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Abstract: The 80 year-old empirical Colebrook function ξ, widely used as an informal standard
for hydraulic resistance, relates implicitly the unknown flow friction factor λ, with the known
Reynolds number Re and the known relative roughness of a pipe inner surface ε∗; λ = ξ(Re, ε∗, λ).
It is based on logarithmic law in the form that captures the unknown flow friction factor λ in
a way that it cannot be extracted analytically. As an alternative to the explicit approximations or
to the iterative procedures that require at least a few evaluations of computationally expensive
logarithmic function or non-integer powers, this paper offers an accurate and computationally cheap
iterative algorithm based on Padé polynomials with only one log-call in total for the whole procedure
(expensive log-calls are substituted with Padé polynomials in each iteration with the exception of the
first). The proposed modification is computationally less demanding compared with the standard
approaches of engineering practice, but does not influence the accuracy or the number of iterations
required to reach the final balanced solution.

Keywords: Colebrook equation; Colebrook-White; flow friction; iterative procedure; logarithms;
Padé polynomials; hydraulic resistances; turbulent flow; pipes; computational burden

1. Introduction

The empirical Colebrook equation [1,2] implicitly relates the unknown flow friction factor λ

with the known Reynolds number Re and the know relative roughness of inner pipe surface, ε∗; λ =

ξ(Re, ε∗, λ), where ξ is functional symbol, Equation (1).

1√
λ
= −2·log10

(
2.51
Re
· 1√

λ
+

ε∗

3.71

)
(1)

In Equation (1) Re is Reynolds number; 4000 < Re < 108, ε∗ is relative roughness of inner pipe
surface; 0 < ε∗ < 0.05, and λ is Darcy flow friction factor; 0.0064 < λ < 0.077 (all three quantities are
dimensionless). All values are in correlation with the diagram of Moody [3–5].

The Colebrook equation is based on experiments performed by Colebrook and White in 1937 with
the flow of air through a set of artificially roughened pipes [2]. The accuracy of this 80 year-old equation
is disputed many times [6–8] but it is still accepted in engineering practice as an informal standard
for hydraulic resistance. Therefore, to repeat results and for comparisons, it is required to solve the
Colebrook equation accurately. Numerous evaluations of flow friction factor such as in the case of
complex networks of pipes pose extensive burden for computers, so not only an accurate but also
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a simplified solution is required. Calculation of complex water or gas distribution networks [9] which
requires few evaluations of logarithmic function for each pipe, presents a significant and extensive
burden which available computer resources hardly can easily manage [10–14].

The Colebrook equation is based on logarithmic law where the unknown flow friction factor
λ is given implicitly, i.e., it appears on both sides of Equation (1) in form λ = ξ(Re, ε∗, λ),
from which it cannot be extracted analytically (an exception is through the Lambert W-function [15–17]).
The common way to solve it is to guess an initial value λ0 for friction factor and then to try to
balance it using the iterative algorithm [18] which needs to be terminated after the certain number of
iterations when the final balanced value λn is reached. As an alternative to the iterative procedure,
numerous approximate formulas are available [19–22]. Usually, more complex approximations are
more accurate, but also more computationally expensive because they contain at least a few logarithmic
expressions and/or terms with non-integer powers which require use of demanding algorithms
(non-integer exponential or natural logarithm) to be evaluated in processor units of computers and to
be stored in registers [10–16]. The most accurate explicit approximations up to date are by Buzzelli [23],
Zigrang and Sylvester [24], Serghides [25], Romeo et al. [26], and Vatankhah and Kouchakzadeh [27,28].
They introduce the relative error of up to 0.14% [20] and they at least require evaluation of two or more
computationally expensive functions [10,11].

