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Abstract: Distributed power supply with the use of renewable energy sources and intelligent energy
flow management has undoubtedly become one of the pressing trends in modern power engineering,
which also inspired researchers from other fields to contribute to the topic. There are several kinds
of micro grid platforms, each facing its own challenges and thus making the problem purely multi
objective. In this paper, an evolutionary driven algorithm is applied and evaluated on a real platform
represented by a private multistory carpark equipped with photovoltaic solar panels and several
battery packs. The algorithm works as a core of an adaptive charge management system based
on predicted conditions represented by estimated electric load and production in the future hours.
The outcome of the paper is a comparison of the optimized and unoptimized charge management on
three different battery setups proving that optimization may often outperform a battery setup with
larger capacity in several criteria.

Keywords: smart parking; multistory carpark; electric vehicles; predictive control; smart grid;
renewable energy sources

1. Introduction

The 20/20/20 targets defined as ’European climate and energy goals’ mean a 20% increase in
the use of renewable energy sources (RES) combined with a 20% energy efficiency improvement by
2020. The European Commission sets the energy goals and benchmarks at the levels of individual
buildings. A recent European Directive (2010/31/EU) targets a high deployment of RES and energy
efficiency in the built environment by requiring that all new buildings need to be nearly zero energy
buildings (nZEB) by 2020 [1]. Emerging trends of the electric vehicle (EV) deployments, on the other
hand, call for innovations in these areas to achieve these goals. Based on [2], EV charged at home
may double the household electricity consumption, which implies one of the largest deviations from
the given plans. Charging outside households, for example at work, may be a part of the solution.
However, this still poses challenges for the operation of power systems and the charging infrastructure,
such as voltage variation, transformer lifespan reduction, and congestion-related problems [3,4].

The term Smart-Grid has been frequently used in the current decade due to a high number of
proposals and applications extending the current concepts of centralized (On-Grid) and decentralized
(Off-Grid) energy supplies. These are the two main scenarios making use of the new sophisticated
solutions based on data science, predictive analysis, unconventional modeling and mathematical
optimization. The smart grid platforms rather focus on grid operator problems, such as the
minimization of distribution system losses [3] and the maximization of a valley-filling effect [5]
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or cost-effective issues for EV users [6,7] or for the entire grid operation costs [8–10]. On the other
hand, the Off-Grid architecture, often powered by RES, deals with power quality issues [11] due to low
short-circuit power and stochasticity of its energy sources. EV charging schedule may be adaptable
on the progress of these sources, which is the opportunity to increase the system stability and energy
efficiency [12,13].

As for distribution, there are two kinds of charge schedule management: the centralized
approach [3,8,14,15] and the decentralized approach [16,17]. In centralized schedule control,
the decision making is done synchronously and the managing entity contains all information about
the current state of the grid as well as the information about all cars, their current state of charge (SOC)
and desired SOC. In a decentralized manner, the decisions about EV charge schedule is made by the
EV itself regarding the given protocol and shared information, where some communication with the
hub or center for coordination is necessary.

Mentioning trends of EV charging managements, it is worthy to summarize algorithmic
techniques used to model, optimize and evaluate the proposed scenarios. Extensively used
traditional mathematical programming approaches, such as linear and nonlinear programming [18,19],
mixed-integer programming [8], and dynamic programming [20] are accompanied in thematically
related studies using meta-heuristic algorithms including genetic algorithms [21], particle swarm
optimization [22], Multi-objective optimization [23] (MOO), etc. Detailed reviews of applied algorithms
and results have been brought in [24,25].

This paper describes an experiment in a multistory carpark working as an Off-Grid platform able
to store and charge electric vehicles [26]. This platform, having 36 EV chargers, two photovoltaic power
plants, an energy storage system, a self-driven parking system and multiple controlling mechanisms,
represents the most modern working application in this area, called Automated Parking System (APS).
Our experiment aims to design and evaluate an adaptive charge management reflecting the current
conditions and needs of the system at the given time. Supported by data from various sources (real
measurements and simulations), we were able to evaluate the model’s ability

• to adaptively handle the stochastic nature of RES and multistory carpark occupancy.
• to perform an energy effective planning with maximal usage of RES.
• while keeping the sustainable operational state for any emergent circumstances.

Simulations with energy efficiency estimation were calculated during a year period and are
described in the second half of this paper.

Comparing this paper to studies reviewed in [25,27], the application of MOO is not very common
even if the problem is purely multi objective. Similarly, the processing of RES stochasticity in order
to maximize its use is very important yet not faced in most of the studies. On the other hand,
our real physical deployment as well as real weather conditions, tree designed objective functions,
the simulation during a year period and MOO with decomposition making use of differential evolution
with a very high computational performance makes this proposal very unique.

