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Abstract: Accurate global solar radiation prediction is highly essential for related research on
renewable energy sources. The cost implication and measurement expertise of global solar radiation
emphasize that intelligence prediction models need to be applied. On the basis of long-term measured
daily solar radiation data, this study uses a novel regularized online sequential extreme learning
machine, integrated with variable forgetting factor (FOS-ELM), to predict global solar radiation at Bur
Dedougou, in the Burkina Faso region. Bayesian Information Criterion (BIC) is applied to build the
seven input combinations based on speed (Wspeed), maximum and minimum temperature (Tmax and
Tmin), maximum and minimum humidity (Hmax and Hmin), evaporation (Eo) and vapor pressure
deficiency (VPD). For the difference input parameters magnitudes, seven models were developed
and evaluated for the optimal input combination. Various statistical indicators were computed
for the prediction accuracy examination. The experimental results of the applied FOS-ELM model
demonstrated a reliable prediction accuracy against the classical extreme learning machine (ELM)
model for daily global solar radiation simulation. In fact, compared to classical ELM, the FOS-ELM
model reported an enhancement in the root mean square error (RMSE) and mean absolute error
(MAE) by (68.8–79.8%). In summary, the results clearly confirm the effectiveness of the FOS-ELM
model, owing to the fixed internal tuning parameters.

Keywords: global solar radiation; FOS-ELM model; input optimization; West Africa region;
energy harvesting

1. Introduction

Over the past five decades, research has revealed the need and necessity for adequate energy
harvesting for multiple purposes including economic, social, and cultural development. Meanwhile,
the UN general assembly’s announcement of the right to public, individual, and non-governmental
organizational development in 1986 climaxed this passion. This declaration marked the beginning
of the universal and inalienable equality of the human right to access to food, housing, employment,
income, and education. This is concluded in the universal openness to all-round development [1].
Every activity directly linked to the realization of the human development agenda is energy-driven.
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Moreover, several studies have investigated the relationship of the energy level of several countries to
their levels of development [2]. Consequently, the findings of these studies have reported a positive
relationship of energy utilization with living standards. The level of energy usage in the developed
nations is lower. Advanced countries are significantly consuming the energy, which greatly affects the
levels of development in backward and developing countries [3].

Since energy is the main factor that drives all developmental processes, its effect on human, crops,
plants, animals, and ecosystems depends on the form of energy employed [4,5]. Studies have reported
two forms of available energy on Earth (renewable and non-renewable energies) [6]. The method
employed in harnessing and applying these forms of energy for human use is very important in
the way they affect humankind and the immediate environment. The uncontrolled utilization of the
nonrenewable form of energy has been linked to several factors such as climate change, global warming,
environmental pollution, and other economic and environmental hazards. Similarly, the renewable
form of energy, which is globally available at varying levels, ought to be given attention. This form
of energy can be obtained from natural processes, and therefore posits minimal or zero impact on
humans and their immediate environment.

Renewable energy sources have attracted much research interest in the 21st century due to the
discoveries of the impact of non-renewable energy on the environment. This interest is because
renewable energy is sustained by natural processes, which contribute nothing to the generation of
GHGs, global warming and climate change [7]. Since the discovery of solar radiation as a renewable
energy source in the mid-19th century become important due to its availability, it has received global
attention as it can match the power-generating capacity of fossil fuels.

The emerging climate challenges are having a serious effect on the Sub-Saharan region of Africa,
as the two hydropower plants which generate 22 MW and the small-scale plant that generate 3 MW
with a mean production of 80 GWh (60 130 GWhyr−1) depend on rainfall, which is continuously
decreasing [8]. However, wind energy is least attractive in Burkina Faso due to the low wind speed
experienced in the country. Thus, Burkina Faso is left with solar as its main source of energy so as to
reduce the importation of fossil fuel electricity from its neighboring countries, and enhance the 0.1%
total solar energy utilization capacity recorded in 2014 [9].

The solar radiation process is complex in nature, where several other climatological and
atmospheric elements such as wind speed, evaporation, humidity, temperature, and others are
associated with its magnitude [10,11]. Hence, quantifying solar radiation is a highly difficult
problem in nature and solving this issue has concerned scholars for five decades [12]. Traditionally,
solar radiation is calculated by multiple manual and empirical formulations [7,13]. However,
the empirical formulations are associated with several limitations, such as case study particular
behavior and variation in the results due to the high stochasticity incorporated into actual data.
Hence, the motivation of scientists is encouraged to find new alternative modeling strategies to solve
this problem.

