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Abstract: Wind Farm Layout Optimization (WFLO) can be useful to minimize power losses associated
with turbine wakes in wind farms. This work presents a new evolutionary WFLO methodology
integrated with a recently developed and successfully validated Gaussian wake model (Bastankhah
and Porté-Agel model). Two different parametrizations of the evolutionary methodology are
implemented, depending on if a baseline layout is considered or not. The proposed scheme is applied
to two real wind farms, Horns Rev I (Denmark) and Princess Amalia (the Netherlands), and two
different turbine models, V80-2MW and NREL-5MW. For comparison purposes, these four study cases
are also optimized under the traditionally used top-hat wake model (Jensen model). A systematic
overestimation of the wake losses by the Jensen model is confirmed herein. This allows it to
attain bigger power output increases with respect to the baseline layouts (between 0.72% and
1.91%) compared to the solutions attained through the more realistic Gaussian model (0.24–0.95%).
The proposed methodology is shown to outperform other recently developed layout optimization
methods. Moreover, the electricity cable length needed to interconnect the turbines decreases up to
28.6% compared to the baseline layouts.

Keywords: wind farm layout optimization; Gaussian wake model; genetic algorithms; evolutionary
computation; Horns Rev; Princess Amalia

1. Introduction

Different economic reasons, mainly related to the need to best harness areas with a high wind
resource while restraining the cost of electricity cable, make wind turbines be installed in clusters,
widely known as wind farms. However, at the same time, this necessity to restrain the area where
the devices are settled gives rise to unwanted flow disruptions, mainly produced by turbine wakes
affecting downstream turbines. This issue can result in a remarkable reduction of the overall wind
power output in the wind farm for some wind directions (e.g., [1–3]). In the last decade, it has been
shown that the optimization of the turbine layout in a wind farm can be used to minimize the wake
effects and, therefore, maximize the overall wind power production of the facility (e.g., [4–6]).

The high variability of the boundary layer flow climatology in a wind farm requires that each
possible layout solution is assessed under multiple wind conditions (direction, magnitude) in order to
obtain a realistic approach of its wind power capability [3,7,8]. Considering this framework for wind
farm layout optimization is far from being computationally feasible through the numerical models
capable of representing the wake interactions (e.g., Large Eddy Simulation, LES). This is usually
overcome through the implementation of simple and computationally inexpensive analytical wake
models, where the flow conditions are solved through simple analytic expressions and only over
specific points of interest inside a wind farm. Different analytical turbine wake modelling approaches
have been developed during the last few decades. Jensen [9] (further developed in Katic et al. [10])
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designed a mass-conservation model with a top-hat velocity deficit profile for the wake flow behind
a wind turbine. Due to its simplicity and easy applicability, it became the reference model used in the
last few decades. Further improvements have been attained in recent years. Always under a top-hat
scheme, Frandsen and Thøgersen [11] introduced momentum conservation in the parametrization
of the wake. Jiménez et al. [12] developed a model for the deflection of a wake, when the turbine is
controlled with yaw. This was used later on by Gebraad et al. [5] in combination with the Jensen [9]
model. Finally, Bastankhah and Porté-Agel [13] derived an analytical model based on mass and
momentum conservation, together with the assumption of a more realistic, self-similar Gaussian
shape of the velocity deficit. The authors provided validations of the model against high resolution
wind-tunnel measurements and LES data, showing a clear improvement of the representation of the
wake compared to previous approaches [9,14], thus making it especially suitable for wind farm layout
optimization problems.

Wind Farm Layout Optimization (WFLO) has been addressed by numerous works, which implemented
different optimization methods (see the review by Herbert-Acero et al. [15] and references therein).
Several of them have used gradient-based WFLO solvers, such as Combinatorial optimization [16],
Sequential Linear (SLP) or Quadratic (SQP) Programming [6,17–19] or RANS-based gradients [20].
Most contributions, however, have used gradient-free methods, most of them in the field of
Soft Computing [21] (SC). SC entails a subset of Artificial Intelligence [22] consisting of different
non-deterministic, heuristic and metaheuristic techniques which are characterized by exploiting
the tolerance for uncertainty to yield efficient optimization solutions at the same time with
a very low computational cost compared to numerical simulations, without dismissing beforehand
any possible solution to the problem. To date, most contributions on WFLO have implemented
different sub-categories of SC, including Greedy [23,24] Monte Carlo [25], Pattern Search [26],
or Local Search [27] heuristics, or Simulated Annealing [28,29] or Evolutionary Computation (EC)
metaheuristics such as Particle Swarm Optimization [4,30,31], Ant Colony [32] or Genetic Algorithms
(e.g., Bilbao and Alba [29], Salcedo-Sanz et al. [33,34], Huang [35], Liu and Wang [36], Gao et al. [37],
Réthoré et al. [38]). In an EC optimization tool, different principles based on biological evolution are
used, while keeping diversity by considering a big enough set of potential solutions (population).
EC has proven to be highly effective in many diverse optimization problems [39], including studies on
wind, as wind shear control within the aero-space industry [40] or wind variability estimation [41–43].

EC has been proven an efficient resource in WFLO. A simple Genetic Algorithm (GA) proposed
by Mosetti et al. [44] was the first to show the advantages of EC tools in the field, and became
a benchmark for multiple subsequent works. Since then, other contributions have used more complex
EC versions while addressing multiple WFLO aspects. Grady et al. [45] considered different wind
speeds and angles, and Emami and Noghreh [46] provided additional economic constraints to the
cost function. In turn, Elkinton et al. [47] implemented a genetic algorithm where several variables
as sea floor properties or distance to the coast were also considered. González et al. [48] introduced
an algorithm that included some restricted turbine locations, while Ituarte-Villarreal and Espiritu [49]
proposed Viral System Algorithms [50] to address WFLO. More recently Parada et al. [51] applied
an up-to-date GA [52] to the Mosetti et al. [44] problem. However, all WFLO contributions mentioned
consider at least either a gridded, limited matrix of coordinates for the turbine positions (usually
10 × 10 squared grids [16,17,23–25,29–31,35,36,44–46,48,49,51], or either a highly idealized wind
climatology [4,6,18–20,26–28,32–34,37,38,47]. Regarding this last point, it has been shown that the
estimate of the overall wind power output in a wind farm does not become reliable until the used
wind rose attains resolutions of approximately 3° and 1 m/s [53], and “using few sectors (12 as in the
common practice) will lead to impressively high but unreal improvement on power” [54].