2. Description of the Multistory Carpark

The described automatic system of independent parking [28] is a building facility by KOMA
Industry s.r.o. equipped with an automated parking system (APS). This automated carpark has four
floors with a total of 37 car parking slots. The overall capacity is for 36 vehicles as one parking pallet
was removed from the parking system to make space for the APS off-grid technology [29].

The parking slots in APS are equipped with a charging [27,30,31] system that enables charging
electric cars on demand, or as required by the charge control system. The building is also equipped
with photovoltaic power cells placed on the roof with total 10 kW peak (see Figure 1).
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Figure 1. A view of APS; APS skeleton.

The whole process starts with a driver of an electric car entering the hand-over area, he switches
off the engine, brakes the car, engages a gear, and connects the electric car to the charging station.
Having left the hand-over area, the car placed on a pallet is moved to a pre-defined slot, the station
is connected to the grid and charging starts. During its stay in the parking slot, the electric car is
fully charged (usually for eight hours, i.e. the length of a working day). At the end of the working
day, the car owner uses their RFID card to unpark their car. As a result, the pallet with the charging
system and the car are disconnected from the grid, and moved to the car hand-over area. The driver
disconnects the car from the charging system, gets in and leaves. The parking of combustion engine
cars is analogous, without connecting the car to the parking pallet and its charging.

The movement of a pallet with a car is managed by skips (horizontal movement along the floor)
and using a lift in the corner of the APS (vertical movement from floor to floor).

APSs are usually supplied from the low-voltage distribution network and to ensure a reliable
operation, they are complemented with a backup power source, a diesel generator in the majority of
cases. With regard to the trends in decentralised power generation, it is possible to use hybrid charging
systems with DC coupling topology exploiting renewable energy resources and energy accumulation
systems, thus eliminating the stochastic character of renewable energy supplies. APS presented herein
is charged from a system complying with the characteristics mentioned above. The conceptual scheme
of energy supply is shown in Figure 2.

PV1

Charger Parking
technology

Data 
acquisition

DC 48V

AC 3f, 400 V

MPPT

DC/AC

Distribution
 grid

Battery
Bank

48 V/4x360A·h

5 kWp PV2

MPPT

5 kWp

Figure 2. Scheme of the automated parking system.
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3. Charge Schedule Optimization

The designed intelligent system managing the charge schedule in the automated multistory
carpark contains several data-mining and machine learning techniques serving as supportive tools for
the final decision making. The three layered structure is depicted in Figure 3.

Charge schedule 
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forecasting

Power quality 
forecasting

Energy demand 
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Carpark
occupancy
monitoring

Weather data

Data harvesting & storing Feature extraction Optimal plan sythesis 

Settings, 
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Figure 3. A UML diagram of an intelligent decision making system controlling the charge schedule in
automated multistory carpark.

The data managing part contains several kinds of sensors collecting information about moving
cars, states of the system and current weather conditions. These data are grouped together with the
historical data measured in the past and stored in a system’s database with additional user defined
settings and system definitions. Based on statistical relevance for the given task, they are loaded,
transformed and applied for the further step of performing the feature extraction.

The features relevant for the future plan optimization must at least represent a close approximation
of a future progress of the described variable. The solar irradiation, closely related to the produced
amount of energy by photovoltaic panels, is one of such variables. Its requirement is underlined by
motivation to maximize the usage of energy gathered from renewable energy source.

The correct management of the charging plans needs the knowledge about future electric load
and state of the car batteries. The energy demand estimation module takes care of this part, making
use of the data definitions from database with real time sensor data.

The power quality, due to heavy loads of charges accompanied by the system’s low short-circuit
power, may be volatile, which could negatively impact the quality of the charging process causing
potential harm to the batteries. The power quality parameters predictions have been already addressed
by our previous studies [11,32], but a different hardware setup with different loads requires new
modeling of this aspect. PQP was not involved in this paper due to its preliminary character.

For each module, its inputs and outputs are described in further sections with the final charge
schedule optimization performed by evolutionary based on MOO.

3.1. Solar Irradiation Forecasting

The module responsible for the forecasting of produced energy was based on statistical data
preprocessing and regression based on an extreme learning machine algorithm [33,34]. This approach
was already published and applied in our different research projects, therefore this section serves as a
brief reminder in the context of this experiment.

The statistical preprocessing compounds the normalized weather data obtained from our
measurements and also from weather forecasts, normalizes them into the common scale and calculates
their relevance using mutual information estimation with Kraskov’s algorithm [35]. This approach
confirmed that the highest relevance is possessed by variables describing the cloudiness on all
levels. The normalized input values accompanied by their past values regarding their autocorrelation
served as input values for the Extreme learning machine based regression. The details about the
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data, model and their adjustments may by found in [32,36]. The predictive accuracy was measured
by Rooted Normalized Mean Square Error (RNMSE) where the average error of the forecast of the
following 24 hours was approximately 28.57%.

