
energies

Article

Non-Intrusive Load Monitoring Based on Novel
Transient Signal in Household Appliances with Low
Sampling Rate

Thi-Thu-Huong Le † and Howon Kim *,†

School of Computer Science and Engineering, Pusan National University, Busan 609-735, Korea;
lehuong7885@gmail.com
* Correspondence: howonkim@pusan.ac.kr
† Current address: Information Security & IoT Lab, Building A06, School of Computer Science & Engineering,

Pusan National University, San-30, JangJeon–dong, Geumjeong–gu, Busan 609-735, Korea.

Received: 31 October 2018; Accepted: 3 December 2018; Published: 5 December 2018

Abstract: Nowadays climate change problems have been more and more concerns and urgent
in the real world. Especially, the energy power consumption monitoring is a considerate trend
having positive effects in decreasing affecting climate change. Non-Intrusive Load Monitoring
(NILM) is the best economic solution to solve the electrical consumption monitoring issue. NILM
captures the electrical signals from the aggregate energy consumption, feature extraction from
these signals and then learning and predicting the switch ON/OFF of appliances used these feature
extracted. This paper proposed a NILM framework including data acquisition, data feature extraction,
and classification model. The main contribution is to develop a new transient signal in a different
aspect. The proposed transient signal is extracted from the active power signal in the low-frequency
sampling rate. This transient signal is used to detect the event of household appliances. In household
appliances event detection, we applied to Decision Tree and Long Short-Time Memory (LSTM) models.
The average accuracies of these models achieved 92.64% and 96.85%, respectively. The computational
and result experiments present the solution effectiveness for the accurate transient signal extraction
in the electrical input signals.

Keywords: NILM; energy disaggregation; MCP39F511; Jetson TX2; transient signature; decision tree;
LSTM

1. Introduction

Developing countries with rapid urbanization in high buildings construction and the high power
demand are a reason for the need for conversation and efficient energy program. The program requires
monitoring of customer appliances energy consumption in real-time. Using smart meter had led to
NILM enables estimation of individual power consumption used for aggregate power consumption in
energy management recently.

In the factory field, researchers are working on Factory Energy Management System (FEMS) for
efficient electric energy use. In recently, FEMS has been linked with to the Cyber-Physical Systems (CPS)
of Industry 4.0. And the related researches will be more significant in this area [1]. At resident homes,
NILM provides the households understand their consumption usage via a cost-effective real-time
monitoring appliances system. The customers need giving up unwanted activities to avoid producing
unnecessary energy consumption such as the appropriate appliances usage time and appliances
usage optimization. These activities can be obtained showing to customers the consumption of
each appliance in the sum of the total billing to detect excesses or malfunction [2]. Furthermore,
it could be possible notify users of possible savings in their billing electricity. In contrary to this,
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Kelly et al. [3] have argued that it is not proven yet that above activity and the additional feedback
which become saving energy. In addition, there is an increase in micro-grids and renewable energy
facility installation also continuous growth in recently. In purpose of increasing efforts these saving,
automating energy measurement, energy monitoring, and the power management system are needed.
In the load measurement of a power system, load monitoring has the main role that the process of
acquiring and identifying the load [4]. This load monitoring will determine the status of appliances
and their consumption. Besides, it supports to understand the behavior of each load in the whole
power system. There are two types of the load monitoring including Intrusive Load Monitoring (ILM)
and Non-Intrusive Monitoring (NILM).

In ILM, the term “intrusive” means that there is the meter device in the resident house and close
to the appliances to monitor. ILM deploys a measurement of the energy consumption of one or more
household appliances using meter devices. In the ILM ecosystem, more low-end meter devices are
needed. This makes hard to install, maintain, expand as well as expensive. In contrary to ILM, the
term “non-intrusive” in NILM means that no extra equipment is installed in the house. NILM is a
process which gives data from whole house energy consumption. This process includes installing
a sensor device at the panel level and then the appliances will be inferred with being used. NILM
preferred using than ILM because it is cheaper and easier installation. Instead of at least one-meter
device per room, this technique requires only one-meter device for each energy entrance to the house.
Energy disaggregation is another synonym for NILM. This technique estimates the power demand for
each appliance from a single meter which contains the overall demand for several appliances.

A NILM system has three roles including capturing the signals from the aggregate consumption,
extracting the feature uniquely from the load signal and classifying to identify which appliances are
turned ON based on these features extracted. To identify the individual signature of each device,
the NILM system requires several steps such as signal sampling (data acquisition), feature extraction
based on signal analysis from the electrical signals. This paper presents a NILM framework including
data acquisition, data feature extraction, and classification model. The contributions in this NILM
study are: (1) propose a NILM framework, (2) collect the household appliances energy consumption
data set in low-frequency sampling rate, (3) propose the algorithm to extract a new transient signal in
low-frequency sampling rate, (4) improve the performance of NILM model in event detection as well
as load identification.

The main contribution to be presented in this paper is a new approach to extract the transient
uniquely. The proposed transient signal is extracted from the active power signal in the low-frequency
sampling rate. This transient signal is used to detect the event of household appliances. Besides,
an embedded board, Jetson TX2, is used to build the proposed NILM application system. This board
has two roles to use in this research. The first role is to connect with the sensor to request and storage
energy data (data acquisition). The second one is to build machine learning and deep learning models
with high-performance training and testing. It is integrated Graphic Processing Unit (GPU) related
to deep learning and its performance such as LSTM model. Furthermore, NILM Web application
can be built for visualizing NILM result at this board. On the other hand, it can be replaced Jetson
TX2 by other hardware that integrated GPU or normal personal computer (PC) without accelerated
computing. Hence, the roles of Jetson TX2 is the same role with PC that integrated GPU to perform
deep learning model. In summary, Jetson TX2 can connect to the sensor to storage data. Besides, it can
build the machine learning, deep learning models, training, predicting and visualizing the result Jetson
board or the PC has GPU with support high computation in a deep neural networks.

This paper is organized as follows. The next Section introduces the NILM system concept and
presents a related literature works. In Section 3, a NILM framework is proposed. The core of this
NILM framework is to propose the algorithm to develop a new transient signal from power signal
in low-frequency sampling rate. The experimental setup is described and experimental results are
presented in Section 4. Finally, conclusions and future works are drawn in Section 5.
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2. Related Works

The initial NILM approach was proposed by Hart in 1990s [5]. The author introduced the
Non-Intrusive Appliance Load Monitor(NALM) is a software which was able to analyze single point
electrical data and then obtained energy used correspond to individual electrical appliances. Figure 1
shows the first concept of general NILM.

Figure 1. The first concept of NILM based on a single point measurement by Hart [5].