In latest years, some WFLO works have started considering more realistic conditions,
as a continuous space for the turbine positioning and higher resolutions in the wind variability.
Regarding this, Feng and Shen [53,55] implemented a Random Search (RS) routine in a real wind farm
(Horns Rev I [56]) using a high resolution, Weibull-fitted wind climatology. Then, Feng et al. [54]
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further developed the RS-based procedure to address multi-objective WFLO experiments in the same
farm. More recently, Gebraad et al. [57] implemented SQP in Princess Amalia Wind Farm [58] by
considering a high resolution wind rose. A common feature of these realistic WFLO contributions is
that they all use the analytical wake model proposed by Jensen [9], which has been recently shown to
considerably overestimate the wake effects in a wind farm [8] compared to the Gaussian model from
Bastankhah and Porté-Agel [13] (hereafter, BPA14). This, added to the fact that resources as genetic
algorithms have only been implemented on WFLO under simplified assumptions through rather
standard versions, provides an excellent opportunity to investigate WFLO through further innovative
and WFLO-specific EC solutions in a more realistic and efficient framework. This work develops this
idea by designing, implementing and validating different novel EC-based WFLO strategies upon the
Gaussian wake model from BPA14 and, for comparison, over a traditionally used wake model as the
Jensen [9] model. In addition, herein we aim at assessing the sensitivity of the developed tools to
different variables, such as the local climatology, the wind farm geometry or the turbine size. In the
next sections, specific details are provided on the used wake models (Section 2), the developed EC
tools (Section 3), the framework and data considered (Section 4) and the obtained results (Section 5).
To wrap up, the most relevant conclusions of this research are pointed out (Section 6).

2. Wake Models and Power Output

The main wake model upon which the power output was computed in the optimization algorithms
developed in this work is the Gaussian model introduced by Bastankhah and Porté-Agel [13]
(hereafter wG). Although there exist other models with a Gaussian velocity deficit similarity profile
(e.g., [14,59]), wG from BPA14 was chosen as it is the only one with this feature which considers both
mass and momentum conservation, and, as specified above, provides a proven higher skill compared
to other schemes. In addition to the Gaussian model, the optimization algorithms were also used with
the Jensen model (Jensen [9], hereafter wJ) as the wake model engine, for comparison with wG and in
order to have a reference on the performance of the WFLO methodology with respect to the results
provided by most of the previous works in layout optimization. In addition, the fact of accounting for
two wake models allowed the assessment of the sensitivity of the optimization to the type of wake
model used.

2.1. Jensen Wake Model

Jensen [9] developed one of the first analytical models of wind turbine wakes, and even provided
a first approach about the turbine wake interaction in a wind farm. It considers a top-hat profile for the
velocity deficit, and by following the balance of momentum inside an actuator disk, it can be written
as follows:

∆U
U∞

= 2a/
(

1 +
2kwakex

d0

)2
, (1)

where a is the induction factor of the actuator disk, kwake the wake expansion rate, d0 is the diameter of
the rotating area of the turbine and x the downstream distance. ∆U/U∞ is the normalized velocity
deficit U∞ −Uw, defined as the normalized difference between the velocity of the undisturbed flow
U∞ and the flow velocity inside the wake Uw. The induction factor of the actuator disk can be related
to the thrust coefficient Ct of a wind turbine as follows:

a =
1−
√

1− Ct

2
. (2)

If a in Equation (2) is inserted in Equation (1), the expression for the velocity deficit can be written as:

∆U
U∞

=
(

1−
√

1− Ct

)
/
(

1 +
2kwakex

d0

)2
, (3)
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which entails the Jensen model for a wind turbine wake. Despite being derived through the momentum
balance of the actuator disk, Bastankhah and Porté-Agel [13] showed that the Jensen model can be
fulfilled also by considering only mass conservation alone. Regarding the wake expansion rate,
although Katic et al. [10] considered values for kwake above 0.1, other derived works established values
around 0.075 for onshore wind farms [60] and around 0.04 for offshore ones [60,61]. This is the value
chosen in this work, coinciding with the criteria of previous offshore WFLO studies [53,55].

2.2. BPA14 Gaussian Wake Model

The Gaussian wake model assumes a Gaussian-profiled velocity deficit, and applies mass and
momentum conservation to the flow through the turbine. These conservations can be represented
following Tennekes et al. [62]:

ρ
∫

Uw (U∞ −Uw) dA = T , (4)

where ρ is the density of air, and A the area through which the air flows. T is the thrust force over the
turbine and can be defined as (see Burton et al. [63]):

T =
1
2

CtρA0U2
∞ , (5)

where A0 is the rotor area of the turbine. On the other side, the self-similarity in the wake and the
possibility to assume a Gaussian shape of the velocity deficit in the wake allows for describing the
normalized velocity deficit as:

U∞ −Uw

U∞
= C (x) e

r2

2σ2 , (6)

where C (x) is a function of the downstream distance from the turbine for the velocity deficit in
the center of the wake (i.e., max. deficit), σ is the standard deviation of the Gaussian-profiled
velocity deficit and r is the radial distance from the center of the wake. Inserting the values of
Uw from Equation (6) and T from Equation (5) in Equation (4) and integrating from 0 to ∞, an
equation is obtained for C (x) that, when solved, provides two values, only the smaller one being
physically acceptable:

C (x) = 1−
√

1− Ct

8 (σ/d0)
2 . (7)

If a linear expansion of the wake region is assumed (as with the Jensen model), σ/d0 can be
defined as

σ

d0
= k* x

d0
+ ε , (8)

where k* = ∂σ/∂x is the growth rate of the wake (different from kwake in the Jensen model) and
ε = lim

x→0
(σ/d0). By inserting Equations (7) and (8) into Equation (6), the expression is obtained for the

Gaussian-shaped velocity deficit in the wake:

∆U
U∞

=

(
1−

√
1− Ct

8(k∗x/d0 + ε)2

)
× exp

(
− 1

2(k∗x/d0 + ε)2

{(
z− zh

d0

)2
+

(
y
d0

)2
})

, (9)

where y and z are the spanwise and vertical coordinates, respectively, zh is the hub height and,
following the reasoning in BPA14, ε can be defined as:

ε = 0.2

√
1− a
1− 2a

. (10)

LES results [64] used by Bastankhah and Porté-Agel [13] and recent field lidar measurements [65]
have shown that the wake growth rate k* of a turbine ni can be directly associated to the turbulence
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intensity level I immediately upwind the turbine rotor. Following this idea, in this work, we consider
the linear empirical relationship between k* and I derived by Niayifar and Porté-Agel [8] form LES
data [64]:

k*
i = 0.003678 + 0.3837I , (11)

which was validated for the range (0.06 < I < 0.14).
In a wind farm, the turbulence intensity Iwi in the wake of a turbine ni is the result of the

aggregation of two different turbulence contributions, the ambient turbulent intensity I0 and the added
turbulence intensity I+ due to the turbines nj,j=1,....,i−1 located upstream from turbine ni, and can be
defined as follows:

Iwi =

√
I+2 + I0

2 . (12)

Several empirical approaches have been carried out on the added turbulence Ij+ produced by
a turbine nj [66,67]. Due to the consistent representation of the turbine wake interaction under the
Gaussian model shown in Niayifar and Porté-Agel [8], here we considered the relationship from
Crespo et al. [68],

Ij+ = 0.73a0.8325 I0.0325
0 (x/d0)

−0.32 . (13)

Following Frandsen and Thøgersen [11], only the strongest of the added turbulence intensities of
turbines nj affecting ni is considered:

I+ = max

(
Aw4
πd2

0
Iij+

)
, (14)

where Iij+ is the added streamwise turbulence intensity of turbine nj on turbine ni.