The experiment proposed in this paper was performed on energy production data covering one
year (four seasons) to include most weather variations in the region. The table describing the data
according to the given month may be seen in Table 1.

Table 1. Statistical features of predicted energy production during selected months.

Month Min-Max kW·h at 12’ Max/Day [kW·h] Min/Day [kW·h] Std/ Day [kW·h] Total [kW·h]

February 0.94–3.36 21.30 5.70 4.44 369.91
April 1.84–7.51 67.17 16.77 13.85 1351.59
July 4.86–9.56 90.71 41.78 15.66 2224.11
October 1.28–3.88 27.87 9.58 3.44 469.25

3.2. Carpark Occupancy Monitoring

The multistory carpark occupancy data come from the survey of 20 employees from our institute.
Their arrival and departure times were collected during a one month period with the information
about travel distance to their homes. This was used to estimate the amount of required energy to be
charged by the system when their cars are plugged in.

The occupancy data were transformed into time series, where each sample represented a number
of cars that parked during a given 15 min period (see Figure 4). From these historical data, we were able
to estimate the expected arrival and departure times for the following. The regular arrivals began from
5:45 a.m. to 11:45 a.m., with an average standard deviation of a car equaling to 32 min. The departures
occurred in the interval from 12:30 p.m. to 9:45 p.m. with an average standard deviation of a car
equaling to 75 min.

From these observations, we set that charging is not allowed 75 min before an estimated car
departure and the batteries have to contain the defined amount of energy. In the case of a car being
disconnected sooner by its owner, the car may not contain enough energy to sustain the entire trip
home, but this is the user’s responsibility. We also defined the minimal waiting time for the charging
after the car was plugged in after its parking. This time was set to 30 min to make the charging of the
already connected cars more stable.
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Figure 4. Multistory carpark occupancy on a week scale.

3.3. Electric Load Scenarios

The electric load is defined by charging the cars parked inside and by consumption of the building
itself. In this experiment, 20 EV were simulated with distribution based on available data describing
sales of EV in Europe in 2017 [37] (see Table 2).



Energies 2018, 11, 1791 6 of 18

Table 2. Electric vehicles used in this experiment with approximated probabilities according to their
selling distribution in Europe during 2017 [37].

Car Driving Distance [km] Battery Capacity [kW·h] Probability

Nissan LEAF 200 30 0.17
Volkswagen Golf 300 35.8 0.12
Volkswagen e-up! 160 20 0.03

BMW i3 200 33.2 0.19
Tesla X 565 100 0.12
Opel Ampera 520 60 0.03

Renault ZOE 400 41 0.30
Kia Soul EV 250 27 0.05

The amount of remaining energy of incoming car batteries was adjusted randomly with 20%
mean and 15% standard deviation. The mandatory minimum to be charged was defined as the
distance to driver’s home increased by an additional 25 km for any unexpected needs. The final
amount was increased by an additional 50% to be prepared for worse weather conditions or other
energy consuming circumstances. These constants for remained energy simulation were chosen with
pessimism. The levels of batteries of each car may be seen in Figure 5, where the maximum capacity is
accompanied by the current amount of energy as well as the desired energy to be charged. The final
desired amount of energy was computed in two scenarios—the amount of energy with and without
respect to the current battery level (final SoC was equal to the required SoC (MAX_charge) or to the
final SoC was decreased by current SoC (MIN_charge)).
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Figure 5. Distribution of energy remained and required per car given for the charge optimization.

To simulate the total demand and its progress, it is necessary to define a set of parameters
describing the system. T is the number of time periods of the optimized day, where each period has an
equal length of 15 min. N is the number of charging stations, CDt = {cdt,1, cdt,2, · · · , cdt,N} represents
the set of energy demands on all chargers at time t and P = {p1, p2, · · · , pT} states a set of produced
energy at each time period. C = {c1,1, c2,1 · · · cN,1, c1,2 · · · cN,T} is the boolean matrix having true and
false states for occupied and unoccupied parking slots respectively. The variable bat describes the
current amount of energy in batteries limited by adjusted capacity cap.

Among the system parameters, the minimum electric load used for lightning and basic system
maintenance mct per hour was adjusted to 800 W·h and the lift moving cars pc during their arrival
or departure took 1.5 kW·h per car. The maximum energy supported by the system’s hardware pp
is 21 kW·h. To compute the current demand d at the given time period t, the equation is defined
as follows

dt =
N

∑
i=1

(
li,t

∑N
j=1 li,t

× (pp−mct − pct)/4) (1)
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where li,t is the adjusted load of the i-th charger at time t and pct is calculated as the summation of
arriving and leaving cars during time t multiplied by pc (1.5 kW·h). The maximum available energy
for charging at time t is divided by four because t represents the 15 min time window.