The presented scheme for solving the Colebrook equation requires only one single call of the
logarithmic function in respect to the whole iterative procedure. It is equally accurate as a standard
iterative approach and does not require additional iterations to reach the same accuracy. Instead of
the computationally expensive logarithmic function, its Padé polynomial equivalent [29] is used in all
iterations, exception the first. The Padé approximant is the approximation of a function by a rational
algebraic fraction where both the numerator and the denominator are polynomials [29]. Because these
rational functions only use the elementary arithmetic operations, they can be evaluated numerically
very easily. In the computer environment, they required less basic floating-point operations compared
with the logarithmic function [30–32].

The presented simplified iterative method can be profitable for future computing software in
terms of having a high level of accuracy and speed with a decreased computational burden.

2. Evaluation of Logarithmic Function through Padé Polynomials

Basic floating-point operations such as addition and multiplication are carried out directly in the
Central Processor Unit (CPU) while logarithmic functions, exponents or square roots require expensive
operations based on more complex algorithms [30–32]. In addition to logarithms and non-integer
powers, Biberg [33] adds also division in the group of more costly functions for evaluation while
addition, subtraction and multiplication has treated as low-cost operations according to Biberg [33].
Winning and Coole [34] report average time for 100 million operation in seconds and relative effort,
respectively as follows: addition 23.40 s and 1, subtraction 27.50 s and 1.18, division 31.70 s and 1.35,
multiplication 36.20 s and 1.55, squared 51.10 s and 2.18, square root 53.70 s and 2.29, cubed 55.58 s
and 2.38, natural log 63.00 s and 2.69, cubed root 63.40 s and 2.71, fractional exponential 77.60 s and
3.32, and log to 10-base 78.80 s and 3.37.

To illustrate the complexity of computing in modern computers it should be noted that even such
a relatively simple equation such as Colebrook’s can make a numerical problem in computer registers
due to overflow error. Its transformed version in term of the Lambert W-function can give such large
numbers for some pairs of the Reynolds number Re and the relative roughness of inner pipe surface
ε∗ which are from the practical domain of applicability in engineering practice and which cannot be
stored in 32- or 64-bit registers of modern computers [15,16].

In order to simplify the common iterative procedure from engineering practice for solving the
Colebrook equation, the logarithmic function is replaced with its relevant Padé polynomial equivalent in
all iterations with exception to the first. The Padé polynomials can accurately approximate logarithmic
function only in a limited domain. For example, knowing that log10(100) = 2, value of log10(90)
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can be obtained from log10(100/90) = log10(100)− log10(90)→ log10(90) = log10(100)− log10(100/90)
using the fact that 100/90 ≈ 1.111 is near 1. Logarithmic function can be replaced by its Padé
polynomial equivalent very accurately in a limited domain, instead of log10(1.111), already calculated
log10(100) = 2 and Padé polynomial which is accurate around 1 for argument z = 1.1111 can be used to
calculate log10(90).

Because of linearization of the unknown parameter λ, a more suitable form of the Colebrook
equation for computation is x = −2·log10

(
2.51·x

Re + ε∗
3.71

)
, where x = 1√

λ
. The argument of logarithmic

function in the Colebrook equation is y = 2.51·x
Re + ε∗

3.71 where only evaluation through its native
logarithmic form log10(y) need go only in the first iteration where further evaluation can go through
the appropriate Padé polynomial which is accurate for its argument z around 1, knowing that
z01 = y0

y1
, z02 = y0

y2
, z03 = y0

y3
, etc. or z01 = y0

y1
, z12 = y1

y2
, z23 = y2

y3
, etc. in the case of the Colebrook

equation it is always near 1; z ≈ 1. Evaluation of 10-base logarithmic function in many computing
languages goes through natural logarithm where log10(z) =

ln(z)
ln(10) and where ln(10) ≈ 2.302585093 is

constant, and therefore the Padé polynomials that approximate accurately ln(z) for z ≈ 1 are shown;
Equations (2)–(7). Padé polynomials of different orders can be used for approximation of ln(z), here all
accurate for arguments z close to 1; z ≈ 1. As the expansion point z0 = 1 is a root of ln(z), the accuracy
of the Padé approximant decreases. Setting the OrderMode option in Matlab Padé command to relative
compensates for the decreased accuracy. Thus, here, the Pade approximant of (m,n) order uses the

form ln(z) ≈ (z−z0)·(α0+α1·(z−z0)+...+αm(z−z0)
m)