In recently, there are a number of studies have applied and extended this approach by using
directly sampled which is increased the resolving power of the ∆P− ∆Q space such in [6,7]. This
approach has a limitation which cannot distinct appliances has similar in power signal and their
operational principles, for example, hairdryer and iron. Hence, Laughman et al. [8] proposed another
advanced solution. The capable of this idea based on the transient shapes of appliances to recognize
individual load. Besides, they proposed the analysis of the spectral envelopes for continuously
variable loads. However, they have not solved the electric noise of appliance usage yet. Therefore,
Patel et al. [9] proposed a method to avoid the electric noise via combination software and hardware in
household-level current sampling task at 1 MHz. They applied Support Vector Machine (SVM) model
to trained the data to achieve accuracy at 90%. However, this technique has a limitation which requires
high sampling rate with more kHz. Because of the meter device limitation, it is hard to apply in the real
world environment. Furthermore, the need for an adjusting the prediction models on different data on
training data is another drawback. The NILM algorithm needs to detect the appliance operation status
(ON and OFF) from the power measurements. The NILM approaches can be classified as event-based or
state-based based on different event detection strategies.

Event-based methods generated the state transient edges of appliances. This approach uses a
change detection algorithm to determine the start and end of an event such in [10,11]. The significant
information needs to extract to identification the event has occurred, for example, appliance signatures
such as active power, rising or falling edge etc. These extracted features are analyzed to detect the
event based on the appliances and their power consumption estimated. The researcher [12] has used
different classification methods such as K-Means, K-Nearest Neighbour (KNN), SVM, Hidden Markov
Model (HMM) and HMM’s variations to detect event appliance. However, the performance of the
event-based approach is not high because of the fixed threshold in the change detection algorithm, the
large noise, and the similar among steady state signatures. Furthermore, false positive rate or false
alarm rate may arise in the detection of edges methods.

State-based methods do not base on event detection. The idea is how to determine each appliance
operation based on a state machine which is a different state transient using usage pattern of
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appliances [13]. When the appliance is turned ON/OFF or is changed running states, the method
creates new state power signal through a probability distribution to match to the original power
signal of the appliance. HMM and its variants [14–17] are used in state-based NILM. However,
state-based approaches have several limitations. Firstly, the need for expert knowledge to set a
prior value for each appliance by long training periods. Secondly, they have the complexity to
compute [13,18]. Finally, there is not a good way to handle states may stable unchanged for long time
intervals [19]. The requirement for an effective NILM algorithm is unique features or signatures have
to characterize appliance behavior. Appliance signatures are a unique energy consumption pattern of
all appliances. Ahmed Z., et al. [17] used appliance signatures to uniquely identify and recognized
appliance operations from the aggregated load measurements. In feature selection, two main appliance
features are used by NILM research to identify loads including steady-state and transient state [20].

Steady state is extracted when an appliance changes its running states related to sustained changes
in power characteristics. The factors are used in this method including active power, reactive power,
current, and voltage. The steady state signatures extraction of current and voltage do not demand
high-end meter devices. Features at low frequency are used in the most commonly in steady state
features in advance researches. However, the performance of this approach is limited by similarities
among steady state signatures. In recently, deep neural network (DNN) in deep learning field
becomes more attractive and widely system recognition applied in several areas such as handwritten
recognition, speed recognition etc. Specifically, LSTM model is a kind of DNN model which is
applied to classification applications have time series data. In NILM, this model is applied to load
identification on the UK Domestic Appliance-Level Electricity (UK-DALE) dataset using active power
by Kelly et al. [21]. However, the author pointed out the performance limitation on the appliances
have informative events in power signal can be many time steps such as washing machine. Besides,
Kim et al. [22] applied LSTM model on the variant power signals are generated from active power
in low frequency on several public datasets. This method overcomes the long gaps between event
may present a challenge in LSTM. In future NILM works, LSTM model may become more and more
promising and effecting learning method for researchers.

Contrary to the steady state features, before settling into a steady state value, transient state features
are short-term fluctuations in current or power. To create transient feature uniquely, the authors [17]
defined appliance state transients which are shapes, size, duration, and harmonics by sampling current
and voltage waveforms at high frequency. Hence, these transient features can achieve signal uniquely
to a high degree. Besides, they capture all operation cycles in high sampling rates in longer monitoring
time [23]. For example, Patel et al. [9] proposed a custom hardware built to detect the transient noise
in range 0.001 kHz to 100 kHz frequency. Then, the authors used the fact that each appliance in-state
operation transmits noise back to the power line. However, the high sampling rate required is the
major drawback to obtain transient features such as current spikes, transient response time, repeatable
transient power profiles, spectral envelopes, etc. [24]. When using a high sampling rate, the system
demands a costly hardware and complicated to be installed in the home to detect these transient
features [24]. The cause is smart meters report only low-frequency power. In the transient state
analysis, the researchers [25,26] analyzed and captured the load signatures based on wavelet transform
and transient energy algorithm. Artificial Neural Network (ANN) and HMM are used to improve the
performance of NILM in these researches, respectively. Although the results were very much significant,
there are still the little drawbacks. For example, the authors [25] sampled at high frequency for current
and voltage waveform data to capture the transient effect. Nevertheless, doing this will increase
the cost of energy meters because modern energy meters are not equipped with such functionality.
Besides, the authors [26] used the data which have the repeatable transient energy signature for load
identification because of the varying transient with these waveforms. Therefore, the sampling of the
instantaneous load profile for each turn ON transient is required much diligence. In addition, the
authors [27] applied the Wavelet Transform Coefficient (WTC) based on ON/OFF transient signal
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identification in data acquisition. Although WTC works better than Fourier Transform, WTC requires
much longer computation time. Besides, it needs larger machine resource like memory usage.

In summary, the low-frequency or high-frequency data collected is used in classifying appliance
recognition systems based on signature feature extraction. A low-frequency data sampling rate is
implemented in without additional installation by using existing meter infrastructure. Contrary to
this, high-frequency data sampling rate needs adding more hardware installing in data acquisition.
Especially, the limitations of high sampling rate data acquisition are more expensive cost and more
complex in signature database management [28,29]. However, a more accurate and precise analysis can
be provided with more information and assistance [30]. Hence, using a low-frequency sampling rate
is more promising in event detection appliances based on analysis the active power and/or reactive
power. A new necessary technique of NILM has valid three most important factors to introduce
into services for end-users. First thing is an ability to widely appropriately applied in household.
The second thing is the usage of the low-cost device to retrieve the energy consumption. The third
thing is able to recognition appliances with the same power signal and appliances with variable power
signals in the low-frequency sampling data. Hence, in this work, new transient signal is extracted
from the active power signal in the low-frequency sampling rate to overcome the problem in advance
studies.