Based on the number of cars, their arrival times and required levels of energy to charge, this model
will produce different load vectors L, which will imply changes in total demand D altering the behavior
of the entire system.

There were defined two different charge management algorithms to compare in this experiment.
It is the simple come’n charge approach, where cars are consuming a maximum available amount of
energy immediately after they are connected. This approach only checks the interconnection between
car and grid and whether the battery is not already charged to the desired level. In this case, the load l
of i-th charger at time t is defined as follows

li,t =

{
1 if ci,t = 1 & cdi,t > 0

0 otherwise
(2)

where cdi,t represents the charge demand of i-th car at time t. These demands may be estimated from
previous iteration simply as

cdi,t = cdi,t−1 − (
li,t−1

∑N
j=1 lj,t−1

× (pp−mct−1 − pct−1)/4) (3)

To drive the system’s demand towards our goals, we need to extend the model by additional
parameters with ability to be optimized. They are the set of delayed starting charge times B = (β1, β2 · · · βn),
which captures the index of time period when n-th car starts its charging and amount of energy
A = (α1, α2 · · · αn) that is used for the car during all its charging periods. The estimation of the load
vector L is therefore extended from the Equation (2) into as follows

li,t =

{
αi if ci,t = 1 & cdi,t > 0 & βi <= t

0 otherwise
(4)

3.4. Optimized Charging

Previously involved adjustable parameter vectors A and B are evolutionary tuned to optimize
the system during each given day. Three objective functions were defined to evaluate the feasibility
of optimized solution and they are the minimum remaining amount of energy to be charged before
the cars are going to leave f1 (Equation (5)), the maximum usage of RES during the day period f2
(Equation (6)) and the minimum amount of RES energy stored in the systems battery f3 (Equation (7)).
While the first two objectives may seems obvious, the minimization of f3 is to minimize system’s
inefficiency caused by 8% energy loss during each system’s battery charge.

Based on the given A and B, f1 is simply computed as the sum of car demands at the final time
period. The optimal solution will have f1 equal to zero, meaning that all cars were charged to the
desired level.

f1 =
N

∑
i=1

cdi,T (5)

Objective functions f2 and f3 require simulating the energy flows between RES, system’s batteries
and the charged cars. Therefore, we define the variable ru stating the amount of energy provided
by RES and the vector Sid = (sid1, sid2 · · · sidT) representing the energy stored in the system batteries
during each time period. This energy may serve for car charging in times when RES are insufficient.
The algorithm simulating these flows may be seen in Algorithm 1. The main loop iterates through
all time periods, where during each of them the produced energy is processed first. In lines 7–13,
the algorithm tries to cover the energy demand by RES, while the rest of it is stored in the system’s
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battery. In cases when the production is insufficient, the demand is simply decreased by the amount
of available RES energy (lines 15–16). The second part of the algorithm simulates covering the rest
of demand by energy from the system’s batteries (lines 18–26). Maximum energy gain from these
batteries is 95% of their capacity, which is also included in the algorithm. Variable bat also represents
the necessary outcome of the procedure because the battery state from the previous day is carried into
the following one to continue with the simulation.

Algorithm 1: Pseudo-code of a function estimating the usage of RES and the total energy
charged in the system’s battery

Data: {D, P, bat, cap}
Result: {ru, Sib, bat}

1 BEGIN
2 ru = 0;
3 Sib = zeros(1, T);
4 for time t in T do
5 dt = sum(d[:, t]);
6 if p[t] >= dt then
7 ru = ru + dt;
8 bat = bat + ((p[t]− dt)× 0.92);
9 sib[t] = ((p[t]− dt)× 0.92);

10 dt = 0;
11 if bat > cap then
12 bat = cap;
13 end
14 else
15 ru = ru + p[t];
16 dt = dt− p[t];
17 end
18 if bat > (cap× 0.05) then
19 if (bat− (cap× 0.05)) > dt then
20 ru = ru + dt;
21 bat = bat− dt;
22 else
23 ru = ru + (bat− (cap× 0.05));
24 bat = cap× 0.05;
25 end
26 end
27 end
28 END

After Algorithm 1 is executed and variables ru and Sib are computed, the f2 and f3 values were
calculated as follows.

f2 = 1− ru

∑N
i=1 ∑T

t=1 di,t
(6)

f3 =
T

∑
i=1

sibt (7)



Energies 2018, 11, 1791 9 of 18

The optimal solution having f2 equal to 0 represents the system that has worked only on RES—its
maintenance was supported by system’s battery during the night and charging of the cars was mostly
supported by RES. In case of f3, the ideal solution means the minimum energy flowed through the
system’s batteries, therefore the system performed a minimum loss.