2.3. Superposition of Velocity Deficits and Wind Power Output

The resulting wind speed Ui at turbine ni in the wind farm is computed by progressively
aggregating the values of Uw,j from all the turbines nj located upstream the turbine ni, and thus
affecting it as it spans in the direction of the flow. Hence, the flow speed in turbine ni affected by wakes
from turbines nj is defined as

Ui = U∞ −
i−1

∑
j=1

(
Uj −Uji

)
, (15)

where Uji is the wake velocity of turbine nj in the position of turbine ni .
Finally, to each obtained velocity Ui, a value of output power POni

is assigned to each turbine
ni, according to the power curve corresponding to the considered turbine model (see Section 4.2 for
details on the used turbines).

3. WFLO Evolutionary Methodology

Two different Evolutionary Algorithms (EA) for wind farm layout optimization have been
designed and implemented in this work. One of these tools has been conceived to attain an optimum
layout without the need to consider any specific layout information beforehand. On the other side,
the second tool has been designed to be able to start the evolution with some specific layout provided
by the user (e.g., the existing layout in operation in the wind farm). The two algorithms can be
defined through a common General Evolutionary Structure (GES) or family of algorithms, and are the
result of adopting different specifications of the GES parameters. Firstly, the main features of the GES
(thus common for the two tools) are described. Then, some particular aspects corresponding to the
two resulting tools obtained from the specific GES parametrizations are detailed (Section 3.2).
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3.1. General Evolutionary Structure

The design of the General Evolutionary Structure developed in this work (and thus the two
derived tools) works by making a set of initial layout configurations evolve to an optimum. As in
any Evolutionary Computation tool, to do this, a specific problem encoding that relates the biological
evolution terms with the WFLO problem must be defined. The problem encoding starts by considering
a set of a individuals (possible layout solutions) with a fixed number of N chromosomes (turbines)
each (according to the number of turbines assigned to the wind farm), each one consisting of two
genes (x and y coordinates). These two genes from the N chromosomes are the elements to be
evolved throughout a number of generations (iterations) until some termination condition is attained.
Within each generation, EAs typically follow a series of steps. The scheme for the GES is summarized
in Algorithm 1, and its steps within each generation are described as follows.

3.1.1. Cost Function and Fitness

The implemented evolutionary algorithms are designed to optimize a cost function fc throughout
a series of iterations [69]. Here, such optimization consists of maximizing the overall power output in
the wind farm. fc is measured for each individual in each generation by means of the wake model being
applied. For each of the wind speeds in the wind rose, the wake model is implemented, and then the
overall power output is aggregated by weighting each power value with the corresponding frequency
of each wind speed.

The cost function can be thus defined as the overall output power in all turbines and sectors,
as follows:

fc (WF) =
N

∑
n=1

S

∑
s=1

B

∑
b=1
POn,s,b , (16)

where Pn,s,b is the output power of turbine n in an N-turbine wind farm, according to the wind speed b
and angular sector s of an S-sector by B-speed bin wind rose.

Two constraints are included in the Fitness: the limitation of the wind farm extension to a given
area AWF, and a 2 rotor diameter distance (2D) as the minimum possible distance between turbines.
The latter was implemented because the analytical models are not applicable in the near wake. A similar
distance has also been applied in recent WFLO works (e.g., [6,57]).

3.1.2. Selection

Once the cost functions has been computed for each individual of the generation, those individuals
showing high performance are selected as the parents for the next generation. This selection is attained
by applying a certain selection pressure to the system [70]. To be efficient, this pressure must be not
too high (only very few or the best individuals are retained), in order to prevent falling into a local
sub-optimum, and not too low (too many, or too low performing individuals are retained), in order for
the routine to be competitive. Although the roulette wheel [71] has been traditionally implemented
as a selection method, it has also shown different drawbacks related to the excessive overrating of
the best solutions [72]. A rank-based roulette wheel (e.g., [73]) has shown favourable results when
addressing this problem. Inspired by this strategy, we designed a selection pressure routine that relaxes
the probability to be selected of the fittest solutions, by introducing some noise to the score of each
individual, and associating it with the median of the scores of all individuals in the population. Thus,
the final selection score Sa is related to the performance of the rest of the population during generation
G as follows:

Sa (G) = P ( fc (WFa) > [Me ( fc (POP)) · (Sp1 + Sp2 (rs,1 − rs,2)) ]) , (17)

where POP represents all the individuals in the population, and rs,1, rs,2 are two random numbers
extracted from the uniform distribution U (0, 1). Me is an abbreviation for median, which establishes
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the reference measure to overcome by individual a, whereas Sp1 and Sp2 are two tunable parameters
according to the characteristics of each problem and are used to introduce the randomness needed to
ensure diversity and prevent stagnation.

The individuals with highest Sa values become the selected population. The size of the selected
population Πsel is kept constant for the whole evolution, and is defined prior to the evolution by the
parameter called generation gap GG [74] and the size of the whole population, Π:

Πsel = max ((1− GG) ·Π, 1) , GG ∈ (0, 1] , (18)

so that the minimum possible value for Πsel is 1.

3.1.3. Crossover

Those individuals which are not in Πsel are dismissed. As the population size is kept constant,
the dismissed individuals need to be replaced by new ones. Each one of the new individuals is
an offspring created from two individuals (a1, a2) randomly chosen from Πsel. This means that all
the information from the new turbine positions can be found in a1 and a2 chromosomes. The usually
performed crossover in the context of WFLO is based on a simple one-point [46,47] or two-point [33,44]
crossover routine. However, in this work, crossover has been subject to an elitist sub-condition.
The idea is inspired by the elitist genetic strategy from the NSGA-II algorithm [75], after different
contributions made it evident that “elitism can speed up the performance of the GA significantly,
whereas it can help with preventing the loss of good solutions once they are found” [76,77]. Specifically,
in this work, we propose an elitist mechanism adapted to the particularities of WFLO, as done in
González et al. [48]. There, some operators are applied to single turbines according to their fulfillment
of certain requirements, rather than to the whole individual. Here, the elitist mechanism also operates
on the turbines themselves, in this case according to their relative overall power output. This has been
designed to avoid an excessive displacement of the turbines near the wind farm perimeter, since the
overall power output has been associated to a high density of peripheral turbines [28,45].

This crossover-elitist procedure works as follows: considering parents (a1, a2) belonging to Πsel,
say a1 shows a higher overall power than a2, and naMAX is the turbine in a1 with the maximum
power output. Under this scheme, the naM turbines in a1 showing a power output higher than
pb · naMAX is retained, pb∈[0, 1]. The rest of the turbines (N−naM ) are dismissed, and substituted by the
corresponding turbines in a2 that are closest to the dismissed ones. If two or more dismissed positions
share a similar closest turbine position in a2, one will remain and the other will be resampled due to
the 2D minimum distance general constraint among turbines. As it can be observed, crossover can be
exclusively controlled by pb.