1+β1·(z−z0)+...+βn(z−z0)
n , where α and β are coefficients (the coefficients of the

polynomials need not be rational numbers).
Horner algorithm transforms polynomials into a computationally efficient form and therefore,

Horner nested polynomial representations of the Padé polynomials of different orders for ln(z) where
z→ 1 are shown here; Equations (2)–(7). Relative error introduced by them; Equations (2)–(5)
compared with ln(z) is shown in Figure 1 and for Equation (6) in Table 1. Higher order of Padé
approximants are more accurate, but more complex. For example, Padé polynomial of order (2,3)
is with polynomial of order 2 in numerator and of order 3 in denominator; Equation (6). Of course,
low order formulas are simpler, but they have larger errors than high order formulas and vice versa.

Order (1,1), Equation (2):

ln(z) ≈ z·(z + 4)− 5
4·z + 2

(2)

Order (1,2), Equation (3):

ln(z) ≈ 3·(z− 1)·(z + 1)
z·(z + 4) + 1

(3)

Order (2,1), Equation (4):

ln(z) ≈ −z·(z·(z− 9)− 9)− 17
18·z + 6

(4)

Order (2,2), Equation (5):

ln(z) ≈ z·(z·(z + 18)− 9)− 10
z·(9·z + 18) + 3

(5)

Order (2,3), Equation (6):

ln(z) ≈
(z− 1)·

(
11·z2 + 38·z + 11

)
3·(z3 + 9·z2 + 9·z + 1)

(6)

Order (3,2), Equation (7):

ln(z) ≈ z·(z·(11·z + 27)− 27)− 11
z·(z·(3·z + 27) + 27) + 3

(7)
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In Equations (2)–(7), z is from z01 = y0
y1

, z02 = y0
y2

, z03 = y0
y3

, etc., or z01 = y0
y1

, z12 = y1
y2

, z23 = y2
y3

,

etc.; and y = 2.51·x
Re + ε∗

3.71 .
Relative error of Padé approximants (2,2) for z ≈ 1 of ln(z) is negligible for 0.8 < z < 1.2. Thus,

relative error of the used Padé approximants (2,3) of ln(z) in the proposed iterative procedure is even
more negligible and therefore it is not presented in Figure 1, but it is available in Table 1. As can be
seen from Figure 1, even the very simple form of Padé polynomials (1,2) and (2,1) are of high accuracy
in respect of domain of interest for solving the Colebrook equation which is z ≈ 1; z ε[0.9, 1.1].
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Figure 1. Relative error between ln(z) and its Padé approximants accurate for z ≈ 1.

Table 1. Relative error in % of Padé approximant (2,3) for z in interval [0.6; 1,6].

z log10(z)= ln(z)
ln(10) Padé Approximants (2,3) Relative Error %

0.6 −0.22184875 −0.221847398 6.1 × 10−4%
0.65 −0.187086643 −0.187086228 2.2 × 10−4%
0.7 −0.15490196 −0.154901848 7.2 × 10−5%
0.75 −0.124938737 −0.124938712 2.0 × 10−5%
0.8 −0.096910013 −0.096910009 4.4 × 10−6%

0.85 −0.070581074 −0.070581074 6.6 × 10−7%
0.9 −0.045757491 −0.045757491 4.9 × 10−8%

0.95 −0.022276395 −0.022276395 6.5 × 10−10%
1 0 0 0%

1.05 0.021189299 0.021189299 4.8 × 10−10%
1.1 0.041392685 0.041392685 2.7 × 10−8%