3. The Proposed NILM Framework

The proposed NILM framework is introduced in this Section. Figure 2 shows the proposed NILM
system. The proposed NILM system includes several components such as energy stream data, sensing
device MCP39F511 (Microchip Technology Inc., Chandler, AZ, USA), an embedded board Jetson TX2
(NVIDIA Corporation, Santa Clara, CA, USA), transient signal extraction and recognition, and energy
monitoring and consumption prediction system.

Figure 2. The proposed NILM framework.

3.1. Energy Stream Data

In data acquisition, several household appliances and the multi-tab power (HJ04009-10010C, KC
Electric Company, Seoul, Korea) to collect energy data are prepared. Five appliances are collected
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including Air-purifier (LG Electronics Inc., Seoul, Korea), Fan (Cixi Xiongsheng Electrical Appliances
Co., Ltd., Ningbo, China), Hairdryer (Korea Hanil Electronics, Seoul, Korea), LG monitor (LG
Electronics Inc., Seoul, Korea), and Samsung monitor (Samsung Electronics Inc., Suwon, Korea).
These appliances are connected to sensing device MCP39F511 via a multi-tab and the sensor’s port.
Table 1 describes models and power consumption of five appliances which are used to collect energy
data.

Table 1. Specifications of five appliances.

Appliance Model Power Consumption (W)

Air-purifier LG AS181DRWT 40
Fan TESS-S1060 40

Hairdryer Patech PH-3050 1300
LG monitor 24MP57VQ 23

Samsung monitor S27D850T 90

Besides, twenty test cases data are also collected. The purpose of testing data collection is to
obtain variant transient signals of five appliances. Each test case corresponds to set up that require
the number of appliances is different. To each appliance, four combinations between this appliance
and 1, 2, 3, or 4 other appliances are create in this work. Therefore, each appliance has four different
transient signals in this collecting process. The process to collect testing data includes two steps as
follows. The first step is to turn ON simultaneously all appliances required for each test. The second
step is to make one appliance transient by turn OFF and then turn ON while other appliances are still
ON. Table 2 presents the process to collect twenty test cases in detail.

Table 2. Twenty tests data information.

No Test Description

1 Test 1 [Air-purifier, LG monitor, Samsung monitor, Fan, Hairdryer] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliances are still ON.

2 Test 2 [Air-purifier, LG monitor, Samsung monitor, and Fan] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliances are still ON.

3 Test 3 [Air-purifier, LG monitor, Samsung monitor] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliances are still ON.

4 Test 4 [Air-purifier and LG monitor] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliance are still ON.

5 Test 5 [Fan and Air-purifier] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

6 Test 6 [Fan, Samsung monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

7 Test 7 [Fan, Samsung monitor, LG monitor, Air-purifier, and Hairdryer] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

8 Test 8 [Fan, Samsung monitor, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

9 Test 9 [Hairdryer, Air-purifier, LG monitor, Fan, and Samsung monitor] are ON simultaneously.
Turn OFF and turn ON [Hairdryer] while the other appliance are still ON.

10 Test 10 [Hairdryer, Air-purifier, LG monitor, and Fan] are ON simultaneously.
Turn OFF and then turn ON [Hairdryer] while the other appliance are still ON.

11 Test 11 [Hairdryer, Air-purifier, and LG monitor] are ON simultaneously.
Turn OFF and then tun ON [Hairdryer] while the other appliance are still ON.

12 Test 12 [Hairdryer and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Hairdryer] while the other appliance are still ON.

13 Test 13 [LG monitor, Samsung monitor, Fan, Air-purifier, and Hairdryer] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.

14 Test 14 [LG monitor, Samsung monitor, Fan, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.

15 Test 15 [LG monitor, Samsung monitor, and Fan] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.

16 Test 16 [LG monitor and Samsung monitor] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.
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Table 2. Cont.

No Test Description

17 Test 17 [Hairdryer, Fan, Samsung monitor, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

18 Test 18 [Samsung monitor, Fan, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

19 Test 19 [Samsung monitor, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

20 Test 20 [Samsung monitor and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

3.2. MCP39F511

The MCP39F511 is a power monitoring device that can measure input power in real time
for the consumer, power distribution units, AC/DC power supplies. This sensor supports 2-wire
serial protocols and Universal Asynchronous Receiver/Transmitter (UART)with enabling select full
speed at up to 115.2 kbps. This sensor has a Power Monitor Demonstration Board which is a fully
functional single-phase power. The system calculates and displays active power, reactive power, RMS
current, RMS voltage, active energy (both import and export), and four quadrants reactive energy.
MCP39F511 changes data acquisition mode compare to a conventional method. In the conventional
method, data acquisition mode is getting energy data stored in registers by sending a command from
PC. In this sensor device, the mode is getting energy data via connecting to Jetson TX2 (see Figure 3)
via some steps as follows.

• Step 1: Jetson TX2 sends a command to switch to single wire mode. This single wire mode
includes twenty bytes such as Header Byte (0 × AB), Header Byte 2 (0 × CD), Header Byte 3
(0 × EF), Current RMSs with Byte 0 to Byte 3, Voltage RMSs with Byte 0 to Byte 1, Active Power
with Byte 0 to Byte 3, Reactive power with Byte 0 to Byte 3, Line Frequency with Byte 0 to Byte 1,
and final is check sum.

• Step 2: Single wire mode is automatically sent whenever the sensing device updates energy data.
• Step 3: The sampling rate is in 15 Hz (see Figure 4).

There is a coherent sampling algorithm to phase lock the sampling rate to the line frequency
based on an integer number of sample per line cycle in the computation cycle of MCP39F511. After
that, it reports all power output quantities at a 2N number of line cycles. The power outputs include
RMS current, RMS voltage, apparent power, active power. The accumulation interval is defined as
an 2N number of line cycles, where N is the value in the Accumulation Interval Parameter register.
Equations (1)–(5) system calculate and display RMS current (IRMS), RMS voltage (VRMS), Apparent
power (S), Active power (P), Reactive power (Q), and Power factor as follows.

RMS current equation (IRMS) with unit is Amps (A):

IRMS =

√
∑2N−1

n=0 (in)2

2N (1)

RMS voltage equation (VRMS) with unit is Volt (V):

VRMS =

√
∑2N−1

n=0 (vn)2

2N (2)

Apparent power equation (S) with unit is Volt-Amps (VA):

S = IRMS ×VRMS (3)
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Active power equation (P) with unit is Watts (W):

P =
1

2N

2N−1

∑
k=0

Vk × Ik (4)

In the MCP39F511, Reactive power (Q) with Volt-Amps-Reactive unit (VAR) is measured based
on a θ-degree phase shift in the voltage channel. The common degree is 90-degree phase shift.
Accumulator Unit (ACCU) acts as the accumulator where has the similar accumulation principles
applied to Active power (P). In the Gain Reactive power register, Gain is corrected. In the Reactive
power register, an unsigned 32-bit value is located which is the final output. P is measured by the
formula below.