3.1.4. Mutation

Finally, in order to guarantee the diversity of the population (and thus prevent the system
from falling into a sub-optimal), some mutation (e.g., [33,41]) must be introduced to the individuals’
positions at each generation. In this way, at each generation, each offspring individual has a certain
probability PM1 of experiencing some kind of mutation. Within a mutating individual, each turbine
has an additional probability PM2 of varying its position. Finally, the distance a mutating turbine
will move is controlled according to a third mutation parameter DM, so mutation can be encoded
by [PM1 , PM2 , DM], and the new position X′j = (x′j, y′j) of a turbine j after mutation can be defined
as follows:

X′j = Xj + P
(
rm,2 < PM2 |rm,1 < PM1

)
· DM · (rm,3 − rm,4) , (19)

where Xj is the original position of the turbine j, and rm,q (q = 1,2,3,4) are random numbers extracted
from the uniform distribution U (0, 1).

After mutation, a new generation is fully set, and the population is again ready to be submitted
to fitness.
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3.1.5. Termination and Parametrization

Some termination condition or conditions must be imposed to an Evolutionary Algorithm
according to the performance expected or the allowed computational time. In this work, a performance
condition based in the relative improvement during the last 1000 generations has been imposed.
The individual which provides the highest power output at the last generation becomes the
solution considered.

Considering all the operators above, the described scheme can be fully represented by just eight
control parameters, which form the following tuple:

A = A[Π, Sp1, Sp2, GG, pb, PM1 , PM2 , DM] . (20)

Algorithm 1 Pseudo-code for the designed General Evolutionary Structure.

1.Initial conditions
1: De f ine Parameters A = A[Π, Sp1, Sp2, GG, pb, PM1 , PM2 , DM]
2: Generate Initial Pop. POP← a(1, 2, 3, . . . , Π) , na = n(1, 2, 3, . . . , N), Xna(xna , yna) ∈ AWF
3: Πsel = max(Π(1− GG), 1)
4: g← 0

2.Evolve
5: while g<1000 or termination conditions not met (Ud, stag.). do
6: g← g + 1

3.Fitness
7: for all a ∈ POP do
8: fc (WF)a = ∑N

n=1 ∑S
s=1 ∑B

b=1 POn,s,b
9: end for

4.Selection
10: for all a ∈ POP do
11: S(a)← P( f c(WF)a > Me(Sp1 + Sp2(U (0, 1)−U (0, 1))))
12: end for
13: S = {S(1), . . . , S(Πsel), . . . , S(Π)}, S(1) ≥ . . . S(Πsel) > . . . S(Π)
14: SelPOP = {aS1, aS2, . . . , aSΠsel}
15: ElimPOP← POP \ SelPOP

5.Crossover
16: for all a ∈ ElimPOP do
17: a1 ← rand(SelPOP)
18: a2 ← rand(SelPOP), a2 6= a1
19: na1 M ← na1(PO(na1) ≥ pb ·max(PO(na1)))
20: for all n ∈ na1 M do
21: Xa(n)← Xa1(na1 M )
22: end for
23: na1m ← na1 /∈ na1 M
24: for all n ∈ na1m do
25: dmin ← min(Xa(n), Xna2

)
26: Xa(n)← Xa2(ndmin

)
27: end for

6.Mutation
28: for all n do
29: Xa(n)← Xa(n) + P(PM2 > U (0, 1)|PM1 > U (0, 1))DM(U (0, 1)−U (0, 1))

7. Keep Constrain Conditions
30: if Xa(n) /∈ AWF then
31: Xa(n)← Xd, (Xd, Xa(n))← min(Xa(n), AWF)
32: end if
33: if (Xn, Xm)<2D, m ∈ N, m 6= n then
34: Xa(n)← rand(Xr), Xr ∈ AWF
35: end if
36: end for

37: end for
38: end while
39: Solution← a(Pmax), Pmax ← max( f c(WF)a)
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3.2. Derived Algorithms

Depending on the values adopted in A (Equation (20)), a specific algorithm will be generated.
As aforementioned, in this work, two different algorithms were derived from the GES. They are
described below.

3.2.1. Crossover-Elitist Genetic Algorithm (CEGA)

The Crossover-Elitist Genetic Algorithm (CEGA) has been conceived to attain a competitive
solution without considering any a priori prevailing solution. For this reason, a relatively big amount
of diversity needs to be kept along a widespread amount of generations. A successful way for EAs to
be computationally effective while keeping a high level of diversity is to maintain a balanced trade-off
between exploration (Er), and exploitation (Et) modes (e.g., [78–80]). Whereas in the exploration mode
the main target is to leave as few as possible areas of the search space left to examine, the exploitation
mode is meant to converge into an optimum solution within a more or less constrained, previously
explored domain, which is usually characterized by being a much faster-evolving process. Despite
some general agreement existing in the need for a balance between Et and Er, the specific form that this
relationship will adopt is highly problem-dependent [79]. Although many EAs keep Er and Et modes
implicit, there are others that have set them explicitly (e.g., [81,82]). Inspired by them, in this work,
we explicitly divided the Er and Et modes, so that, in the first phase of the algorithm, a specification
for the Er mode (AEr) is enabled, and, after a certain transition point Pt, the mode is dynamically
switched to an Et configuration (AEt ). This means that, in fact, CEGA is defined by two specifications
(AEr and AEt ).

Because exploration is related with the need for a big enough amount of diversity in the system,
the transition from Er to Et has been explicitly subject to the amount of diversity in the population,
following the idea of Oppacher and Wineberg [83]. Diversity can be measured in different ways
(i.e., Hamming distance, k-means, etc.), depending on the problem. In this work, we have implemented
a metric related to the Euclidean distance from the chromosomes j of the individual i to the average
chromosomes of the population in the search space for a given generation G, inspired by the expression
proposed by Ursem [82]:

Ud(G) =
1

(L) ·Π
Π

∑
i=1

√√√√ N

∑
n=1

(
Xn,i − X̂n

)2 , (21)

where |L| is the length of the diagonal in the search space S ⊆ IRN , Xn,i is the nth chromosome position
of the ith individual, and X̂n is the nth value of the representative points. In Ursem [82], X̂n is
represented by the average position at each problem dimension j. However, in the current problem,
dimensions (turbines) interchange with each other indistinctly from one individual to another, so it is
not possible to straightforwardly define the average of each dimension, and some kind of centralization
procedure is required in order to define the N central chromosomes considered as reference. Although
k-means could have been a consistent option, here chromosomes X̄n are represented by the positions
in the best performing individual in the generation, so Ud is defined with respect to the state of the
performance of the evolution. In order to keep Er related to a high diversity level, if Ud falls below
a certain threshold, the evolution is interrupted, the last generation with a Ud maximum is considered,
and the mode is switched into Et.

Although increasing the generation gap increases the computational cost and renders the system
susceptible to a potentially delaying convergence, following previous works (e.g., [74]), a rather high
value was assigned herein (0.9), so that a more thorough search can be attained. Aside from that,
a value of M1 = 0.99 was defined, so that each individual has a probability of 0.01 of not mutating at
all. From these features, a preliminary parametrization of ACEGA (for either Er or Et modes) can be
expressed as follows:

ACEGA = A[Π, Sp1, Sp2, 0.9, pb, 0.99, PM2 , DM]. (22)
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The parameters remaining to be defined were fixed according to sensitivity against performance,
and are described in the next section (Section 4.3).