The application of intelligence models presented in the form of artificial intelligence (AI) models
have been introduced for solar radiation prediction since [14]. Several AI versions have been conducted
to simulate the actual pattern of solar radiation, including an artificial neural network [15–18], fuzzy set
models [19–21], genetic programming [22–25], and complementary models [26–30]. Although there has
been massive implementation of the AI models, multiple drawbacks are associated with these models,
such as poor prediction for a dataset which is not in range of the learning values, the incorporation of
error through the modeling phase, and the requirement of long-time series data for model training,
testing and tuning of the multiple internal parameters. AI models are often ensembled together or
hybridized to solve the weaknesses of individual models.

Hybrid models have showed promising results for global solar radiation prediction, compared to
single parameter-based model counterparts [7]. Solar energy researchers have initiated powerful
hybrid AI models with high levels of accuracy, precision, reliability, and adaptability. These newly
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developed models have proven to yield outstanding prediction accuracy owing to their ability to
capture the complex patterns of natural solar radiation data.

Several hybrid models have recently been developed for solar radiation prediction.
An employment of the firefly algorithm integrated with support vector machines (SVM-FFA) was
conducted for solar radiation prediction in Nigeria, incorporating sunshine duration and maximum
and minimum temperature as input predictors [31]. The result of the proposed novel SVM-FFA model
yielded more precise estimations compared to classical artificial neural network (ANN) and genetic
programming. Salcedo-Sanz et al. (2014) employed a novel Coral Reefs Optimization-Extreme Learning
machine (CRO-ELM) model to estimate global solar radiation using various meteorological parameters
in Murcia, southern Spain [32]. The results showed that the novel hybrid CRO-ELM model performed
remarkably in comparison with the classical ELM model. Aybar-Ruiz et al. (2016) applied a grouping
genetic algorithm and an evolutionary extreme learning machine (GGA-ELM) to predict global solar
radiation, using a numerical weather model input in Toledo’s radiometric observatory, Spain [22].
From the evaluated statistical indicators, the GGA-ELM showed an excellent performance compared
to the traditional ELM. Most recently, a newly developed hybrid ELM model with a pre-processing
approach for wind energy prediction was conducted by Wang et al [33]. The trend of hybrid models’
implementation is increasing, due to the attained predictability performance enhancement.

Despite this novel research conducted using different hybrid AI models for estimating global
solar radiation, there is still room for the improvement of these techniques [34]. Although employing a
numerical weather model’s estimation to feed machine learning techniques in global solar radiation
estimation can enhance model accuracy, this approach has been applied for wind speed estimation [32].
The application of evolutionary-type meta-heuristics to check feature selection in diverse estimation
challenges has been recorded. The use of grouping genetic algorithms (GGAs) capable of grouping
various sets of features and calculating them under various objective features has equally been reported
in literature [22]. However, the capability of a regularized online sequential extreme learning machine
is yet another new intelligence model to be explored for solar radiation simulation.

In this study, a regularized online sequential extreme learning machine with variable forgetting
factor (FOS-ELM) as a new novel case of the ELM model is developed to predict the global solar
radiation for the African region. While several AI models need internal parameters to be adjusted
for better accuracy results, the FOS-ELM algorithm needs no pre-specific knowledge of the control
variables, resulting in a low influence on the optimization problem. The main objective of this research
was to determine the capacity of the newly initiated hybrid FOS-ELM for predicting global solar
radiation in the Burkina Faso region. In particular, the following contributions have been made in
this paper:

i. To apply BIC as a variable selection algorithm. Some research has used this algorithm as an
input variables selection; however, the present study announces its successful candidacy for
solar radiation prediction.

ii. To propose a novel hybrid AI model to predict global solar radiation. For the data collected
every day, the proposed model can continuously receive data, and it is easy and fast to update
the output layer parameters in the modeling dynamically.

iii. To add regularization and forgetting factors to the conventional ELM. The proposed method
has better prediction accuracy and generalization ability, in comparison with other parameter
estimation proposals mentioned in the literature. The regularization term can prevent the
abnormal point and overfitting, and the forgetting factor can reduce the negative influence of
the old data time series.