The problem based on three different objective functions required the application of the
Multi-objective optimization approach. On the other hand, our objective functions were not equally
important, which was further reflected by a modified candidate selection from the final Pareto front set.

3.5. Multi Objective Optimization

In general, the multi objective problem (MOP) is posed as an optimization problem of several
(mostly conflicting) objective functions [38]. According to the defined equality and inequality
constraints, the input value vector X defines the search space (often called a feasible design space)
for solutions. MOO is mostly based on search-engine optimization, but there is one major difference
from single-objective optimization. It is the number of solutions, which in the case of MOO is defined
as a set of feasible solutions (called a Pareto Front). Each of its candidates is called Pareto Optimal,
and together they form the so-called trade-off curve in a chart of objective values. The Pareto optimal
solutions are randomly distributed on this curve reflecting their performance towards the defined
objectives. The most suitable solution for the given application may be chosen by the fuzzy decision
making process. User’s preferences towards a particular objective may be reflected by the adjustable
weights used in this process.

3.5.1. Multi Objective Evolutionary Algorithm with Decomposition

(MOEA/D) [39] has become a vital member of MOO approaches over a longer period due to
its successful applications and several derivatives. The main idea focuses on the decomposition of
the MOP into the number of single objective optimization problems (SOP) to face them separately.
Each SOP, so called a subproblem, is a (non)linear aggregation of defined objectives. The aggregations
are also reflected in definition of neighborhoods among the subproblems solutions. The evolutionary
algorithm may optimize the SOP, while for its inner operations it will use the closest neighbor’s
solutions. This simplification allowed the application of other single optimization techniques to
extend this approach in order to increase its performance. In several studies, this approach combined
with Differential evolution [40] was able to outperform its ancestor, the NSGA-II [41]. This fact
was also confirmed during our experiments, which is the main reason for using MOEA/D-DE for
the optimization.

3.5.2. Differential Evolution

(DE) was developed by R. Storn and K. Price [42] and it possesses the features of a self-organizing
search as well as an evolutionary based optimization. In general, DE is a heuristic mechanism driving
the representative solutions, so called candidates through searched space to perform their optimization.
DE offers several strategies driving the computation of new positions for its candidates. One of them
takes three random candidates to calculate an intermediate candidate which creates a new position by
binary crossover with an optimized candidate xi. It takes this new position only if it is better than the
current one.

The mutation is handled by a selection of three random candidates (p, q, r) from the population
and the so-called donor vector is calculated.

vg+1
i = xg

p + F(xg
q − xg

r ) (8)

where F ∈ [0, 2] is an adjustable hyper-parameter entitled as differential weight. From these statements,
we can point out that minimal population size is n ≥ 4.
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The second hyper-parameter Cr ∈ [0, 1] drives the crossover operation, which is performed
between the computed donor vector and our evolving candidate.

xg+1
i,j = vi,j if ri ≤ Cr, (j = 1, 2, · · · , d) (9)

The following fitness value calculation decides whether the new synthesized candidate will be
kept instead of its ancestor or not.

3.5.3. Fuzzy Decision Making

The result of MOO forms the Pareto front set where the single feasible solution needs to be found.
The selection of the most suitable candidate is frequently ensured by a fuzzy decision making process
having calculated the linear membership function for all members of the Pareto Front. In [11,43],
the objective function to be minimized, the membership function follows below:

µr
i =


1 f r

i ≤ f min
i

f max
i − f r

i
f max
i − f min

i
f min
i ≤ f r

i ≤ f max
i

0 f r
i ≥ f max

i

(10)

Accordingly, the objective function to be maximized, the definition is given below:

µr
i =


0 f r

i ≤ f min
i

f r
i − f min

i
f max
i − f min

i
f min
i ≤ f r

i ≤ f max
i

1 f r
i ≥ f max

i

(11)

where f min
i and f max

i are the minimal and maximal value of objective function fi from the payoff table
(Φ), f r

i is the value of ith objective function of rth Pareto Front member and µr
i is its membership

value for ith objective function. During calculation of the total membership value µr of the rth Pareto
Front member, we are able to apply membership weights wm for each of the objective function as it is
defined below:

µr =

m
∑

i=1
wm

i µr
i

m
∑

i=1
wm

i

(12)

which enables us to control the importance of the membership values for each of the objective
functions separately.