Q = VRMS × IRMS × sin(θ) (5)

The ratio of P to S or Active power divided by Apparent power is Power factor (PF) measurement.

PF =
P
S

(6)

Figure 3. Data transfer process.

Figure 4. The low sampling rate format data collected in 15 Hz of Air-purifier device.
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3.3. Jetson TX2

Jetson is the low-power embedded platform in the world’s leading. Besides, it enables server-class
AI to compute performance everywhere. Jetson’s features include an integrated 256-core NVIDIA
Pascal GPU, a hex-core ARMv8 64-bit CPU complex, and 8GB of LPDDR4 memory with a 128-bit
interface. Figure 5 shows the CPU complex which combines a dual-core NVIDIA Denver 2 alongside a
quad-core ARM Cortex-A57.

Table 3 shows Jetson TX2 technical specifications in detail. The installation files of Jetson TX2 are
set up including,

• GPU includes Cuda, cudnn
• Machine learning/ deep learning with Tensorflow 1.3
• Python 3rd party lib with Pandas, numpy, jupyter, pyserial, matplotlib etc.
• Power Sensor Interlock is CDC ACM module
• Server includes Node.js 6.11.3, Npm 3.10.10, MongoDB-enterprise

Figure 5. Jetson TX2.

Table 3. Jetson TX2 Technical Specifications.

Feature Byte

CPU NVIDIA PascalTM, 256 CUDA cores
GPU HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB L2

Monitor 8 GB 128 bit LPDDR4 59.7 GB/s
Data capacity 32 GB eMMC, SDIO, SATA
Connectivity 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth

Etc. CAN, UART, SPI, I2C, I2S, GPIOs

It is a necessary to configure the system for collecting energy data from the appliances. The stream
energy data is calculated in the power sensing device (MCP39F511). When the embedded board
(Jetson TX2) sends a power data request, the sensing device will transfer power data via a single
wire mode transmission frame 15 times per second. After that, Jetson TX2’s processor operates to
sort data received from MCP39F511 and save the data result to database management (MongoDB).
For instance, Figure 6 shows the system configuration diagram to collect data from five household
appliances (Air-purifier, Fan, Hairdryer, LG monitor, and Samsung monitor).
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Figure 6. System configuration diagram collection data.

To collecting and storing the energy data, this paper proposes Algorithm 1. The algorithm consists
of four steps as follows.

• Step 1. Setting up serial connect from NVIDIA Jetson TX2 to MCP39F511
• Step 2. Checking frame with 20-byte frame
• Step 3. Calculating power data including current, voltage, active power, reactive power, frequency
• Step 4. Storing data into NVIDIA Jetson TX2

Algorithm 1 The requesting and storing energy data of Jetson TX2

Require: single_wire_ f rame
Ensure: current (I), voltage (V), activepwr (P), reactivepwr (Q), frequency (F)

1: if Serial.isConnected () then
2: Serial.write (single_wire_ f rame)
3: else
4: print ("serial connection error!")
5: exit()
6: end if
7: while Serial.isConnected() do
8: single_wire_mode =Serial.read()
9: check = check_frame (single_wire_ f rame)

10: if check = True then
11: I, V, P, Q, F = calculate_power_data (single_wire_mode)
12: save_to_database (I,V,P,Q,F)
13: end if
14: end while

In this algorithm , it defines two functions. The first function is check_frame() to check frame
with 20-byte frame in single wire mode. The second one is calculate_power_data() to measure energy
data information in Root Mean Square (RMS).

3.4. Transient Signal Extraction and Recognition

Based on literature observation above, this paper states three problems needing solve as follows.
Problem 1. Analyzing and extracting new transient signal from original power signal in low

sampling rate data in feature extraction.
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Problem 2. Labeling ON/OFF data on new transient signals extracted.
Problem 3. Improving the performance for event detection as well as load identification using a

new transient signal results and machine learning/deep learning models.
This study selects active power factor which is a unique input in this approach. Figure 7 shows in

detail of the proposed solution. The Figure 7a displays the process of this solution. The Figure 7b is to
illustrate the process in Figure 7a, respectively. The proposed method includes three processes, such
as feature extraction, labeling, and classification. The first, the feature extraction task is to generate
the state of the appliance and to extract the transient signal of appliances. The second, labeling task
is to label ON/OFF data with state and transient signals of appliance after extracting. The final,
classification task is to learn and classify the ON/OFF appliance based on the transient signal and
ON/OFF label signal.

(a)

(b)

Figure 7. The proposed technique for transient signal extraction and recognition. (a) The proposed
concept; (b) The illustration of the proposed process.

In feature extraction task, to label ON/OFF for appliance data, this work generates two signals
including State of appliance signal and Transient signal. Hence, this paper proposes two algorithms,
Algorithms 2 and 3.

The main idea of this task is how to detect whether or not rising and falling signals from the active
power signal. The rising signal means appliance is operating (ON state). The falling signal means
appliance is changing state from ON to OFF. Sliding window size of time series data is used to trace
power signal to detect changing signals. Hence, the performance of the changing detection algorithm
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does not depend on the fixed or adaptive threshold, the large measure noise, and similarities among
steady state signatures. Figure 8 shows the changing signals from active power signal of the appliance.

Figure 8. The analysis of active power signal with rising and falling signal.

Algorithm 2 is to generate State of the appliances, denoted by S. S value extracted is used for the
input of Algorithm 4.

Algorithm 2 State of the appliances generation algorithm

Require: Activepwr (P)
Ensure: State of appliance (S)

1: Lp ←− length of P
2: bin←− histogram (P)
3: threshold←− bin
4: OFF_state←− 0
5: ON_state←− 1
6: for i in range (0, Lp) do
7: if P[i] = 0 then
8: S←− S || 0
9: else if P[i] < threshold then

10: S←− S || OFF_state
11: else
12: S←− S || ON_state
13: end if
14: end for
15: return S

Algorithm 3 is to extract new transient signal from active power signal, denoted by T. T value
is determined based on calculating prior P data (pre_data) and post P data (post_data). To assign
pre_data and post_data values, the requirement is to use the window size w of P time series data and
time shifting time series data of P is +1 for post_data value. The size of w depends on the sample size
of P and periodicity of the data. To get smaller smoothing moving the average of time series data,
there is an initialization of w value is 5. Hence, confidence intervals for the smoothed values are get.
T signal extracted from this algorithm becomes to the input of Algorithm 4. If T value has negative
value it means corresponding to P active power has falling signal, and then setting appliance’s label is
OFF event. In contrast to this, the active power has a rising signal, and then setting appliance’s label is
ON event.
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Algorithm 3 Transient signal extraction algorithm

