figure 26. Stability sensitivity to varying SCRs (short circuit ratios); (a) main plot; (b) zoomed plot.
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Figure 27. (Top) Phase A currents for varying SCRs; (Bottom) grid side DC voltages for varying SCRs.

To show this, stability sensitivity is carried out with a reduced SCR (10Lgrid), with reduced
proportional gain of the outer controller (0.1kpv), and varying total capacitance of the DC side (CDC).
Figure 28 depicts the Nyquist plot for increasing DC capacitance. As can be clearly seen, the system is
unstable for all three cases, despite the controller being stable for each case. However, as capacitance is
increased, the system moves closer to the stable region.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

C
dc

, 10L
grid

, 0.1k
pv

10C
dc

, 10L
grid

, 0.1k
pv

100C
dc

, 10L
grid

, 0.1k
pv

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

-1+j0

Figure 28. Stability sensitivity to varying DC grid capacitance.

5. Conclusions

This paper has presented a parametric sensitivity analysis for resonance and stability performance
of an integrated AC grid VSC-HVDC link system. This study has been carried out through the
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development of the impedance-based model of the entire electrical system (both DC and AC sides)
and the converter controls in frequency domain. From the sensitivity analysis, it can be concluded that
the control design parameters and and grid to be connected must be considered to ensure stability
and avoid undesired dynamics. In addition, it is worth noting that, from the controller side, the
proportional gain of the controller acts as a damper, in a similar way as resistance. On the other
hand, the integral gain does not have great impact, but it is required to achieve steady state accuracy.
Additionally, from the electrical component point of view, it can be seen that, with changing impedance
response, there is a shift and change on the natural frequencies of the system, which may result
in grid resonances, some of which are at the sub-synchronous level and even very low frequency
regions. Finally, it is worth remarking that the grid impedance of the whole system plays a key role
in the stability of the grid. Thus, this is crucial to develop the grid and controllers carefully since the
impedance of grids with high penetration of power electronics is variable and dependent on current
state, control, lines, etc.
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Nomenclature

C Constant
Gd Modulation delay
HAC/DC Closed-loop gain of AC to DC side of converter
Hcl,i Closed-loop transfer functions from output to reference of current loop
Hcl,v Closed-loop transfer functions from output to reference of DC voltage loop
Hol,i Open-loop gain of current loop
Hol,v Open-loop gain of DC voltage loop
I∗ Reference current
ic,abc Converter AC current in abc frame
ic,dq Converter AC current in dq frame
IDC,n DC current injection at nth terminal
Kc Current compensator
Kii Integral gain of current compensator
Kiv Integral gain of DC voltage compensator
Kpi Proportional gain of current compensator
Kpv Proportional gain of DC voltage compensator
Kv DC voltage compensator
LDC,cab Inductance of DC cable
L f Inductance of filter
Lt Inductance of transformer
Pac AC active power
PDC DC power
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Rt Transformer resistance
τd Modulation delay
τd Inner-loop time constant
Uc,dq Converter AC voltage in dq frame
Uc,abc Converter AC voltage in abc frame
Us,dq Source AC voltage in dq frame
Us,abc Source AC voltage in abc frame
V∗ DC voltage reference
VDC,n DC voltage at nth terminal
Yc Current compensator
Yoc,i Converter closed-loop output admittance with current loop
Yoc,v Converter closed-loop output admittance considering influence of DC voltage loop
Ys Admittance as seen from source
Zbus,DC DC nodal impedance matrix
Zc f Filter capacitor impedance
Zcn Impedance of total DC capacitance at nth terminal
ZDC,cab Impedance of DC cable
Z f Impedance of filter inductor
Zg,eq Equivalent AC grid impedance
Zic Converter DC input impedance
Zoc,v Converter closed-loop output impedance considering influence of DC voltage loop
Zt Impedance of transformer

Appendix A. DC Voltage Equation of the HVDC Link

Consider circuit schematics of the HVDC link based on known nodal current injection as depicted
in Figure A1. Following the current directions of the sources and arbitrary cable direction from terminal
2 to 1 as indicated, the aim is to obtain the dynamics of the nodal voltages, VDC,1 and VDC,2. Apply
KCL to each of terminals 1 and 2,

IDC,1 = Ic1 − Icab,

IDC,2 = Ic2 + Icab,
(A1)

where Zc1, Zc2, ZDC,cab are the terminal capacitors’ impedances and cable, respectively. Ic1 and Ic2 are
the capacitor currents, and Icab the DC cable current. Applying Ohm’s law to express branch currents
in terms of nodal voltages,