The payoff table is a squared matrix containing the normalized values of objective functions when
each of them was optimized separately by some single objective approach. The best objective function
values represent the position of U, the so called utopia point—the best possible solution and the worst
objective function values represent N—nadir point, or the worst possible solution. The best trade-off
solution is placed the nearest to the U. In some cases, the single objective optimizations obtaining
payoff table does not have to be involved. In order to reduce the computational complexity, the utopia
and nadir points are estimated as the best and worst obtained values from the normalized objective
function values of Pareto front.

According to the adjusted preferences, the final solution may be selected for further application.
In our case, the fuzzy decision process was engaged only on Pareto front members having zero amount
of energy to be charged ( f1). Fulfillment of this condition was considered as necessary.
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4. Simulations and Results

Based on previous definitions, the optimization of the charging mechanism towards the defined
criteria (Equations (5)–(7)) was achieved by evolutionary tuning of the parameter vectors A and B.
The candidate of MOEA/D-DE population was simply the vector of real numbers in range [0-1] having
length of these parameter vectors combined. While the A parameters were directly applied in the
model, B values were multiplied by T and floored to correctly represent the time periods.

The final adjustment of MOO followed the similar manners as its previous applications [11]
and it was also performed experimentally to obtain some optimal convergence. The number of
candidates was adjusted according to the dimension of the optimized problem, while the number of
evaluations was kept reasonably high to perform a valid search. Table 3 describes the parameters of
the optimization process and their values. The implementation of the entire experiment was in the
MATLAB environment making use the PLATEMO package [44] with some additional data processing,
evaluation and visualization techniques.

Table 3. Settings for MOEA/D-DE algorithm.

Parameter Value

applied algorithm MOEA-DDE
size of population 80
number of iterations 20,000

δ—probability of choosing parents locally 0.9
nr—number of solutions replaced by each offspring 2

Cr—crossover probability 1
F—differential weight 0.5
prom—expected number of bits doing mutation 1
dism—distribution index of polynomial mutation 20

This algorithm simply took current battery state (bat), the 24-h ahead forecasting of energy
production (P) and occupancy data (C) tested on the given date and performed the energy consumption
optimization to fit the given goals. This new consumption plan was evaluated and the new battery
state was derived for the following day, when optimization was repeated. The examples on four
different days may be seen in Figure 6. In cases of higher RES production and lower energy demand
defined by MIN_charge scenario, the optimization was able to cover the most of the demand by RES,
which minimized the energy loss and maximized the RES use. In other cases, the higher desire of RES
use only shifted the charging process a few time periods further. In cases when RES was very low,
the optimization performed almost no change.

Tables 4 and 5 contain the evaluations of simulated optimizations on the given data. The usage
of RES ru and the percentage of energy load covered by RES cl were compared on different battery
setups, where each of them ran in an optimized and unoptimized mode. Table 4 reflects the results
using the scenario with a higher load (MAX_charge), while Table 5 describes charging cars regarding
their current battery state (MIN_charge). In cases when RES produced a significant amount of energy,
the optimization was able to outperform the unoptimized setup with a larger battery set. In other
cases, RES production was always fully consumed and further optimization was not logically able
to improve it. Comparing the amounts of saved energy among Tables 4 and 5, we can see that the
increasing ru by a higher recharging level also increases the necessity of higher load from the grid.
The cost efficiency is compared in the following tables.
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Figure 6. The comparisons of optimized loads vs. come’n charge loads on four different months ((a,b)
March, (c,d) June, (e,f) September and (g,h) December) and both consumption modes ((a,c,e,f) reflect
consumption lowered by the current battery state while (b,d,f,h) are not taking this into account). In all
figures, the horizontal axis represents time in hours (1 day) and vertical axis means the absolute values
of depicted measures (number of cars and kW·h).
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Table 4. Energy savings acquired for different system configurations having optimized and unoptimized simulations. Shortcut ’ru’ means percentage of renewable
energy used and ’cl’ means the percentage of covered load by RES. Outcomes in this table were computed on lower charging scenario—not taking the current battery
balance in car.

Mon. Total FVE Production [kW] Total Consumption [kW/Month]

MIN BAT [23.04 kW·h] MID BAT [46.08 kW·h] MAX BAT [69.12 kW·h]