Require: Activepwr (P)
Ensure: Transient signal extraction (T)

1: Lp ←− length of P
2: w←− 5
3: T ←− [0]
4: for i in range (w, Lp − w) do
5: T_sum←− 0
6: for j in range (15) do
7: pre_data←− P[i− w + j]
8: post_data←− P[i− w + 1 + j]
9: T_list←− post_data− pre_data

10: T_sum←− Σ(T_list)
11: end for
12: T ←− T || T_sum
13: end for
14: return T

In labeling task, this paper generates ON/OFF labeling by the proposed Algorithm 4. T signal
and state of the appliances are extracted by Algorithms 2 and 3, respectively. They become to the input
of this algorithm. The task of Algorithm 4 is to generate ON_label or OFF_label from T signal. This
study defines threshold value is −5 which is a maximum threshold value to determine whether event
status changing from ON to OFF event. If T value extracted at time t smaller than −5 it means that
at that time has occurred event changing from ON to OFF. In case S variable has 0 value, it means
that no event operation. If T value is smaller than threshold, it is assigned label is OFF_label; else
it is assigned label is ON_label. OFF_label value or ON_label value of each appliance are different
values. For example, there are two appliances including Air-purifier and Fan. This paper defines sets
of ON/OFF labels of these appliances as follow. Labels of Air-purifier device are OFF_label=1 and
ON_label=2. And labels of Fan device are OFF_label=3 and ON_label=4. For setting ON/OFF labeling
values of each appliance and twenty-test cases data, this paper mentions the labels for testing data in
next Section.

Algorithm 4 Labeling ON/OFF algorithm

Require: Transient signal extracted (T), State of appliance (S)
Ensure: ON_OFF_label

1: LT ←− length of (T)
2: ON_OFF_label ←−[]
3: threshold←− −5
4: for i in range (0, LT) do
5: if S[i] = 0 then
6: ON_OFF_label ←− ON_OFF_label || 0
7: else if T[i] < threshold then
8: ON_OFF_label ←− ON_OFF_label || OFF_label
9: else

10: ON_OFF_label ←− ON_OFF_label || ON_label
11: end if
12: end for
13: return ON_OFF_label

In the classification task, this paper evaluates the proposed method using the models in both
Machine Learning (ML) and Deep Learning (DL) fields. For learning T signal and ON/OFF labeling
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signal, Decision Tree and Long Short-Term Memory (LSTM) models are selected in ML and DL,
respectively.

• Decision Tree is a supervised learning method. It is used in both classification and regression
tasks. The input feature of this model is used to infer the output feature by learning simple
decision rules. CART [31] (Classification and Regression Trees) is similar to C4.5, however, two
different to C4.5 are it supports the regression task in numerical target variable and does not need
to compute rule sets. This algorithm builds binary trees based on the feature and threshold with
the largest information gain at each node. In a decision tree algorithm, it needs training vectors
xi ∈ Rn, i = 1, . . . , l and a vector y ∈ Rl . This algorithm needs to recursively partition such that
grouping the same labels in a group together. A feature f and threshold thre f , partition the data
into Tle f t and Tright subsets are contained in each candidate split θ = (j, thre f )

Tle f t(θ) = (x, y)|x f ≤ threj (7)

Tright(θ) = T \ Tle f t(θ) (8)

The impurity is the choice of the classification or regression task. The impurity at j is calculated
based on an impurity function H(j).

G(T, θ) =
nle f t

Nj
H(Tle f t(θ)) +

nright

Nj
H(Tright(θ)) (9)

Select the parameters that minimizes the impurity is formulated by θ∗ as follows.

θ∗ = argminθG(T, θ) (10)

Recurse for subsets Tle f t(θ
∗) and Tright(θ

∗) reaching the maximum allowable depth, Nj <

minsamples or Nj = 1. In the classification task, the output classification represents a region
Rj with Nj observations taking on value 0, 1, . . . , K− 1, for node j.

prjk =
1

Nj
Σxi∈Rj I(yi = k) (11)

be the proportion of class k observations in node j. I(.) is a spitting criterion that makes used of
the impurity measure.

Common measures of impurity are Gini index which is calculated as follows.

H(Xj) = Σk pjk(1− prjk) (12)

• LSTM has been designed by Hochreiter and Schmidhuber in 1997 [32]. LSTM is an elegant
Recurrent Neural Network (RNN). The LSTM architecture is combined memory cells by replacing
the regular units of the neural network. A memory cell consists of three gates: an input gate, a
forget gate, an output gate and the state of memory cell is called cell state (Figure 9a). In particular,
at the input gate, it allows incoming signal to alter the cell state or block it. On the other hand, the
output gate can allow the cell state to have an effect on other neurons or prevent it. Finally, the
forget gate can modulate cell state of the memory cell. Besides, it allows the cell to remember or
forget its previous state as needed.



Energies 2018, 11, 3409 15 of 35

x

x

+

݅௧

௧݂ ܿ௧

௧݄௧ିଵݔ

x

ܾ
݄௧ିଵ
௧ݔ

ܿ௧ିଵ

݄݊ܽݐ

݄݊ܽݐ

݄௧

݁ݐܽ݃	ݐݑ݊݅

݁ݐܽ݃	ݐ݁݃ݎ݂

݁ݐܽ݃	ݐݑݐݑ

݁ݐܽݐݏ	݈݈݁ܿ

ܾ
݄௧ିଵ
௧ݔ

ܿ௧ିଵ

௧

ܾ
݄௧ିଵ
௧ݔ

ܿ௧ିଵ

݁ݐܽ݃	ݐݑݐݑ

݁ݐܽݐݏ	݈݈݁ܿ

(a)

x

x

+

݅௧ଵ

௧݂
ଵ

௧ଵ

ܿ௧

x

x

x

+

ܿ௧

x

x

x

+

ܿ௧

x

௧ଵݕ ௧ଶݕ ௧ଷݕ

ݐ ൌ ݐ  1
݄௧ଵ ݄௧ଶ ݄௧ଷ

݅௧ଶ

௧݂
ଶ

௧ଶ

݅௧ଷ

௧݂
ଷ

௧ଷ

௧ଵݔ௧ଶݔ

(b)

Figure 9. (a) LSTM Cell; (b) An architecture of LSTM model

The difference between LSTM and the original RNN is hidden units. In LSTM, the hidden
units are replaced by LSTM cells. Figure 9b shows an architecture of LSTM having two input
units, three LSTM cells as hidden units and three output units. The equations below describe
how LSTM processes data. Assumption that Xt = [x1

t , x2
t , x3

t , ..., xnx
t ] is an input vector and

Ht = [h1
t , h2

t , h3
t , ..., hnh

t ], Yt = [y1
t , y2

t , y3
t , ..., y

ny
t ], Ct = [c1

t , c2
t , c3

t , ..., cnc
t ] are hidden, output and cell

vector, respectively. The elements of each vector are units for layers of LSTM. nx, nh, nc and ny are
a number of each units. σ is the logistic sigmoid function, and i, f and o are the input gate, forget
gate and output gate, respectively. The weight matrix superscripts have the obvious meaning.
For example, Whi

t is the hidden-input gate weight matrix and Wxo
t is the input-output gate weight

matrix. bi
t, b f

t , bc
t and bo

t are bias terms at time t.