iv. A classical ELM model is developed to validate the precision of the developed FOS-ELM model
for predicting global solar radiation in the Burkina Faso region.
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2. Case Study Description

The current study was established in the Burkina Faso region, located in the Sub-Saharan region
of Africa. The Burkina Faso region is located between 2◦ West longitude and 13◦ North latitude.
The climate of the region is tropical, with two very distinct seasons. The country receives a rainfall
amount of about 600 to 900 mm, while the dry season is hot with dry wind blowing in from the
Sahara. The region usually features high temperature values at the end of the dry season. The rainy
season is experienced between June and September. There are three climate zones, including the Sahel,
the Sudan-Sahel and the Sudan-Guinea. The humidity increases towards the south and ranges from
winter lows of 12–45% to highs of up to 68–99% during the rainy season.

About 70% of the total power generation capacity in Burkina Faso is sourced from thermal-fossil
fuel, while hydro-power accounts for the remaining 30% [35,36]. Owing to the increasing cost of
production, the instability of oil prices, and the ever-increasing demand for electricity, the country
recently installed a generating capacity of 247 MW, with 215 MW sourced from 28 fossil fuel-powered
stations. The net energy import of the country from its neighboring countries currently stands at about
20%. However, the remote villages have fuelwood, charcoal, agricultural residues, and animal dung as
their major sources of energy [37].

The proposed hybrid AI model is applied for solar radiation prediction, where a case study located
in Bur Dedougou in the Burkina Faso region has been used to quantify the impact of meteorological
variables on the capacity of the newly initiated technique (Figure 1). Seven different models were
developed using Wspeed, Tmax, Tmin, Hmax, Hmin, Eo and VPD due to their availability and completeness
of data in the meteorological station in Burkina Faso. The investigated historical data information
covered 15 years of daily scale observations (1 January 1998–31 December 2012). The training phase
was conducted using 4977 days, while the final 500 observations were used for the testing phase.
The research anchors on the necessity of reliable global solar radiation data utilization for agricultural,
hydrological, and ecological applications and much more for the estimation of energy output of the
solar system in the Burkina Faso region, where the energy crisis is extremely high.
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Figure 1. The location of the studied meteorological station Bur Dedougou in Burkina Faso, West Africa.

3. Theoretical Overview

3.1. Variable Selection

Variable selection is critical for solar radiation prediction. Once the variables unrelated to the
phase response are selected, not only the understanding of the relationship between the variables will
be disturbed, but long-term observation of this variable in the future activities may also be needed.
Otherwise, the manpower and material resources may be wasted, and it may cause great losses.
Studies have shown that the selection of variables with little correlation will lead to a significant
decrease in prediction accuracy.

When the sample size is large, the number of model parameters contributes little to the AIC,
causing the AIC to fail. To this end, Schwarz proposed the Bayesian Information Criterion (BIC) in
1978 [38]. The basic idea of the BIC assumes that there is a uniform distribution on the candidate
models, then uses the sample distribution to find the posterior distribution on the models, and finally
selects the model with the maximum posterior probability. This is equivalent to thinking that the
subset of variables that minimize the BIC value is optimal,

BIC = −2 ln L + k log n (1)

where n is the sample size, k is the number of estimated parameters in the model, and L is the
maximized value of the likelihood function for the estimated model.
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3.2. Regularized Online Sequential Extreme Learning Machine with Variable Forgetting Factor

The ELM model was recently developed based on the single hidden layer with random weight
configuration that was proposed by Prof. G. B. Huang et al. in 2006 and then extended to “generalized”
single layer feed forward networks (SLFNs), where the hidden layer neurons need not be neuron
alike [39,40]. The hidden neuron’s connection parameters are randomly generated without any iterative
tuning and are independent of the data [41]. The network topology of ELM is shown in Figure 2.
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Given a training set with N distinct samples Γ =
{(

xj, tj
)∣∣xj ∈ Rn, tj ∈ Rm , j = 1, . . . , N

}
, where X

is the predictive variable with dimension n and t is the objective variable with dimension m,
the mathematical model of SLFNs with M hidden neurons and an activation function G(·) are
described as:

n

∑
i=1

βiG
(
wi, bi, xj

)
, j = 1, 2, . . . , N (2)

where bi ∈ R is the randomly assigned bias of the ith hidden node and wi ∈ R is the randomly
assigned input weight vector connecting the ith hidden node to the output node. G