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

ru cl ru cl ru cl ru cl ru cl ru cl

Jan. 265.91 4701.30 99.18 5.61 99.29 5.62 99.18 5.61 99.29 5.62 99.18 5.61 99.29 5.62
Feb. 369.91 4112.83 98.66 8.87 98.88 8.89 98.66 8.87 98.88 8.89 98.66 8.87 98.88 8.89
Mar. 800.41 4481.71 95.65 17.08 95.94 17.13 98.24 17.54 98.53 17.60 99.11 17.70 99.40 17.75
Apr. 1351.59 4494.72 87.90 26.43 88.21 26.53 93.21 28.03 93.52 28.12 97.81 29.41 98.12 29.51
May 2079.81 4757.97 85.08 37.19 85.85 37.53 89.29 39.03 90.06 39.37 93.43 40.84 94.20 41.18
Jun. 2452.42 4328.86 77.03 43.64 77.91 44.19 80.60 45.66 81.48 46.22 84.17 47.69 85.04 48.24
Jul. 2224.05 4537.53 81.66 40.03 82.32 40.35 86.58 42.44 87.24 42.76 90.96 44.58 91.61 44.90
Aug. 1965.37 4703.49 85.03 35.53 85.51 35.73 89.48 37.39 89.96 37.59 93.81 39.20 94.29 39.40
Sep. 1277.16 4517.54 89.69 25.36 90.05 25.46 94.54 26.73 94.91 26.83 97.01 27.43 97.38 27.53
Oct. 467.60 4520.50 98.81 10.22 98.33 10.21 98.81 10.22 98.33 10.21 98.81 10.22 98.33 10.21
Nov. 266.78 4328.86 99.26 6.12 99.23 6.12 99.26 6.12 99.23 6.12 99.26 6.12 99.23 6.12
Dec. 189.70 4681.86 99.66 4.04 99.68 4.04 99.66 4.04 99.68 4.04 99.66 4.04 99.68 4.04

Table 5. Energy savings acquired for different system configurations having optimized and unoptimized simulations. Shortcut ’ru’ means percentage of renewable
energy used and ’cl’ means the percentage of covered load by RES. Outcomes in this table were computed on lower charging scenario—taking the current battery
balance in car.

Mon. total FVE Production [kW] Total Consumption [kW/month]

MIN BAT [23.04 kW·h] MID BAT [46.08 kW·h] MAX BAT [69.12 kW·h]

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

ru cl ru cl ru cl ru cl ru cl ru cl

Jan. 265.91 2166.49 97.85 12.01 99.29 12.19 97.85 12.01 99.29 12.19 97.85 12.01 99.29 12.19
Feb. 369.91 1904.68 96.97 18.83 98.88 19.20 96.97 18.83 98.88 19.20 96.97 18.83 98.88 19.20
Mar. 800.41 2070.50 91.35 35.31 95.89 37.07 93.94 36.31 98.50 38.08 95.48 36.91 99.38 38.42
Apr. 1351.59 2075.92 82.78 53.89 87.97 57.28 89.41 58.21 93.35 60.78 94.26 61.37 97.90 63.74
May 2079.81 2185.61 74.80 71.18 85.21 81.10 84.89 80.78 89.45 85.13 89.10 84.78 93.49 88.98
Jun. 2452.42 2010.37 64.82 79.07 75.74 92.51 74.17 90.48 78.75 96.18 77.49 94.53 80.86 98.76
Jul. 2224.05 2099.77 68.17 72.21 80.71 85.48 79.50 84.21 83.78 88.75 82.69 87.58 86.19 91.30
Aug. 1965.37 2162.35 74.96 68.13 84.97 77.23 84.00 76.35 90.43 82.19 89.54 81.38 95.64 86.93
Sep. 1277.16 2076.15 84.67 52.08 89.86 55.28 91.57 56.33 94.77 58.30 94.93 58.39 97.58 60.02
Oct. 467.60 2097.75 96.90 21.60 98.33 21.99 96.90 21.60 98.33 21.99 96.90 21.60 98.32 21.99
Nov. 266.78 2010.37 97.75 12.97 99.23 13.17 97.75 12.97 99.23 13.17 97.75 12.97 99.23 13.17
Dec. 189.70 2156.95 98.94 8.70 99.68 8.77 98.94 8.70 99.68 8.77 98.94 8.70 99.68 8.77
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The system’s behavior also significantly differs based on the two load scenarios. While in
MIN_charge, the differences in energy efficiency clearly appeared, in MAX_charge did not. This is
caused by a lower energy production that is not able to fully support MAX_charge, therefore it will
never be able to cover a major part of its consumption.

Tables 6 and 7, and Figure 7a summarize the total amount of energy saved in both load scenarios
and all simulated configurations during the year. As we can see, the differences in energy savings
between load scenarios are rather minimal. It implies that MIN_charge scenario is able to perform
more than double energy efficiency compared to MAX_charge (see Figure 7b).

Table 6. Monthly energy savings in kWh calculated for each solution to compare their efficiency
applying MIN_charge scenario. SUM represents the total saving of the given solution during the year.