IDC,1 =
VDC,1

Zc1
− VDC,2 − VDC,1

ZDC,cab
,

IDC,2 =
VDC,2

Zc2
+

VDC,2 − VDC,1

ZDC,cab
,

(A2)

from (A2),

IDC,1 =
VDC,1

Zc1
+

VDC,1

ZDC,cab
− VDC,2

ZDC,cab
,

IDC,1 =
VDC,1(Zc1 + ZDC,cab)

Zc1ZDC,cab
− VDC,2

ZDC,cab
,

(A3)

similarly for IDC,2,

IDC,2 = − VDC,1

ZDC,cab
+

VDC,2(Zc2 + ZDC,cab)

Zc2ZDC,cab
(A4)
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in matrix form, (A3) and (A4) can be written as,
IDC,1

IDC,2

 =


Zc1+ZDC,cab
Zc1ZDC,cab

− 1
ZDC,cab

− 1
ZDC,cab

Zc2+ZDC,cab
Zc2ZDC,cab


︸ ︷︷ ︸

YDC
bus (s)


VDC,1

VDC,2

 , (A5)

since the nodal currents injection are known,


VDC,1

VDC,2

 =


Zc1+ZDC,cab
Zc1ZDC,cab

− 1
ZDC,cab

− 1
ZDC,cab

Zc2+ZDC,cab
Zc2ZDC,cab


−1 

IDC,1

IDC,2

 .


VDC,1

VDC,2

 =


Zc1(Zc2+ZDC,cab)
Zc1+ZDC,cab+Zc2

Zc1Zc2
Zc1+ZDC,cab+Zc2

Zc1Zc2
Zc1+ZDC,cab+Zc2

Zc2(Zc1+ZDC,cab)
Zc1+ZDC,cab+Zc2




IDC,1

IDC,2

 .

(A6)

In compact notation, the DC voltage dynamics can be derived as
VDC,1

VDC,2

 =


Z11(s) Z12(s)

Z21(s) Z22(s)


︸ ︷︷ ︸

ZDC
bus (s)


IDC,1

IDC,2

 . (A7)

Idc,1 Zc1 Idc,2Zc2

Zdc,cabVdc,1 Vdc,2

Figure A1. Circuit schematic of the HVDC link based on nodal current injection.

Appendix B. Transfer Functions

1. AC admittance with inner-loop

Yoc,i(s) =
Zc f

ZtZc f + ZtZ f + Zc f Z f + KcGd(Zt + Zc f )
,

where Zc f = 1/sC f , Zt = Rt + sLt, Z f = sL f , Kc = kpi + kii/s, Gd = 1/(τds + 1).
2. Closed-loop transfer function of the inner-loop,

Hcl,i(s) =
KcGd(Zt + Zc f )

ZtZc f + ZtZ f + Zc f Z f + KcGd(Zt + Zc f ).

3. Open-loop transfer function of the complete system,

Hol,v(s) =
A3 A4Zc1(ZDC,cab + Zc2)

(A0 + A1 + A2 + A3)(Zc1 + ZDC,cab + Zc2),
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where
A0(s) = Zt(s)Zc f (s),

A1(s) = Zt(s)Z f (s),

A2(s) = Z f (s)Zc f (s),

A3(s) = Kc(s)Gd(s)(Zt(s) + Zc f (s)),

A4(s) = KKv(s),

where Kv(s) = kpv + kiv/s.
4. Closed-loop transfer function of the complete system,

Hcl,v(s) =
A3 A4B1

B0(A0 + A1 + A2 + A3) + A3 A4B1
,

where
B0(s) = Zc1(s) + ZDC,cab(s) + Zc2(s),

B1(s) = Zc1(s)(ZDC,cab(s) + Zc2(s)).

5. AC admittance with complete system,

Yoc,v(s) =
Zc f B0

B0(A0 + A1 + A2 + A3) + A3 A4B1
,

6. DC impedance with complete system,

Zic,v(s) =
Zc1Zc2(A0 + A1 + A2 + A3)

B0(A0 + A1 + A2 + A3) + A3 A4B1
,

7. Characteristic equation of the entire system,

B0(A0 + A1 + A2 + A3) + A3 A4B1 = 0.

Table A1. Grid data for system understudy.

Parameter Value

Base Power 800 MVA

AC Voltage 220 kV

DC Voltage 200 kV

Frequency 50 Hz

DC Cable Length 200 km

Lt 35 mH

Rt 0.363 Ω

L f 29 mH

C f 10–100 µF

Zgrid 4.813 Ω
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Table A2. Control data.

Control Data Value

kpi 25.6

kii 145.2

kpv 0.0192

kiv 0.272
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