1.15 0.06069784 0.06069784 2.7 × 10−7%
1.2 0.079181246 0.079181245 1.3 × 10−6%

1.25 0.096910013 0.096910009 4.4 × 10−6%
1.3 0.113943352 0.113943339 1.2 × 10−5%

1.35 0.130333768 0.130333735 2.6 × 10−5%
1.4 0.146128036 0.146127961 5.1 × 10−5%

1.45 0.161368002 0.161367854 9.2 × 10−5%
1.5 0.176091259 0.176090987 1.5 × 10−4%

1.55 0.190331698 0.190331231 2.5 × 10−4%
1.6 0.204119983 0.204119223 3.7 × 10−4%

3. Initial Starting Point for the Proposed Iterative Method

In the case of the Colebrook equation, practical experience shows that trying to get a good initial
starting point x0 has limited value until it is chosen in the domain of applicability of the equation
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which is 3.68 < x < 12.47. Every initial starting point x0 chosen from the domain of applicability of
the Colebrook equation will lead to the final accurate solution surely, with the only difference that
in some cases more additional iterations would be needed. Usually, with the initial guess x0 that is
close to the exact solution, the iterative procedure converges to it in five or fewer iterations. To date,
cases which lead to divergence, fluctuation, or convergence to a possible far away solution outside
of the practical domain of applicability of the Colebrook equation are not known. In the proposed
approach, a good starting point should be chosen within the domain of applicability of the Colebrook
equation and should not contain any logarithmic function and/or non-integer power term.

A number of options to choose an optimal starting point x0 are considered: (1) special case
of the Colebrook equation when Re→ ∞ , (2) integration of the Colebrook equation, (3) explicit
approximations of the Colebrook equation, and (4) fixed value.

1. The common approach is to choose an initial starting point from the zone of fully developed

turbulent rough hydraulic flow x0 = −2·log10

(
ε∗

3.71

)
, because in this special case of the Colebrook

equation where Re→ ∞ , the equation is in explicit form with respect to x; x0 = ξ(ε∗), where ξ is
functional symbol [18,22]. Here the goal is to avoid use of logarithmic functions and therefore,
this starting point is not suitable.

2. An efficient procedure for finding a sufficiently good initial starting point x0 is proposed by
Yun [35] in the integral form; Equation (8):

x0 =
1
2
·
{

a + b + sgn(F(a))·
∫ b

a
tanh(F(x))dx

}
(8)

In Equation (8), F = x − ξ(x) = 0, ξ represents the Colebrook equation, a is the lower
while b is the upper limit from which an initial starting point x0 should be chosen; a = 3.68 and
b = 12.47 because the domain of applicability of the Colebrook equation that is between 3.68 and
12.47 in respect to x, sgn is signum function: if F(a) > 0→ sgn(F(a)) = 1 , F(a) = 0→ sgn(F(a)) = 0 ,
and F(a) < 0→ sgn(F(a)) = −1 , while tanh is hyperbolic tangent which is defined through the
exponential function ex with non-integer power x the use of which is as computationally expensive as
the use of the logarithmic function and which therefore cannot be recommended.

3. Every explicit approximation of the Colebrook equation [19–28]; x ≈ ς(Re, ε∗), where ς is
the functional symbol, can be used to choose an initial starting point x0. On the other hand,
almost all available approximations contain logarithmic or/and terms with non-integer powers,
which makes them unsuitable for use in the developed approach. On the other hand, having
previous experience with training Artificial Neural Networks (ANN) to simulate the Colebrook
equation [36], i.e., to use ability of artificial intelligence to simulate the Colebrook equation
not knowing its logarithmic nature but only knowing raw input and corresponding output
datasets {Re, ε∗} → {x} , a computationally cheap explicit approximation of the Colebrook
equation is developed through genetic programming [21,37–40]. The developed approximation
is computationally efficient because of its polynomial structure; Equation (9):

x0 = 5.05− 30.73·ε∗ +
3.4·Re + Re2

469647.7

46137.9 + Re + Re2

3250657.6 + ε∗ ·Re2

515.25

(9)

Eureqa [computer software] by Nutonian, Inc., Boston, MA, USA. [41,42] is used to generate
Equation (9). The Eureqa-polynomial approximation; Equation (9) has up to 40% relative error, but it
is very cheap and sufficiently accurate to serve as an initial starting point x0.