3.2.2. Baseline Layout Evolutionary Algorithm (BLEA)

The Baseline Evolutionary Algorithm (BLEA) was conceived to tackle two main targets. In the first
place, it was designed to harness the potential performance of the baseline layout (BL) and, secondly,
to act as a measure of the margin of optimization left by BL. To attain this, BLEA was programmed to
thoroughly evaluate the search space surrounding BL. Specifically, BL was included in the starting
population amongst a set of random initial individuals, whereas a rather small level of breeding and
mutation needed to be implemented. Thus, the high probability that a certain BL individual has
a great performance compared to the rest, added to the fact that we are interested in the surroundings
of the BL solution space, led to considering small diversity (i.e., crossover and mutation) operators.
Because breeding has a limited effect when individuals are very similar, the attainment of diversity
was kept through the mutation operators. Because the genetic evolution was concentrated in mutation,
the selection of a certain parent for the next generation was enough to ensure the evolution, so a value
of GG = 1 was considered. This entailed a strong exploitation behaviour within BLEA, so presumably
a big population was appropriate in order to partly compensate this and enrich the system diversity,
along with selection operators Sp1 and Sp2. Again, these selection pressure operators could make the
selected individual not necessarily be the best performing one. This configuration has some similarities
with Simulated Annealing (SA). However, in this case, there is no need to define a function for the
temperature decrease (the main SA feature), thus allowing for reducing the probability to fall into
a suboptimal estate in complex optimization problems such as this, granting a wide search range any
time. According to these features, BLEA can be defined by the following preliminary form:

ABLEA = A[Π, Sp1, Sp2, 1, 0, 1, PM2 , DM] . (23)

Again, the parameters remaining to be defined were fixed according to different sensitivity tests
(Section 4.3).

4. Study Cases and Data

In this work, we aimed at assessing the sensitivity of the developed algorithms to different
variables, as the local wind climatology, the wind farm geometry, the wind turbine size or the wake
model used. To attain this, we considered two different wind farms (WF) and two different turbine
models. As a result, an overall amount of four different cases was finally considered.

4.1. Wind Farms Considered

On the one side, the Horns Rev I (HR) wind farm was selected for the study due to the wide
existing bibliography associated with it, especially regarding the analysis of wakes (e.g., [8,84]) and
layout optimization (e.g., [28,53,55]). HR is located 12–17 km off the western coast of Denmark, and it
consists of 80 Vestas V80-2.0 MW (hereafter V80) turbines, with a rotor diameter of 80 m and a hub
height of 70 m, conforming a regular grid layout (Figure 1a).

Complementarily, Princess Amalia (PA) wind farm, located off the coast of the Netherlands
(Figure 1b), was also considered to investigate the dependency of the WF performance to the local
wind climatology and the particularities of its geometry, especially regarding its baseline turbine
layout. This wind farm uses 60 V80 turbines (rotor diameter of 80 m and hub height of 59 m), and it
has been considered by other realistic WFLO studies [5,6,57].
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Figure 1. Location and baseline layout of (a) Horns Rev I with respect to the Danish coast; and of (b)
Princess Amalia Wind Park with respect to the Dutch coast.

Wind climatologies for HR and PA were retrieved from wind speed data registered in nearby
meteorological masts at heights of 62 and 70 m, respectively, during the periods June 1999–
May 2002 [56] and July 2005–June 2006 [58], respectively. In the HR case, wind data was obtained
in terms of the parameters (scale and shape) corresponding to 12 Weibull distributions, each one
representing a sector in a 12-sector wind rose (as in Feng and Shen [53]). For PA, data was retrieved
from direct 10-min wind speed.

As shown in Feng and Shen [53], obtaining a reliable power performance in a given layout requires
the usage of a rather high resolution wind rose, with at least 3° and 1 m/s resolutions. According to
this, in this work, we designed wind roses with this resolution for both HR and PA locations. For the
HR case, the Weibull parameters were interpolated by means of a spline interpolation (similarly as
in [53]), providing the 120 angular sectors required. The obtained wind roses are shown in Figure 2.
Their different appearance is consistent with the different type of data processing, with 3-yr Weibull
parameter interpolation in HR against a 1-yr direct velocity for PA.

Figure 2. Obtained 3◦ and 1 m/s resolution wind roses used to represent Horns Rev I (a) and Princess
Amalia (b) wind climatologies.
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The defined high resolution wind roses (hereafter evalWR) provided more than 1500 wind regimes
to be assessed on each individual through each generation. As for most gradient-free WFLO techniques,
this amount of wind power evaluations was not computationally feasible for the considered EC
techniques. For this reason, within each generation, the wind power corresponding to each individual
needed to be computed throughout a more simplified wind rose, whereas the best performing
individual could then be assessed with evalWR as the outcome for that generation. An evolution
set up consisting of less than 80 power measures per individual and generation was assumed as
computationally plausible. The performance of different simplified wind roses against evalWR was
assessed through some CEGA simple tests. In this way, different 72-regime wind roses were designed
under different combinations of angular and speed resolutions, e.g., 18 angles by four-speed bins,
36 by 2 or 72 by 1. These roses were designed so that each sector provided the same wind power and
frequency as the equivalent sector(s) in the complete rose. The most competitive wind power results
were obtained for a configuration with 72 sectors and a single wind speed bin. Note that, as the results
of the evolution at each generation are computed through evalWR, the validation of the obtained
results remains unaffected by this simplification. The obtained wind roses used for evolution (hereafter
evolWR) are shown in Figure 3.

Figure 3. Wind roses with 72 single-speed sectors (5◦ resolution and constant wind speed) used for
evolution (evolWR), for HR (a) and PA (b) cases respectively. Note that single wind speeds are set for
each sector.

Turbulence intensity data was extracted for each wind speed velocity and four different angular
sectors following results from Hansen et al. [85], which provides average values for the HR mast data.
Due to a similar offshore condition and relative proximity to HR (<400 km), we assumed similar values
for PA. Finally, for both HR and PA, the power law was applied to infer the wind speed at hub height
from the meteorological mast measurements. The surface roughness length Z0 was set to 0.0002 m,
which results in a good approximation for open sea conditions (e.g., [8,86]).

4.2. Turbine Models

In order to assess the sensitivity of the optimization to the size of the turbine model and
consequently the relative power density in the wind farm, in addition to the 2-MW V80 wind
turbines currently in operation at the wind farms, a 5-MW turbine, the NREL 5MW (hereafter NREL5,
Jonkman et al. [87]), was also considered. The thrust coefficient (Ct) and power curves were needed as
inputs in the wake models. Ct curves of the V80 and NREL5 turbines were respectively extracted from
Jensen et al. [88] and van der Laan et al. [89]. In turn, power curves were obtained from Carrillo et al. [90]
and Jonkman et al. [87], respectively.

The features of the four resulting cases, obtained from combining the two considered locations
(HR and PA) and turbine models (V80 and NREL5), are summarized in Table 1.
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Table 1. Summary of the main baseline features for the four wind farms considered.