(
wi, bi, xj

)
is the

output of the ith hidden node with respect to the input sample xj.
When the SLFN is completely approximating the data, that is, when the error between the output

t̂o and the actual ti is zero, the relationship is:

n

∑
i=1

βiG
(
wi, bi, xj

)
= tj, j = 1, 2, . . . , N (3)

The Equation (3) can be written as:
Hβ = T (4)

where,

H = [hT
1 hT

2 · · · hT
N ] =

 G(w1, b1, x1) · · · G(wn, bn, x1)
...

. . .
...

G(w1, b1, xN) · · · G(wn, bn, xN)


N×n

(5)

β =


βT

1
βT

2
...

βT
N


n×m

T =


tT
1

tT
2
...

tT
N


N×m

(6)
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The output weights can be computed by finding the least-square solutions of the SLFNs in
Equation (4), which is given as:

β = H†T (7)

where H† is the Moore–Penrose generalized inverse of the matrix H. If HTH is not singular matrix,
then, Equation (7) can be written as:

β = H†T =
(

HTH
)−1

HTT (8)

In addition, we add an l − 2 regularization constraint to the loss function of ELM which can
improve the generalization and robustness. Equation (8) becomes the following formula:

β =

 HT
(

I
C + HTH

)−1
T i f N ≤ L(

I
C + HTH

)−1
HTT i f N > L

(9)

where C assigns the regularization, I assigns the unit matrix, N assigns the number of samples and L
assigns the number of hidden layer neurons.

Unfortunately, ELM is a batch learning algorithm. However, in practical applications such as
solar radiation prediction, stock price prediction, and weather prediction, the time series data often
arrives in the form of a data stream and may never end. The potential distribution and changing trend
of the data continuously changes with time. When obtaining new data, traditional artificial intelligence
algorithms such as artificial neural networks, support vector machines and extreme learning models,
need to gather both old and new data to retrain [42]. Therefore, it is difficult to address “big data” and
non-stationary and time-varying time series prediction problems.

To effectively solve the nonstationary time series problem of a data stream, the online sequential
extreme learning machine (OS-ELM) was developed. The learning of OS-ELM includes a preliminary
ELM batch learning process and a continuous one-by-one or block-by-block learning process.

Since OS-ELM involves the calculation of inversion during the update learning process,
once the autocorrelation matrix of the hidden layer output matrix is singular or ill-conditioned,
the generalization ability of OS-ELM will be severely degraded. Therefore, Huynh [16] combined
Tikhonov regularization with OS-ELM and proposed a regularization of OS-ELM to improve the
stability and generalization of the algorithm. To address the role of new samples in the process of
online learning, the concept of the forgetting factor [43] was introduced to OS-ELM to strengthen the
role of new samples by forgetting old samples, so that the updated predictive model is closer to the
current state of the time-varying system.

Theoretically, the R-ELM-FF algorithm is equivalent to minimizing the following least squares
loss function with FF and l2 regularization:

JFR(βk) =
k

∑
i=1

λk−i|ti − hiβk|2 + δλk‖βk‖2 (10)

where λ is the FF parameter with the weight of the old and new samples and δ is the regularization
parameter, which can improve the stability and generalization ability of the algorithm.

Using the recursive least squares method to solve Equation (10), and the recursive calculation
formula [18], βk can be deduced as:

Pk =
Pk−1

λ −
Pk−1hT

k hk Pk−1

λ(λ+hk Pk−1hT
k )

βk = βk−1 + PkhT
k (tk − hkβk−1)

(11)
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However, as time k increases, δλk‖βk‖2 decreases exponentially and trends toward zero,
which will cause the regularization function to fade to failure. FOS-ELM introduces a new constant
coefficient regularization term δ‖βk‖2 in its cost function to replace the exponential regularization term
δλk‖βk‖2. Its cost function is expressed as follows:

JFR(βk) =
k

∑
i=1

λk−i|ti − hiβk|2 + δ‖βk‖2 (12)