4. Extensive tests over the domain of applicability of the Colebrook equation shows that one fixed
value can also be used as the initial starting point x0 for the iterative procedure in all cases.
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Results indicate that the proposed Padé approach works in all cases, as the argument z of ln(z)
is always close to one. When Equation (9) is used, values of z are within the range 0.91–1.05.
Moreover, for the most pairs of the Reynolds number Re and the relative roughness of inner pipe
surfaces ε∗ which are in the domain of applicability, the initial starting point x0 = 7.273124147
requires the least number of iterations.

To avoid using a computationally expensive logarithmic function in the initial stage of the iterative
procedure, the recommendation is to start calculation with fixed-value starting point x0 = 7.273124147
or to use a polynomial expression; Equation (9). Power-law formulas from Russian practice which
does not contain logarithmic function can also be used as an alternative although they usually contain
integer power in fractional form [43–45].

4. Proposed Iterative Method

The Colebrook equation is usually solved iteratively using the Newton-Raphson method [46]
or even more using a simplified Newton-Raphson method known as the fixed-point method [18].
Recently, hybrid three-point methods have been proposed [47,48].

Here is presented an adjusted very accurate, fast and computationally cheap version of the
Newton-Raphson method suitable for the Colebrook equation in which the logarithmic function is
replaced after the first iteration with the Padé approximant in polynomial form [29].

Knowing that the Colebrook equation is based on logarithmic law [1,2], the achievement with
this simplified approach is more significant. Numerical examples are shown in Section 5 of this paper.

Iteration 0:
In order to avoid use of computationally expensive logarithmic functions or functions with

non-integer powers, a required initial starting point x0 should be chosen using recommendations from
Section 3 of this paper; points 3 or 4.

Iteration 1:
Having provided an initial starting point x0, new value x1 can be calculated using Equation (10):

x1 = x0 −
F(x0)

F′(x0)
(10)

In Equation (10), F(x) represents the Colebrook equation x = ξ(x) which needs to be in suitable
form, F = x− ξ(x) = 0; Equation (11):

F(x0) = x0 + 2·log10(y0) = 0 (11)

In Equation (11), y0 = 2.51·x0
Re + ε∗

3.71 which will also be used in the next iteration (in an additional
variant of the proposed method y0 is used in all subsequent iterations), while in Equation (10), the first
derivative of F in respect to x; F′(x) is from Equation (12):

F′(x0) = 1 +
2·2.51

2.302585093·Re·
(

100·ε∗
371 + 2.51·x0

Re

) (12)

In Equation (12), ln(10) ≈ 2.302585093 is with constant value, and therefore only log10(y0) from
Equation (11) requires evaluation of the logarithmic function.

In many programming languages, evaluation of logarithmic function of any base is processed by
natural logarithm [14]. Change of 10-base logarithm from the Colebrook equation to e-based natural
logarithm where e ≈ 2.718 and where ln(10) ≈ 2.302585093 is implemented as log10(z) =

ln(z)
ln(10) .