First is to compute the value for ft, the activation of the forget gate. The output range of ft is from
0 to 1 and the output value will be multiplied by ct−1 when calculating ct. Therefore, ft means an
activation rate of the previous cell state.

ft = σ(Wx f
t

nx

∑
i=1

xi
t + Wh f

t

nh

∑
j=1

hj
t−1 + Wc f

t

nc

∑
k=1

ck
t−1 + b f ) (13)

Second is to compute the value for the input gate it. In common with ft, it is the activation ratio
of the input value xt.

it = σ(Wxi
t

nx

∑
i=1

xi
t + Whi

t

nh

∑
j=1

hj
t−1 + Wci

t

nc

∑
k=1

ck
t−1 + bi) (14)

Third is to compute the value for the cell state ct. Two factors are combined. The first factor is the
previous cell state activated by the forget gate and the second factor is the input value activated
by the input gate.

ct = ftct−1 + ittanh(Wxc
t

nx

∑
i=1

xi
t + Whc

t

nh

∑
j=1

hj
t−1 + bc) (15)

Final is to compute the value of their output gates and use it for the memory block output.

ot = σ(Wxo
t

nx

∑
i=1

xi
t + Who

t

nh

∑
j=1

hj
t−1 + Wco

t

nc

∑
k=1

ck
t−1 + bo) (16)
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ht = ottanh(ct) (17)

Equations (13)–(17) are processed in one LSTM cell. After all process are done in the hidden layer,
it can be calculated for the output units with the hidden vector Ht.

yt = σ(Why
t

nh

∑
i=1

hi
t) (18)

3.5. Energy Monitoring and Consumption Prediction System

This is a web application to display the energy disaggregation results. This paper uses Node.js,
Javascript, and HTML to build the user interface for NILM system. The results of classification are
passed to energy monitoring system.

4. Experiments

This section points data preparation for experiment and experiment results in this approach.
The results including T signals extracted and classification ON/OFF event. This study sets up the
environment for implementation as following Intel R© CoreTM i7-4790 CPU @3.60GHz; GPU: NVIDIA
GeForce GTX 750 (NVIDIA Corporation, Santa Clara, CA, USA) ; RAM: 16GB and Operating System
(OS) : Windows 10; the language programming in Python.

Besides, this paper uses confusion matrix (CM) to evaluate the approach classification model. CM
includes four categories such as True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN). This paper assumes that the positive event means an appliance is turned ON and when
the appliance is turned OFF that it is the negative event. Hence, Recall, Precision, Accuracy, F1-score
are calculated for evaluating the NILM model based on CM.
Recall is a ratio of the number correctly classified to the total number of actual positive samples.

Recall =
TP

TP + FN
(19)

Precision is a ratio of the number of correctly classify to the total number of predicted
positive samples.

Precision =
TP

TP + FP
(20)

Accuracy is a ratio of correctly classify to the total test data.

Accuracy =
TP + TN

(TP + FP) + (FN + TN)
(21)

F1-score is the harmonic average of Recall and Precision.

F1-score = 2× Precision× Recall
Precision + Recall

(22)

Furthermore, this paper measures loss of NILM model using Loss function such as Mean Squared
Error (MSE).

Loss =
1
n

Σn
i=1(Yt −Yp)

2 (23)

where Yt is the expected output of sample data, Yp is the predicted output of sample data by NILM
approach model.
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4.1. Data Preparation for Experiment

Five appliances data individual and twenty test cases are collected and saved in *.csv files. As
mentioned in the previous Section, this paper selected active power data for input feature in the
experiments. Figure 10 illustrates the active power signals from five active power data of five appliances.

(a) (b) (c)

(d) (e)

Figure 10. Active power signals: (a) Airpurifier; (b) Fan appliance; (c) Hairdryer appliance; (d) LG
monitor appliance; (e) Samsung monitor appliance.

In testing data, this paper named twenty-test cases data files following in Table 4.

Table 4. Twenty-test cases data file name.

No Test File Name Description

1 Test 1 Airpurifier_Transient_LG_Samsung_Fan_Hairdryer_Steady
2 Test 2 Airpurifier_Transient_LG_Samsung_Fan_Steady Air-purifier transient
3 Test 3 Airpurifier_Transient_LG_Samsung_Steady
4 Test 4 Airpurifier_Transient_LG_Steady

5 Test 5 Fan_Transient_Airpurifier_Steady
6 Test 6 Fan_Transient_Samsung_Airpurifier_Steady Fan transient
7 Test 7 Fan_Transient_Samsung_LG_Airpurifier_Hairdryer_Steady
8 Test 8 Fan_Transient_Samsung_LG_Airpurifier_Steady

9 Test 9 Hairdryer_Transient_Airpurifier_LG_Fan_Samsung_Steady
10 Test 10 Hairdryer_Transient_Airpurifier_LG_Fan_Steady Hairdryer transient
11 Test 11 Hairdryer_Transient_Airpurifier_LG_Steady
12 Test 12 Hairdryer_Transient_Airpurifier_Steady

13 Test 13 LG_Transient_Samsung_Fan_Airpurifier_Hairdryer_Steady
14 Test 14 LG_Transient_Samsung_Fan_Airpurifier_Steady
15 Test 15 LG_Transient_Samsung_Fan_Steady LG monitor transient
16 Test 16 LG_Transient_Samsung_Steady

17 Test 17 Samsung_Transient_Airpurifier_LG_Haridryer_Fan_Steady
18 Test 18 Samsung_Transient_Airpurifier_LG_Fan_Steady Samsung monitor transient
19 Test 19 Samsung_Transient_Airpurifier_LG_Steady
20 Test 20 Samsung_Transient_Airpurifier_Steady
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Besides, this paper plotted twenty active power signals from twenty test cases in Figure 11.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 11. Active Power Signals of twenty test cases data: (a–d): test 1 to test 4; (e–h): test 5 to test 8;
(i–l): test 9 to test 12; (m–p): test 13 to test 16; (q–t): test 17 to test 20.
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4.2. Experiment Results

4.2.1. State of Appliance, Transient Signal and ON/OFF Label Results

Firstly, this paper determined and declared ON/OFF label value to use in Algorithm 4. Tables 5
and 6 show ON/OFF labels for five appliances and twenty test cases, respectively.