HR-V80 HR-NREL5 PA-V80 PA-NREL5

Amount of Turbines 80 80 60 60
Hub Height (m) 70 90 59 90
Mast Height (m) 62 62 70 70

Rotor Diameter, D (m) 80 126 80 126
Turbine Rated Power 2 MW 5 MW 2 MW 5 MW

Gridded distance between turbines (m) 7 D 4.44 D ∼7 D ∼4.44 D

4.3. Parametrizations for the Derived Algorithms CEGA and BLEA

Finally, different sensitivity tests were performed on the parameters remaining to be fixed on
CEGA and BLEA algorithms through each of the given problem conditions, in order to set up a final
configuration. Their definitive set up was fixed according to the parameter values providing the
highest performances in each of the considered cases.

4.3.1. CEGA Parametrization

Within CEGA, the remaining parameters to be fixed, i.e., the population size (Π), selection
pressure operators (Sp1, Sp2), crossover parameter (pb) and mutation parameters PM2 and DM were
submitted to multiple sensitivity tests against performance. The highest CEGA performances were
obtained for the following AEr and AEt configurations:

AEr = A[330, Sp1, Sp2, 0.9, 0.9, 0.99, 0.8, 70] , (24)

AEt = A[330, Sp1, Sp2, 0.9, 0.95, 0.99, 0.1, 70] , (25)

where Sp1 and Sp2 were found to be case dependent. The rest of the parameters did not show a clear
sensitivity to the particular conditions of each case. Note the marked small value of M2 (ratio of
mutating turbines) characterizing the exploitation mode (0.1), in comparison to the exploration mode
(0.8). The obtained values for Sp1 and Sp2 are shown in Table 2.

The transition condition between Er and Et modes was fixed to a threshold of 0.2 in the relative
Ud (with respect to the Ud in the first generation), after it showed a balanced trade-off throughout the
course of the current optimization problem. In addition to this, in order to prevent stagnation, Pt was
also subject to the improvement rate of the evolution, so transition takes place also if the improvement
is ≤0.02% during the last 1000 generations. This last condition was fixed for Et as the termination
condition of the whole procedure.

Table 2. Obtained selection pressure for CEGA according to the case considered.

HR-V80 HR-NREL5 PA-V80 PA-NREL5

Sp1.AEr 1.0008 1.002 1.0008 1.002
Sp2.AEr 5·10−3 0.02 5·10−3 0.02
Sp1.AEt 1.00075 1.002 1.00075 1.002
Sp2.AEt 5·10−3 0.02 1·10−4 0.02

4.3.2. BLEA Parametrization

Sensitivity tests of the mutation (M2 and DM) and selection (Sp1, Sp2) operators subject to the
attained performance were carried out also for the BLEA algorithm. The system population was
defined as the biggest that made the procedure computationally feasible, and a value of Π = 500 was
fixed, so that the specification attained for BLEA is defined as follows:

ABLEA = A[500, Sp1, Sp2, 1, 0, 1, 0.1, 25] . (26)
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Sp1 and Sp2 being again problem-dependent (see summarized values in Table 3). Because BLEA is
exposed to some occasional decreases in the power performance through the evolution, its termination
condition was set to the run of 1000 generations without improving the best obtained result.

Table 3. Obtained selection pressure for BLEA according to the case considered.

HR-V80 HR-NREL5 PA-V80 PA-NREL5

Sp1.ABLEA 1.00015 1.002 1.0001 1.0001
Sp2.ABLEA 4·10−3 4·10−3 1·10−4 1·10−4

5. Results

The proposed schemes CEGA and BLEA were applied to Horns Rev and Princess Amalia wind
farms, by considering the cases with V80 and NREL5 turbine models. As mentioned, although the
Gaussian wake model wG was assumed as the reference in this work, the algorithms were also applied
with the Jensen wake model wJ for comparison, due to its extended usage in the literature. Results
showed that the current methodology (through either CEGA or BLEA algorithms) outperformed the
corresponding baseline layout output power (PO) for all cases. However, the performance showed
a high variability depending on the wake model used, as well as the turbine model and wind farm
considered. All obtained layouts were evaluated with the 3◦ × 1 m/s resolution wind roses (evalWR,
see Figure 2).

5.1. Results for the Crossover-Elitist Genetic Algorithm (CEGA)

CEGA results revealed a systematic higher performance through wJ , showing power output
increases against the baseline more than two times those obtained through wG. The fact that these
differences are wake model-dependent was clear by crossing the wake model of the evolved layouts:
the Jensen-evolved solutions abruptly decreased their performance when evaluated with wG (J-G cases),
whereas Gaussian-evolved solutions sharply increased their performance when evaluated with the
Jensen model (G-J cases). This can be explained due to a general underestimation of the output
power under the Jensen model, shown in Niayifar and Porté-Agel [8] for the baseline layout of the
HR-V80 case with respect to the Gaussian model and LES results. There, bigger wake effects are
observed under the wJ model for almost all wind directions and multiple and diverse levels of wake
interaction. Naturally, if the baseline layout is being underestimated under wJ , and a hypothetical
perfect optimization (with no wake interaction) would provide the same performance under both
schemes, any midway reduction of wake interactions will yield a bigger relative performance under
wJ compared to wG.

Figure 4 summarizes the power performances obtained with respect to the baseline layouts.
Results for both wake models show bigger improvements for the PA wind farm and the NREL5 turbine,
with Po increases of 0.89% and 1.84% by respectively using wG and wJ . On the other side, V80 turbines
in the HR wind farm show the smallest rate of improvement, with power increases of 0.24% (wG)
and 0.72% (wJ). The other two cases provide midway results, with quite similar improvements
(centred around 0.5% with wG, and ∼1.15% with wJ). The fact that a bigger improvement is obtained
through a bigger wind turbine as NREL5 (126 m-5 MW for NREL5 vs. 80 m-2 MW for V80) can be
explained since bigger turbines imply higher power densities, which produce in turn stronger wake
effects, as a consequence establishing favourable conditions for a bigger margin of improvement in
an optimized layout.
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Figure 4. Output power performances for the CEGA routine with respect to the baseline layouts
(%), for the four cases and the four combinations of wake models between evolution and evaluation:
G–G (Gaussian-evolved and Gaussian-evaluated), J–G (Jensen-evolved and Gaussian-evaluated), J–J
(Jensen-evolved and Jensen-evaluated) and G–J (Gaussian-evolved and Jensen-evaluated).

The obtained results also highlight the high sensitivity of the obtained Po improvement to the
resolution of the wind rose used for evaluation, as shown in Feng and Shen [53]. For instance,
for the PA-NREL5 case (Jensen), the improvement rises to +2.03% and +3.54% when respectively
using a 5◦× 1 m/s evaluation wind rose or the evolWR (5◦ resolution and constant speed bins).
These values are comparable with results provided in recent works by other methods such as Sequential
Quadratic Programming, which yielded more modest power improvements (+1.5% [6] and +2.3% [57]
respectively). In a further comparison with the existing literature, the obtained improvements against
the baseline layout for HR-V80 (again within wJ for a proper comparison) are shown to be nearly
double (+0.72%) improvements provided using Random Search (+0.37% [55] or ∼0.38% [53]).