The FOS-ELM works as follows:
Assume that the data sample arrives as a data stream; the activation function is G(w, b, x),

the number of hidden neurons is n, the regularization parameter is δ, and the forgetting factor is λ.
Step 1: Initialization. Given the initial training subset Ωk−1 ={(

xj, tj
)∣∣xj ∈ Rn, tj ∈ Rm , j = 1, . . . , k− 1

}
, proceed as follows:

(1) Generate the hidden layer neuron parameters randomly

(wi, bi), i = 1, 2, · · · , n

(2) Compute the hidden layer output matrix by Equation (5)

Hk−1 = [hT
1 hT

2 · · · hT
k−1]

T

(3) Calculate the initial output weight matrix

βk−1 = Pk−1HT
k−1Tk−1

where
Pk−1 =

(
HT

k−1Hk−1 + λI
)−1

, Tk−1 = [t1 t2 · · · tk−1]
T

Step 2: Online learning and prediction. Perform the following steps for the new sample (xk, tk):

(1) Compute the hidden layer output vector for the new sample input
xk: hk = [G(a1, b1, xk) · · · G(an, bn, xk)]

(2) Calculate the network output, that is, the predicted value of tk: t̂k = hkβk−1

(3) Update the output weight by the actual label tk

P∗k = 1
λ Pk−1 −

δ(1−λ)
λ2 Pk−1

(
I − δ(1−λ)

λ Pk−1

)
Pk−1

Pk = P∗k −
P∗k hT

k hk P∗k
1+hk P∗k hT

k

βk = βk−1 + PkhT
k (tk − hkβk−1)− δ(1− λ)Pkβk−1

(4) Return to Step 2.

3.3. Procedures of the Methodology

As illustrated in Figure 3, the structure of the applied methodology was reported starting with
meteorological data collection, correlated input combination selection and the applied predictive model.
The applied algorithm was conducted using Matlab software environment (R2017b, MathWorks,
Natick, MA, USA).
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Figure 3. Main frame of the proposed variable forgetting factor (FOS-ELM) for solar
radiation prediction.

During the variable selection phase, the various input combinations were designed by calculating
the BIC value. In the modeling stage, the proposed FOS-ELM algorithm was used to construct the
solar radiation predictive model. Subsequently, these predictive models were trained through existing
initial dataset. For each subsequent day, models predicted the solar radiation value for the next day
and the model parameters were calibrated. This part of workflow and its flowchart can be seen in
Figure 4.
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Figure 4. Flowchart of the proposed methodology.

3.4. Modeling Performance Indicators

To assess the developed FOS-ELM and the classical ELM models for the solar radiation prediction,
multiple statistical indicators were examined. These performance indicators can be described
mathematically as follows [44–46].

I. The Correlation coefficient (r) is represented as:

r =


n
∑

k=1

(
SROBS,k −

_
SROBS,k

)(
SRFOR,k −

_
SRFOR,k

)
√

n
∑

k=1

(
SROBS,k −

_
SROBS,k

)2
√

N
∑

k=1

(
SRFOR,k −

_
SRFOR,k

)2

 (13)

II. The Willmott’s Index (WI) can be written as:

WI = 1−


n
∑

k=1
(SRFOR,k − SROBS,k)

2

n
∑

k=1

(∣∣∣SRFOR,k −
_

SROBS,k

∣∣∣+ ∣∣∣SROBS,k −
_

SROBS,k

∣∣∣)2

, 0 ≤WI ≤ 1 (14)
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III. The Nash–Sutcliffe efficiency (NSE) is described as:

NSE = 1−


n
∑

k=1
(SROBS,k − SRFOR,k)

2

n
∑

k=1

(
SROBS,k − SRFOR,k

)2

, 0 ≤ NSE ≤ 1 (15)

IV. The root mean square error (RMSE) is given as:

RMSE =

√
1
n

n

∑
k=1

(SRFOR,k − SROBS,k)
2 (16)

V. The mean absolute error (MAE) can be shown as:

MAE =
1
n

n

∑
k=1

∣∣(SRFOR,k − SROBS,k)
∣∣ (17)

VI. The Legates and McCabe’s (LM) agreement is stated as:

LM = 1−


n
∑

k=1

∣∣SRFOR,k − SROBS,k
∣∣

n
∑

k=1

∣∣∣SROBS,k −
_

SROBS,k

∣∣∣
, 0 ≤ LM ≤ 1 (18)

VII. The relative root mean square error (RRMSE; %) is given as:

RRMSE =

√
1
n

n
∑

k=1
(SRFOR,k − SROBS,k)

2

1
n

n
∑

k=1
(SROBS,k)

× 100 (19)

VIII. The relative mean absolute percentage error (RMAE; %), is given as:

RMAE =
1
n

n

∑
k=1

∣∣∣∣ (SRFOR,k − SROBS,k)

SROBS,k

∣∣∣∣× 100 (20)

where SROBS,k and SRFOR,k are represented the observed and predicted kth data point of the solar
radiation; whereas, SROBS,k and SRFOR,k are the average values. n indicates the number of testing data.