Table 5. Labeling ON/OFF for each appliance.

Appliance Name
ON/OFF Labeling

ON Label OFF Label

Airpurifier 1 2
Fan 3 4

Hairdryer 5 6
LG monitor 7 8

Samsung monitor 9 10

Table 6. Labeling ON/OFF for twenty test cases.

Test Name
ON/OFF Labeling

ON Label OFF Label

Test 1, Test 2, Test 3, Test 4 1 2
Test 5, Test 6, Test 7, Test 8 3 4

Test 9, Test 10, Test 11, Test 12 5 6
Test 13, Test 14, Test 15, Test 16 7 8
Test 17, Test 18, Test 19, Test 20 9 10

Secondly, this paper implemented Algorithms 2 and 3 to extract State of the appliance and T
signals, respectively. After that, the Algorithm 4 are implemented to label ON/OFF based on each T
signals from five appliances and twenty test cases data. The left, middle, and right of Figure 12 are
State S, T and ON/OFF_label signals obtained from five appliances data, respectively. From observing
these T signal results in this figure, this paper can determine the number of changing status of event
ON/OFF in each appliance. There are two, three, three, five, and four times changing status from ON
to OFF corresponding to air-purifier, fan, hairdryer, LG monitor, and Samsung monitor.

In summary, this paper recognizes that when T signal changes the value from positive to negative
value and smaller than − 5, the event ON/OFF on device will occur. In particular, when the T signal
obtains positive values, it means that the appliance is operating (ON). Contrast to this, the appliance
switches to OFF.

For visualizing the results of twenty test cases, this paper pointed the S, T, and ON_OFF label
results of test 1 to test 4 in Figure 13. Besides, the S, T, and ON_OFF label results of test 5 to test 20 are
plotted in Figures A1–A3 at Appendix A, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 12. State S, T & ON/OFF label signals of 5 appliances: (a–c): Air-purifier device; (d–f): Fan
device; (g–i): Hair Dryer device; (j–l): LG monitor device; (m–o): Samsung monitor device.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13. State S, T & ON/OFF label signals of test 1 to test 4 data: (a–c) test 1; (d–f) test 2; (g–i) test 3;
(j–l) test 4.

4.2.2. Classification Results

• In ML, this paper applied Decision Tree model for classification ON/OFF event of the household
appliance in this study. The reason for selecting Decision Tree model in classification task related
to classification accuracy. This study tried to apply other models such as SVM, Random Forest,
Multilayer Perceptrons (MLP), etc., however, the result of them obtained not well. This paper
used T signals for input feature and output feature is ON/OFF labeling for the approached
models. Five T signals extracted from five appliances are training data. The testing data is twenty
T signals extracted from twenty tests data. This paper used CM to display the classification result.
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The performance classification results for detecting ON/OFF of Decision Tree model are shown
in Figure 14. The main diagonal of confusion matrix represents the number of correctly samples
are predicted by the applied model.

Figure 14. Confusion matrix of Decision Tree model for classification ON/OFF label.

Table 7 is classification report for each event detection of five appliances using other performance
metrics such as precision, recall, F1-score. The average accuracy of event detection model on these
appliances data obtained 93%.

Table 7. Classification result for event detection ON/OFF of each appliance.

Label Event Device Precision Recall F1-Score Support

0 No Event 0.95 0.96 0.95 2747
1 Air-purifier_ON 0.82 0.77 0.79 411
2 Air-purifier_OFF 1.00 0.67 0.80 9
3 Fan_ON 0.93 0.91 0.92 739
4 Fan_OFF 0.92 1.00 0.96 24
5 Hairdryer_ON 0.95 0.97 0.96 657
6 Hairdryer_OFF 0.96 0.96 0.96 23
7 LG-monitor_ON 0.87 0.88 0.87 565
8 LG-monitor_OFF 0.82 0.97 0.89 29
9 Samsung-monitor_ON 0.92 0.90 0.91 412
10 Samsung-monitor_OFF 0.83 1.00 0.91 10

avg/total 0.93 0.93 0.93 5629

In summary, Table 8 pointed the average performance of the approached model. The performance
classification of our approach model achieved 92.64% and loss rate was 1.67.

Table 8. Classification result of Decision Tree model on energy data.

Metric Performance

Accuracy 0.926413
Precision 0.927533

Recall 0.926413
F1 0.926778

Loss 1.66637

• In DL, LSTM model is used for classification ON/OFF event of appliances. Similar to Decision
Tree model, this paper used T signals and ON/OFF labeling for input and output features,
respectively. For testing data, this research also used twenty T signals of twenty tests data. Setting
up hyper-parameters of LSTM model are described in Table 9 as follows.
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Table 9. Hyper-parameter of LSTM model in the approach.

Hyper-Parameter Name Value

Input T signals
Hidden size 100
Batch size 893
time step 1

Number of LSTM layers 3
Epochs 5000
Output On_Off_labeling

To evaluate LSTM model, this paper uses accuracy metric and Root Mean Square Error (RMSE)
for measuring performance and loss of the model, respectively. RMSE is the standard deviation
of the residuals (prediction errors). The formula to calculate RMSE is as follows.

RMSE =
√
(pr− ex)2 (24)

where pr is predicted output and ex is expected output.

Figure 15 presents the results of LSTM model for classification ON/OFF of five appliances data.
Besides, LSTM model’s results on test 1 to test 4 data are shown in Figure 16 and the others tests’
results in Figure A4 at Appendix A. The average accuracy of LSTM model obtained 96.85% for
detecting ON/OFF appliances. The loss of LSTM model (RMSE) obtained 0.60632.

(a) (b) (c)

(d) (e)

Figure 15. Classification results of LSTM model on 5 appliances data: (a) Airpurifier device; (b) Fan
device; (c) Hairdryer device; (d) LG monitor device; (e) Samsung monitor device.
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(a) (b)

(c) (d)

Figure 16. Classification results of LSTM model on test 1 to test 4 data: (a) Test 1; (b) Test 2; (c) Test 3;
(d) Test 4.