Iteration 2:
New value x2 should be calculated using Equation (13):

x2 = x1 −
F(x1)

F′(x1)
(13)
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In Equation (13), F(x1) is not calculated by log10(y1), where y1 = 2.51·x1
Re + ε∗

3.71 , but using Padé
polynomial replacement for logarithmic function which is accurate for z→ 1 and using the already
calculated value of log10(y0) from the previous iteration; Equation (14):

F(x1) = x1 + 2·log10(y0)−
(z01 − 1)·

(
11·z2

01 + 38·z01 + 11
)

2.302585093·
(
3·z3

01 + 9·z2
01 + 9·z01 + 1

) (14)

In Equation (14), log10(y0) −
(z01−1)·(11·z2

01+38·z01+11)
2.302585093·(3·z3

01+9·z2
01+9·z01+1)

≡ log10(y1), 2.302585093 ≈ ln(10),

and z01 = y0
y1

. In the first iteration, log10(y0) is already known; Equation (11). The Padé polynomial
used in Equation (14) is of order (2,3) which means that the polynomial in the numerator is of the order
of 2 while in the denominator of order 3. The Padé polynomials are also known as Padé approximants
and here the maximal relative error of the polynomial expression term in Equation (14) in domain
zε[0.6, 1.6]; z→ 1 is minor as shown in Table 1. Value of z for the procedure shown in practice is
zε[0.9, 1.1] and therefore the error of the used Padé approximant can be neglected in the case shown.

The first derivative F′(x1) does not contain any logarithmic functions and should be evaluated
using Equation (12), where x0 should be replaced with the new value x1 or knowing that the value
of the derivative does not change significantly between two iterations, F′(x0) can be reused in all
subsequent iterative cycles. Even knowing that the value of the first derivate in the procedure shown
is always near 1; for rough calculations it can be assumed that F′(x) ≈ 1 which gives the fixed-point
method as a special case of the Newton-Raphson scheme.

Iteration 3:
New value x3 is again evaluated in the same way using Equation (15):

x3 = x2 −
F(x2)

F′(x2)
(15)

In Equation (15), F′(x2) can be calculated or F′(x1) or F′(x0) can be reused. In additon, F(x2) can
be calculated using z02 = y0

y2
, where y2 = 2.51·x2

Re + ε∗
3.71 . Input parameter for Padé polynomial z02 here

refers to y0 from the first iteration; Equation (16):

F(x2) = x2 + 2·log10(y0)−
(z02 − 1)·

(
11·z2

02 + 38·z02 + 11
)

2.302585093·
(
3·z3

02 + 9·z2
02 + 9·z02 + 1

) (16)

In Equation (16), log10(y0)−
(z02−1)·(11·z2

02+38·z02+11)
2.302585093·(3·z3

02+9·z2
02+9·z02+1)

≡ log10(y2).

The Padé polynomial is a very accurate approximation of logarithmic function, so knowing that
y0 is evaluated directly through the logarithmic function, while y1, y2, y3, etc. is based on its Padé
polynomial equivalent, it is obvious that the sequence z01 = y0

y1
, z02 = y0

y2
, z03 = y0

y3
, etc. is slightly

more accurate compared with the sequence z01 = y0
y1

, z12 = y1
y2

, z23 = y2
y3

, etc. which accumulates error
introduced with Padé approximations. Anyway, the introduced error is so small that it can practically
be neglected. The second sequence z01 = y0

y1
, z12 = y1

y2
, z23 = y2

y3
, etc. yields Equation (17):

F(x2) = x2 + 2·log10(y1)−
(z12 − 1)·

(
11·z2

12 + 38·z12 + 11
)

2.302585093·
(
3·z3

12 + 9·z2
12 + 9·z12 + 1

) = x2+2·

log10(y0)−
(z01 − 1)·

(
11·z2

01 + 38·z01 + 11
)

2.302585093·
(
3·z3

01 + 9·z2
01 + 9·z01 + 1

) − (z12 − 1)·
(
11·z2

12 + 38·z12 + 11
)

2.302585093·
(
3·z3

12 + 9·z2
12 + 9·z12 + 1

) (17)

In Equation (17), log10(y1) −
(z12−1)·(11·z2

12+38·z12+11)
2.302585093·(3·z3

12+9·z2
12+9·z12+1)

≡ log10(y2) and, log10(y0) −
(z01−1)·(11·z2

01+38·z01+11)
2.302585093·(3·z3

01+9·z2
01+9·z01+1)

≡ log10(y1)
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Iteration i:
All indexes i in respect the third iteration should be updated as i = i + 1 with exemption of index

0 in Equation (16). The calculation is finished when xi+1 ≈ xi.
The algorithm for the proposed improved procedure is given in Figure 2.Energies 2018, 11, x FOR PEER REVIEW  8 of 12 
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Figure 2. Algorithm for the proposed one log-call improved procedure.