For each case study, the best performing individual at each generation was evaluated with evalWR
to obtain an impression of the real performance during the whole process. Results on this evaluated
evolution for both wG and wJ models are shown in Figure 5 in terms of their relative performance
against a population of random layouts (1st generation). This relative representation of the PO
improvement is useful to provide evidence of the real optimization capacity of the evolved layouts,
independently of the baseline layouts. In addition, it also works as a metric for the optimization level
that the baseline layouts per se have within their corresponding wind farms. Results show a higher
level of optimization for the baseline layout in HR compared to PA (represented by blue lines in
Figure 5), for each turbine and wake model, this explaining why a bigger margin of optimization can
be systematically attained in PA compared to that in HR.

The better optimized baseline in HR can be explained partly due to the outline of the wind farm
area, which was defined according to the minimum-sized convex polygon containing the turbines.
For instance, in the case of PA, this criterion produces the result that some regions of the wind farm
perimeter, especially over the northeast (see Figure 1b), remain with a relatively low density of turbines,
thus generating favourable conditions for a power output improvement in a WFLO experiment.
This contrasts with the baseline layout in HR, where the whole perimeter is shown equally filled up
with turbines, so that the whole wind farm area is better harnessed. Moreover, the higher margin
of improvement in PA compared to that in HR could also be related to the wind rose morphology
(see Figure 2). In this way, higher efficiencies are observed when optimizing with a unidirectional
wind rose compared to a multiple-direction wind rose (e.g., [45,46,55]). In this work, this idea can be
promoting that a wind rose with some clear prevailing wind directions as PA allows a further power
optimization compared to a site with a more homogeneous wind rose (as HR), with turbines tending
to align spanwise from the prevailing wind direction.
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Figure 5. Evolution of the power output performance relative to a random layout (green), and of the
diversity metrics Ud (pink), for the four cases, throughout the Jensen (a–d) and the Gaussian model
(e–h). The relative power output performance of the original layout (blue) and the peaking generation
(dark green dot) are also shown. The dashed vertical line indicates the transition from Exploration to
Exploitation within the algorithm.

Within the eight optimizations carried out through CEGA, different evolutionary behaviours
were observed depending on the type of condition met to generate the transition point Pt between
exploration and exploitation. The two HR-V80 cases (wG and wJ) and PA-NREL5 (wG) met the Ud
diversity metric to switch mode, while the rest of cases did so due to improvement stagnation
(improvement <0.02% in 1000 generations). Because evolWR and evalWR produce slightly different
results, the evaluated evolution can show small decreases, and the highest attained performances
(represented by green dots in Figure 5) might not be placed in the last generation. Table 4 summarizes
the type of Pt and other technical data about the evolution, such as the number of generations evolved
or the processed computational time. The algorithms were written on Matlab R2018a (Mathworks,
Natick, Massachusetts, USA) and run under the ’parpool’ mode on a 12-core computer cluster, each core
running with 64 GB DDR3 RAM and 2.6 GHz.

The obtained layouts for the best performing solutions through CEGA are shown in Figures 6–9.
The figures show the power output at each of the turbines, for both the obtained optimizations as well
as for the baseline layouts. In addition, the difference in power output density is depicted (plots c, f
in Figures 6–9). Power densities and the difference between the obtained solutions and the baseline
layouts were computed through Inverse Weight Distance Interpolation ([91], with defined values
power = 2, radius = Inf and Euclidean norm = 2). This interpolation method was used in order to
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properly be able to represent the power density due to the effect of each wind turbine, with a high
value around the turbine but progressively decreasing with the distance from the turbine. As it can
be observed, for most cases, the obtained solution increases the number of turbines in the perimeter
of the wind farm with respect to the baseline. This in turn allows the turbines at the central part of
the domains to increase their power output compared to the baseline layouts (see red areas in the
power density difference (plots c, f in Figures 6–9). Although the turbines on the perimeter suffer
a power decrease compared to the baseline, the overall performance trade-off is positive due to a higher
performance of the inner turbines. The tendency of the turbines to concentrate over the western side of
the perimeter is also noteworthy, in line with the direction of the prevalent flow, followed by a rather
wide void space just downstream. This also promotes a minimization of the losses, in line with results
showing the second line turbines being largely the most penalized in relation with the immediately
upstream turbines [8,92]. It is also remarkable that wJ systematically produces solutions that place
more turbines on the perimeter of the wind farm area compared to those obtained with wG. This can
be explained by the fact that the Jensen model is related to a general underestimation of PO and thus
associated with greater wake effects, so that less turbines are susceptible to remain in the interior area
of the wind farm (and thus remain exposed to wake effects from all directions).

Table 4. Number of generations, transition generation (Pt), cause for transition (diversity decay, Ud,
or improvement stagnation, Stag) and computing time (C.time), for the evolutions of the four cases
and two wake models considered.

Jensen HR-V80 HR-NREL5 PA-V80 PA-NREL5

Generations 22,461 19,713 20,835 15,270
Pt 11,541 11,774 9137 2794

Transition Ud Stag Stag Stag
C.time (s·105) 7.60 5.83 7.50 6.82

Gaussian

Generations 7792 8496 10,246 11,757
Pt 4070 5358 3612 6458

Transition Ud Stag Stag Ud
C.time (s·106) 1.45 0.94 1.86 1.46

Finally, the electricity cable length needed to interconnect the turbines was computed for every
case, retrospectively to the evolution of the optimized solutions. The cable length was computed
according to the estimation of the minimum spanning tree. From simple geometry, it can be derived
that regular grids, as those observed in the baseline layouts, hold maximum spanning trees. Thus,
a modification of the layout as done here, within a constant area constraint, is highly likely to see
reduced the amount of cable needed, and thus allow additional improvement from the point of view of
the efficiency of material usage. This has also been proven in previous works such as Fleming et al. [6],
where reductions of cable length of 13.1% are obtained for the conditions equivalent to the current
PA-NREL case. In the case of CEGA solutions (see Figures 6–9), the cable length was reduced between
17% and 28% with respect to the baseline, depending on the cases. Solutions using Jensen provided
larger cable length reductions. The largest reductions are obtained for the PA-V80 case, with 28.6%
and 24.3% reduction, respectively, for wJ and wG. In turn, the smallest reductions are found in the
PA-NREL case, with 20.1% and 17.3% reductions, respectively.
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Figure 6. Optimized layouts obtained with CEGA (left); baseline layouts (center) and spatial difference
of wind power (right), for the HR-V80 configuration, obtained from using the Jensen (a–c) and Gaussian
(d–f) wake models. Light grey lines represent the minimum cable length needed, computed in terms of
minimum spanning tree.

Figure 7. As for Figure 5, but for the HR-NREL case.
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Figure 8. As for Figure 5, but for the PA-V80 configuration.

Figure 9. As for Figure 5, but for the PA-NREL case.