Mon. MIN BAT [23.04 kW·h] MID BAT [46.08 kW·h] MAX BAT [69.12 kW·h]

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

Jan. 260.20 264.10 260.20 264.10 260.20 264.10
Feb. 358.65 365.70 358.65 365.70 358.65 365.70
Mar. 731.09 767.53 751.80 788.45 764.22 795.49

Apr. 1118.71 1189.09 1208.39 1261.74 1273.99 1323.19
May 1555.72 1772.53 1765.54 1860.61 1852.96 1944.76
Jun. 1589.60 1859.79 1818.98 1933.57 1900.40 1985.44

Jul. 1516.24 1794.88 1768.22 1863.55 1838.98 1917.09
Aug. 1473.21 1669.98 1650.95 1777.24 1759.72 1879.73
Sep. 1081.26 1147.70 1169.50 1210.40 1212.26 1246.11

Oct. 453.11 461.30 453.11 461.30 453.11 461.30
Nov. 260.74 264.77 260.74 264.77 260.74 264.77
Dec. 187.65 189.16 187.65 189.16 187.65 189.16

SUM 10,586.20 11,746.53 11,653.74 12,240.57 12,122.90 12,636.82
DIFF = 1160.33 1067.54 1654.37 1536.70 2050.62

Table 7. Monthly energy savings in kWh calculated for each solution to compare their efficiency applying
MAX_charge scenario. SUM represents the total savings of the given solution during the year.

Mon. MIN BAT [23.04 kW·h] MID BAT [46.08 kW·h] MAX BAT [69.12 kW·h]

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

Jan. 263.74 264.21 263.74 264.21 263.74 264.21
Feb. 364.81 365.63 364.81 365.63 364.81 365.63
Mar. 765.48 767.72 786.09 788.78 793.26 795.50

Apr. 1187.95 1192.45 1259.87 1263.92 1321.90 1326.39
May 1769.49 1785.67 1857.04 1873.21 1943.15 1959.33
Jun. 1889.11 1912.92 1976.56 2000.80 2064.43 2088.24

Jul. 1816.37 1830.89 1925.73 1940.25 2022.83 2037.35
Aug. 1671.15 1680.56 1758.63 1768.04 1843.77 1853.18
Sep. 1145.65 1150.17 1207.54 1212.06 1239.16 1243.68

Oct. 462.00 461.54 462.00 461.54 462.00 461.54
Nov. 264.93 264.93 264.93 264.93 264.93 264.93
Dec. 189.15 189.15 189.15 189.15 189.15 189.15

SUM 11,789.82 11,865.83 12,316.08 12,392.51 12,773.13 12,849.13
DIFF = 76.00 526.25 602.68 983.30 1059.30
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Figure 7. Comparison of different battery setups and charging scenarios on a year-long simulation.

As we can see, the higher energy demand in MAX_charge scenario did not significantly increase
the usage of RES due to limited and variable supply from this source. On the other hand, this higher
demand was necessary to cover for On-Grid supply, which increased the operational costs of the
solution. The difference in energy savings among the battery setups in this scenario was rather minimal.
It was caused by the mentioned high energy demand consuming the entire RES supply almost equally.

In case of MIN_charge scenario, the energy from RES covered more than 50% of the total
consumption in most cases. Our optimization was able to increase the RES usage by 5–10% depending
on the given month, which is considered a valid result. Some differences among the battery setups
appeared, such as that those a with higher capacity were able to be re-charged during the weekend
when multistory carpark was unoccupied and thus served as additional RES. One of the most
interesting outcomes is the fact that energy efficiency obtained by any bigger battery setup was
always outperformed by smaller battery setup extended by our optimization. This fact may serve as
valuable information when a low-cost solution is being developed.

The best results in general were obtained during summer months, when the solar irradiation
achieved its peak. The optimization performed almost no improvement during winter months,
when RES supply represented less than 10% of the total energy consumption.

5. Conclusions

Adaptive charge management supported by MOO was proposed and evaluated in this paper.
Three different battery setups and two charging scenarios were examined over a one-year period
to maximize the completeness of experiment. The main outcome of this paper is the shape of the
trade-off curve among the conflicting criteria that may be given to the similar system. They may be the
purchase price, operational costs, energy efficiency and user comfort. As it was described, the higher
user comfort (MAX_bat and MAX_charge) may double the operational costs due to a 300% increase
in the purchase price, while the total amount of RES use remains almost similar to the significantly
cheaper solution. As a reward, the cars are charged on a much higher SoC level. This information
may help during the design of a new solution reflecting the current financial abilities and user’s
preferences. Due to the sufficient results, our future work aims to decrease the computational time,
which is necessary for timely reactions of the system. This solution was able to synthesize a new charge
scenario in 2–3 min, which may be decreased using parallel computing or evolutionary optimization
enhanced with memory [45].
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