Only a one-off evaluation of the logarithmic function is needed in the proposed algorithm from
Figure 2, which is clearly marked in red; A = log10(y0). On the other hand, y0 calculated in iteration 1
is reused in all next steps and it is marked in green in Figure 2.

The proposed procedure can be simplified assuming that F′(xi) = 1, which gives the simple
fixed-point procedure [18] instead of the Newton-Raphson.
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5. Numerical Examples

Here are two numerical examples:

Example 1: Example 2:

Re = 8.31·103, ε∗ = 0.024 Re = 2.5·106, ε∗ = 4·10−4

Iteration 0
x0 = 6.279860788 x0 = 7.401979091 (9)

Iteration 1
y0 = 0.008365808 y0 = 0.000115248

log10(y0) = −2.077492116 log10(y0) = −3.938365477
F(x0) = 2.124876556 F(x0) = −0.474751864 (11)
F′(x0) = 1.001337518 F′(x0) = 1.001024781 (12)

x1 = 4.157822498 x1 = 7.876244936 (10)

Iteration 2
y1 = 0.007724855 y1 = 0.000115724

z01 =
y0
y1

= 1.082972765 z01 =
y0
y1

= 0.995885374
0.034617535 −0.001790646 Padé approximant (6)

F(x1) = −0.066396805 F(x1) = 0.003095273 (14)
FF′(x1) = 1.001986711 F′(x1) = 1.000970478

x2 = 4.224087653 x2 = 7.873152664 (13)

Iteration 3
y2 = 0.00774487 y2 = 0.000115721

z02 =
y0
y2

= 1.080174034 z02 =
y0
y2

= 0.995912092
0.033493733 −0.001778995 Padé approximant (6)

F(x2) = 0.002115955 F(x2) = −2.03017·10−5 (16)
F′(x2) = 1.001957048 F′(x2) = 1.000970813

x3 = 4.221975832 x3 = 7.873172946 (15)

Final value:
x = 4.22204103 x = 7.873172814

λ = 1
x2 = 0.056098998 λ = 1

x2 = 0.016132454

6. Conclusions

An efficient algorithm for the iterative calculation of the Colebrook equation by both an accurate
and computationally efficient Padé approximation is presented in this paper. It requires only one
evaluation of the logarithmic function in respect to the whole iterative procedure and more specifically
only in the first iteration, while the common procedures from current engineering practice require
at least one evaluation of logarithmic function for every single iteration. The logarithmic function
in the proposed procedure is replaced in all iterations (except the first), with simple, accurate and
efficient Padé polynomials [29]. In this way the same accuracy is reached through the proposed less
demanding procedure, after the same number of iterations as in the standard algorithm which uses
log-call in each iterative step. This is a good achievement, knowing that the nature of the Colebrook
equation is logarithmic. For their evaluation in the Central Processor Unit (CPU), Padé polynomials
require a lower number of floating-point operations to be executed compared with the logarithmic
function [10–14,30–34,44].