4. Application, Results and Analysis

Results are presented for assessing the proposed FOS-ELM model for the solar radiation prediction.
The proposed FOS-ELM model is appraised in comparison with the ELM model, using statistical
metrics, diagnostic plots and error distributions between the observed and predicted solar radiation
values over the testing phase.

Figure 5 indicates the goodness-of-fit and correlation coefficient r2 observed and predicted solar
radiation through scatterplot. The proposed FOS-ELM method outperforms ELM in terms of r2

(FOS-ELM ≈ 0.994, ELM ≈ 0.962) for model M7 using all inputs. Again, the proposed FOS-ELM model
is more accurate for M6 model with input combination (Wspeed, Tmin, Hmax, Hmin, Eo, VPD) attaining
r2 (FOS-ELM ≈ 0.993, ELM ≈ 0.966), followed by M5, M4, M3, M2 and M1 models, respectively.
On the basis of attaining the larger r2-value, the proposed FOS-ELM model shows better accuracy by
incorporating all inputs (see; M7) by generating the larger r2-value.
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Figure 5. Scatterplots variance between the observed and predicted solar radiation over the test
modeling phase, variable forgetting factor (FOS-ELM) vs. extreme learning machine (ELM) models
and for all the investigated input combination panels (a) M1, (b) M2, (c) M3, (d) M4, (e) M5, (f) M6 and
(g) M7.

Figure 6 compares boxplots of the proposed FOS-ELM model with the ELM model for the most
accurate M7 model with all input combinations. The + denotes the outliers prediction error |PE|
values together with their upper quartile, median, and lower quartile. The |PE|, confirmed with a
much smaller quartile, was acquired by the FOS-ELM for M7 model with all input utilization followed
by the ELM model. By observing Figure 6, the accuracy of the proposed FOS-ELM is superior to the
comparative model.
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Figure 6. Box-plots of the prediction error |PE| of the variable forgetting factor (FOS-ELM) vs. the
extreme learning machine (ELM) model between the observed and predicted solar radiation for all
input combination M7. PE.

Calculating the model’s BIC value of all input variable combinations, the variable combination
with the smallest BIC value is the optimal combination of variables. For different numbers of input
variables, seven different models are constructed based on the optimal input combination, including the
model with all input variables.

In Table 1, the preciseness of FOS-ELM is evaluated in comparison to the ELM method for each
input combination on the basis of r, RMSE and MAE. The proposed FOS-ELM model applied with all
input utilization (model M7) attained the highest correlation coefficient and smallest RMSE and MAE
(r≈ 0.997, RMSE≈ 0.259, MAE≈ 0.118) compared to the ELM (r≈ 0.979, RMSE≈ 0.831, MAE ≈ 0.586)
model. Moreover, for M6, these metrics were FOS-ELM (r ≈ 0.997, RMSE ≈ 0.287, MAE ≈ 0.143),
followed ELM (r ≈ 0.981, RMSE ≈ 0.788, MAE ≈ 0.565). Similarly, the FOS-ELM model is better for
(M1, . . . , M5) in terms of achieving largest magnitudes of r and smallest magnitudes of RMSE and
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MAE. This is a clear indication that the proposed FOS-ELM model can be considered to be a better
data-intelligent tool for solar radiation prediction than the ELM model.

Table 1. The constructed seven input combination model based on the variability influential of each
climate information (Several statistical metrics are computed as determination factors. Note, bold line
is the best input combination.