5.2. Results for the Baseline Layout Evolutionary Algorithm (BLEA)

All power output performances of the optimized layouts using BLEA showed some improvement
compared to the baseline layouts for the four cases considered. However, these improvements were
mostly relatively small compared to CEGA, this proving that most of the baseline layouts considered
for this work represent a relative optimum regionally, this proving that, in general terms, it does not
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result in it being easy to escape from their surrounding search space. In turn, BLEA only provided
higher improvements than CEGA solutions in the PA-NREL case (for both wJ and wG). As CEGA
explores all the search space, and not only the surroundings of the baseline, the better results in CEGA
show that, in addition to representing a regional optimum, in most cases (at least 3 of 4), the baseline
layouts belong to search spaces that actually represent sub-optimal (below optimum) solution regions
of the overall problem. Relative power output improvements of the obtained layout solutions with
BLEA are shown in Table 5.

As with CEGA, improvements with the Jensen wake model yield bigger values than with the
Gaussian one. Results highlight that the Horns Rev layout is very close to its regional optimum,
especially when considering the V80 turbines. On the other side, Princess Amalia reflects the existence
of a bigger margin of improvement around its baseline solution. In the case of the NREL turbine,
this margin is big enough to even outperform the overall search of CEGA, yielding power performance
improvements up to 1.91% and 0.95% under wJ and wG, respectively.

Table 5. Relative improvement (%) of the power output for the obtained BLEA layouts after evaluation
with evalWR (3◦× 1 ms−1 resol.).

Case Jensen Gaussian

HR-V80 0.15 0.03
PA-V80 0.63 0.28

HR-NREL 1.06 0.11
PA-NREL 1.91 0.95

In the following, we focus just on the results attained in the PA-NREL case, as it represents the
only case showing a bigger PO improvement than the overall search with CEGA. Figure 10 shows the
evolution of the performance for both Jensen and Gaussian wake models. Note the decreases in the
evolution, due to the fact that the selected parent may not be the highest performing one, in order
to preserve diversity. In addition to this, because layout evaluations with evolWR and evalWR can
provide slightly different values, the maximum improvement during the evaluation can be found more
than 1000 generations before the end of the evolution. Again, computation costs were remarkably
higher under wG.

Figure 10. Evolution of the performance for the best obtained solution within the BLEA scheme, for the
PA-NREL case, evaluated with the 3◦ × 1 m/s resolution wind rose.
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Figure 11 shows the optimized layouts obtained in the PA-NREL case, for both wJ and wG models,
and the power density difference with the baseline. In addition to showing a higher performance
compared to the CEGA solutions, in the BLEA ones, a layout with a more regular grid can be
appreciated, providing smaller differences with the baseline layout turbine positions (11% and 25%
smaller distances for wJ and wG, respectively). This shows that, in some cases, the baseline layout can
still provide information to yield a higher performance than if it was not considered. This leads us to
highlight that the usage of BLEA can result in an appropriate procedure in cases where the baseline
has a large margin of improvement but its surrounding search space has big potential. Since it can be
difficult to find out if a certain baseline layout fulfils these features beforehand, it can be concluded that
running BLEA in parallel to CEGA can result in an appropriate procedure. As in CEGA, the optimal
layout enhances the power output of the inner turbines, while keeping positive the trade-off resulting
from penalizing some power in the peripheral ones (Figure 11c,f). Again, the resulting layouts are
consistent with the prevailing flow regimes from SW, showing a wider void area just after the first row
of turbines in that direction (especially in wJ due to its bigger wake estimates).

Figure 11. As for Figure 9, but for the BLEA scheme.

Finally, the retrospective computation of the minimum needed electricity cable length in the
PA-NREL case yielded remarkable reductions with respect to the baseline layout compared with the
CEGA scheme, with decreases of 16.8% and 6.3% for wJ and wG wake models, respectively. This smaller
reduction is consistent with the fact that BLEA solutions keep a bigger similarity to the regular-gridded
baseline layouts (which exhibit maximum spanning trees).

6. Conclusions

In this work, a novel methodology for wind farm layout optimization, based on Evolutionary
Computing and coupled with a highly accurate analytical Gaussian-profiled wake model [13], has been
implemented. The methodology included two different parametrizations, namely CEGA and BLEA,
depending on if a specific baseline layout is considered for initialization. This has been applied to
two different offshore locations (Horns Rev and Princess Amalia, off the west coasts of Denmark
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and the Netherlands, respectively), and two different turbine models (Vestas V80 and NREL-5 MW),
resulting in four different case studies. For comparison, the four cases have also been considered under
a traditionally used model with a top-hat velocity deficit profile [9,10]. Results have shown that the
optimization performance is rather sensitive to the choice of the wake model and the wind turbine,
as well as to some characteristics of the site as the wind farm area and wind rose.

In previous works, the Gaussian wake model demonstrated considerably higher accuracy than
the Jensen wake model [8,13]. This has been shown to have a big impact on the power performance
improvement of the obtained optimized layouts. Indeed, the systematic overestimation of the velocity
deficit for most directions and wake interactions in the Jensen model [8,92] allows in this work for
a bigger margin of optimization under the Jensen model compared to the Gaussian one, thus leading to
spuriously attain bigger power output improvements. In this way, the obtained power output increases
against the baseline layouts ranged between +1.91% (PA-NREL, BLEA) and +0.72% (Horns Rev-V80,
CEGA) with the Jensen model, whereas they spread between +0.95% and +0.24% with the Gaussian one.

Regarding the implemented optimization technique, the evolutionary methodology proposed
in this work has been shown to outperform other wind farm layout optimization methods recently
proposed in literature. The Princess Amalia wind farm with NREL-5MW (in the case of the Jensen
model for a fair comparison) yields a power output improvement substantially bigger than that
attained through Sequential Quadratic Programming (SQP). Specifically, whereas improvements in
the literature are +2.3% [6] and +1.5% [57] with respect to the baseline layout, values in this work
under similar frameworks and wind rose resolutions reach respectively +3.54% and +2.03% power
output increases. In addition, these results (CEGA scheme) do not need the information on the baseline
layout, which allows the design of future wind farms and not only the assessment of existing ones.
Finally, the Horns Rev V80 case (also through the Jensen model) approximately doubles (+0.72%) the
improvement shown through the Random Search technique [53,55].

The fact that rather moderate power output increases against the baseline layouts are obtained
with a realistic wake model as the Gaussian one, especially in the cases with the V80 turbines,
suggests that, besides the method showing high efficiency compared to the literature, the margin
of improvement in the wind farm optimization problems considered in this study is rather small.
However, adding further degrees of freedom to the problem, e.g., a variable shape and/or size of
the wind farm, a variable power density or the possibility of turbine yawing (e.g., as in [6]) should
contribute to the attainment of larger power output improvements. Notwithstanding this, results show
that the obtained layouts entail electricity cable lengths remarkably smaller than the baseline layouts,
and under the Gaussian wake model lengths are reduced more than 18% in Horns Rev, and up to 24%
and 17% in Princess Amalia when considering V80 and NREL5 turbines, respectively.

Finally, the relatively long computational times of the experiments suggest the introduction
of a surrogate model for the cost function under some sort of soft-computing tool, such as Neural
Networks. Additionally, designing a Meta-Genetic algorithm to optimize the control parameters of the
Wind Farm Layout Optimization routine might contribute to substantially simplify the search in the
parameter selection process.
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