4.2.3. Applying the Proposed Method on a Publicly Available Dataset

There are several NILM available datasets such as Building-Level fUlly-labeled dataset for
Electricity Disaggregation (BLUED), UK-DALE, Residential Energy Disaggregation Dataset (REDD),
The Almanac of Minutely Power dataset (Version 2) (AMPds2) etc. This paper applied the proposed
method on AMPds2 [33] dataset which is low sampling rate data. Although several data file formats are
published such as Original file format, Tab-delimited, Rdata format, Variable metadata, etc. The original
file format in CSV is used in this paper. In this dataset, there are 19 appliances data in isolation have
already collected and tested in electricity data. There are no publicly aggregated data between the
loads in this dataset. Therefore, this paper only performed and tested on individual load. Among
available loads, 5 appliances data are randomly selected to use in this experiment. These appliances
are Master and South Bedroom, Basement Plugs and Lights, Instant Hot Water Unit, Entertainment:
TV, PVR, AMP, Kitchen Fridge. Besides, ON/OFF label value are determined and declared from 1 to
10 corresponding to each appliance. The information of these appliances and their ON/OFF labels are
described in Table 10 as follows.

Table 10. Five appliances information in AMPds2 dataset selected [34].

CSV File Name Appliance Name Watts (W) ON Label OFF Label

Electricity_B2E Master and South Bedroom 175 1 2
Electricity_BME Basement Plugs and Lights 387 3 4
Electricity_HTE Instant Hot Water Unit 70 5 6
Electricity_TVE Entertainment: TV, PVR, AMP 415 7 8
Electricity_FGE Kitchen Fridge 525 9 10
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About processing dataset, in this dataset, there are 11 electric data features in each appliance
data. Timestamp (TS) feature is Unix timestamp value in this dataset. Electricity measurement is at
one minute intervals. This dataset was collected to total of 1,051,200 readings per meter for 2 years
of monitoring from 2012 to 2014. Therefore, these loads data are big dataset. In testing performance
of the presently proposed methodology, the range of TS in the first 500 readings/samples value
data from 1333263600 to 1333323540 is selected. This range of TS value is converted to Universal
Time Coordinated (UTC) corresponding to the date time range from 2012-4-01 7:00 a.m. to 2012-4-01
15:19 p.m. The total of time series data is 500 min. Because real power P is active power data, hence P
is selected for the input data in the experiment. Figure 17 visualizes five real power P signals time
series data were selected.

(a) (b) (c)

(d) (e)

Figure 17. Active power signal of appliance data: (a) Master and South Bedroom; (b) Basement Plugs
and Lights appliance; (c) Instant Hot Water Unit appliance; (d) Entertainment: TV, PVR, AMP appliance;
(e) Kitchen Fridge appliance.

About feature extraction result, this paper applied the proposed solution to generate and extract
S, T, ON/OFF label signals of each appliance. Figure 18 illustrates these results of each appliance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 18. State S, T & ON/OFF label signals of 5 appliances: (a–c) Master and South Bedroom device;
(d–f) Basement Plugs and Lights device; (g–i) Instant Hot Water Unit device; (j)–l) Entertainment: TV,
PVR, AMP device; (m–o) Kitchen Fridge device.



Energies 2018, 11, 3409 27 of 35

About classification result, this paper applied two approached learning models on this
selected dataset.

• In ML, the classification result of Decision Tree model is presented in Figure 19. Furthermore,
Table 11 presents the event detection results in detail of this confusion matrix result. The average
classification performance of Decision Tree model on this dataset achieved 98.6% accuracy and
loss rate was 0.488.

Figure 19. Confusion Matrix of Decision Tree model for classification ON/OFF label on five appliances
data in AMPds2.

Table 11. Classification result for event detection ON/OFF of each appliance in AMPds2.

Label Event Device Precision Recall F1-Score Support

0 No Event 0.99 0.99 0.99 305
1 Master and South Bedroom_ON 0.95 1.00 0.97 37
2 Master and South Bedroom_OFF 1.00 1.00 1.00 4
3 Basement Plugs and Lights_ON 1.00 0.98 0.99 53
4 Basement Plugs and Lights_OFF 1.00 1.00 1.00 11
5 Instant Hot Water_ON 0.90 0.90 0.90 20
6 Instant Hot Water_OFF 1.00 1.00 1.00 1
7 Entertainment: TV, PVR, AMP_ON 0.95 1.00 0.98 20
8 Entertainment: TV, PVR, AMP_OFF 1.00 1.00 1.00 10
9 Kitchen Fridge_ON 1.00 0.90 0.95 20
10 Kitchen Fridge_OFF 1.00 1.00 0.91 19

avg/total 0.99 0.99 0.99 500

• In DL, the classification result of LSTM model obtained 96.78% accuracy and RMSE was
0.5124. Figure 20 illustrates the predicted results ON/OFF label of 5 appliances compare to
the expected outputs.



Energies 2018, 11, 3409 28 of 35

(a) (b) (c)

(d) (e)

Figure 20. Classification results of LSTM model on 5 appliances data selected in AMPds2: (a) Master
and South Bedroom; (b) Basement Plugs and Lights appliance; (c) Instant Hot Water Unit appliance;
(d) Entertainment: TV, PVR, AMP appliance; (e) Kitchen Fridge appliance.

In summary, the presently proposed method achieved high-performance accuracy for load
identification on the AMPds2 dataset with over 96% accuracy on both approached learning models.

5. Conclusions and Further Works

This study built a complete NILM framework including data acquisition, appliance feature
extraction, classification data and monitoring energy data. First, this paper collected the personal
NILM data in low-sampling rate including five household appliances energy data and twenty tests case
data in the data acquisition task. Secondly, state of the appliance and transient signals are extracted to
generate ON/OFF label on personal data in feature extraction task. The proposed transient signal is a
transient signal to detect ON/OFF event of appliances. Thirdly, two models in ML and DL fields are
stated to detect event on loads. In particular, the Decision Tree model and LSTM model are applied to
perform two classification models with average accuracies achieved 92.64% and 96.85%, respectively.
Finally, in monitoring energy data, a website platform system are developed to display the results of
load identification. Besides, the proposed method is applied on a publicly available dataset, AMPds2.
Both approach models obtained over 96% on this sub-data. In future work, this solution can be
applied to extract transient signal on other publicly available datasets to widely apply the proposed
methodology.

6. Data Availability

The household appliances energy consumption data set was downloaded from the figshare
repository with DOI https://figshare.com/articles/NILM_EnergyData/7269692, and other data
generated or analyzed during this study are available from the corresponding author on
reasonable request.

https://figshare.com/articles/NILM_EnergyData/7269692
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Appendix A

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure A1. State S signals of test 5 to test 20 data.
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Figure A2. Transient T signals of test 5 to test 20 data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure A3. ON/OFF labels of test 5 to test 20 data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure A4. Classification results of LSTM model on test 5 to test 20 data: ON/OFF label is expected output with Blue color; ON/OFF label is predicted output with
Green color.
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