The here presented iterative approach only introduces a computationally cheaper alternative to
the standard iterative procedure. It does not reduce the number of required iterations to reach the
final desired accuracy nor provide more accurate results. The proposed method reduces the burden
for the Central Processor Unit (CPU) as less floating-point operations need to be executed. In that
way, the presented approach also increases speed of computation. On the other hand, many explicit
non-iterative approximations to the Colebrook equation are available in literature [19–28,49] which
initially appear simple for computation, but are not. They are widely used, but although some of
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them are very accurate, they contain relatively complex internal iterative steps and also a number of
computationally demanding functions. For example, the widely used Haaland approximation [49,50]
introduces relative error up to 1.5%, but with the cost of evaluation of one logarithmic expression and
one non-integer power. In addition, the approximation by Romeo et al. [26,39] reaches extremely high
accuracy with the relative error of up to 0.14%, but with a cost of evaluation of even three logarithmic
expressions and two non-integer powers. Regarding alternative iterative procedures, Clamond [10]
provides an accurate iterative approach using Ω function, but this algorithm requires at least two
log-calls; one for initialization and one in the first iteration, which is more expensive compared with
the here presented approach.

The procedure proposed in this paper can significantly reduce the computational burden for
evaluating complex distribution networks with various applications (water, gas) [9,50–55]. For example,
a probabilistic approach using time dependent modeling of distribution or transmission networks
requires many millions of evaluations of Colebrook’s equation. For such kinds of computations it is
always good to have a cheaper but still accurate approach to speed up the process.
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18. Brkić, D. Solution of the implicit Colebrook equation for flow friction using Excel. Spreadsheets Educ. (eJSiE) 2017,

10, 2. Available online: http://epublications.bond.edu.au/ejsie/vol10/iss2/2 (accessed on 11 July 2018).
19. Gregory, G.A.; Fogarasi, M. Alternate to standard friction factor equation. Oil Gas J. 1985, 83, 120–127.
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39. Ćojbašić, Ž.; Brkić, D. Very accurate explicit approximations for calculation of the Colebrook friction factor.

Int. J. Mech. Sci. 2013, 67, 10–13. [CrossRef]
40. Mitrev, R.; Tudjarov, B.; Todorov, T. Cloud-based expert system for synthesis and evolutionary optimization

of planar linkages. Facta Univ. Ser. Mech. Eng. 2018. [CrossRef]
41. Schmidt, M.; Lipson, H. Distilling free-form natural laws from experimental data. Science 2009, 324, 81–85.

[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10494-012-9419-7
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001454
http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:9(929)
http://dx.doi.org/10.1108/02644401211246337
http://dx.doi.org/10.1016/j.aml.2011.03.014
http://epublications.bond.edu.au/ejsie/vol10/iss2/2
http://dx.doi.org/10.1016/j.petrol.2011.02.006
http://dx.doi.org/10.3390/fluids2020015
http://dx.doi.org/10.1002/aic.690280323
http://dx.doi.org/10.1016/S1385-8947(01)00254-6
http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:8(1187)
http://dx.doi.org/10.1080/00221686.2009.9522031
http://dx.doi.org/10.1017/CBO9780511530074
http://dx.doi.org/10.1080/0025570X.1978.11976688
http://dx.doi.org/10.1002/0470124601
http://dx.doi.org/10.1109/TC.2004.53
http://dx.doi.org/10.1115/1.4034950
http://dx.doi.org/10.1108/HFF-06-2014-0173
http://dx.doi.org/10.1016/j.amc.2007.09.006
http://dx.doi.org/10.1155/2016/5242596
http://www.ncbi.nlm.nih.gov/pubmed/27127498
http://dx.doi.org/10.2166/hydro.2006.020
http://dx.doi.org/10.22190/FUME1602209P
http://dx.doi.org/10.1016/j.ijmecsci.2012.11.017
http://dx.doi.org/10.22190/FUME180420016M
http://dx.doi.org/10.1126/science.1165893
http://www.ncbi.nlm.nih.gov/pubmed/19342586


Energies 2018, 11, 1825 12 of 12
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52. Brkić, D. Spreadsheet-based pipe networks analysis for teaching and learning purpose.
Spreadsheets Educ. (eJSiE) 2016, 9, 4. Available online: https://epublications.bond.edu.au/ejsie/vol9/iss2/4/
(accessed on 11 July 2018).
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