Model Input Combinations

Variable Forgetting Factor (FOS-ELM) Extreme Learning Machine (ELM)

Root Mean
Square Error

(RMSE)

Mean
Absolute

Error (MAE)
r RMSE MAE r

M1 Eo 1.622 1.163 0.891 1.966 1.533 0.855
M2 Wsped + Eo 1.034 0.727 0.956 1.601 1.226 0.911
M3 Wspeed + VPD + Eo 0.707 0.449 0.979 1.227 0.875 0.947
M4 Wspeed + Tmin + Hmin + Eo 0.536 0.347 0.989 1.017 0.696 0.968
M5 Wspeed + Tmin + Hmin + VPD + Eo 0.429 0.245 0.993 0.791 0.570 0.981

M6
Wspeed + Tmin + Hmax + Hmin +

VPD + Eo
0.287 0.143 0.997 0.788 0.565 0.981

M7 ALL 0.259 0.118 0.997 0.831 0.586 0.979

In Figure 7, the Taylor diagram presents the statistical summary of the observed and predicted
solar radiation on the basis of their correlation coefficient (r). For all input combination M7,
the magnitude of r for FOS-ELM was approximately 0.997, compared to ELM ≈ 0.98. The FOS-ELM
was seen closer to the observed SR, compared to ELM. Overall, the r of the proposed FOS-ELM exhibits
more accuracy to the observed SR.
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forgetting factor (FOS-ELM) vs. extreme learning machine (ELM).

The preciseness of the FOS-ELM and ELM models is evaluated for different input combinations
in terms of WI, NSE and LM, shown in Table 2. The proposed FOS-ELM model with input combination
M7 attained the highest values of NSE ≈ 0.994, WI ≈ 0.998, and LM ≈ 0.950, followed by ELM
(NSE ≈ 0.943, WI ≈ 0.981, and LM ≈ 0.752). For other input combinations, again the FOS-ELM model
exhibited high accuracy. The proposed FOS-ELM model outperformed the ELM model. In Figure 8,
the empirical cumulative distribution function (ECDF) for the best input combination M5 depicts the
different prediction skills. The proposed FOS-ELM method was reasonably superior to the ELM model.
Based on the error bracket (0 to ± 2) for M5, Figure 8 clearly proves that the FOS-ELM was the extreme
accurate model.
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Table 2. Test modeling phase performance of FOS-ELM and ELM models using all the reported metrics.
Note, the best model is boldfaced.

Model Input Combinations Variable Forgetting Factor (FOS-ELM) Extreme Learning Machine (ELM)

NSE WI LM NSE WI LM

M1 Eo 0.784 0.919 0.507 0.682 0.883 0.351
M2 Wsped + Eo 0.912 0.968 0.692 0.790 0.926 0.481
M3 Wspeed + VPD + Eo 0.959 0.985 0.810 0.876 0.957 0.629
M4 Wspeed + Tmin + Hmin + Eo 0.976 0.992 0.853 0.915 0.971 0.705
M5 Wspeed + Tmin + Hmin + VPD + Eo 0.985 0.995 0.896 0.949 0.982 0.759

M6
Wspeed + Tmin + Hmax + Hmin +

VPD + Eo
0.993 0.998 0.939 0.949 0.982 0.761

M7 ALL 0.994 0.998 0.950 0.943 0.981 0.752
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Figure 8. Empirical cumulative distribution function (ECDF) of the prediction error, |PE| for all input
combination M7 using the variable forgetting factor (FOS-ELM) vs. the extreme learning machine
(ELM) model.

Geographically, the FOS-ELM vs. ELM model demonstrate the magnitudes of RRMSE and RMAE
metrics for all investigated input combinations (See Table 3). M7 reported the best prediction results for
the solar radiation prediction using the proposed predictive model. Quantitatively, (RRMSE ≈ 1.179%)
and (RMAE ≈ 0.574%) on the basis of RRMSE and RMAE. The FOS-ELM model was seen to generate
minimal values of the examined absolute error indicators. Overall, the prediction errors generated by
the proposed FOS-ELM model were low in terms of their relative error values, but more importantly,
they were within the recommended range of a 10% threshold for an excellent model classification [47].
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Table 3. Numerical comparison between FOS-ELM and ELM models based (RRMSE, %) and the
(RMAE, %) computed within the test sites. Note that the best model is boldfaced.

Model

Testing Period Variable Forgetting Factor (FOS-ELM) Extreme Learning Machine (ELM)

Input Combination
Relative Root Mean

Square Error
(RRMSE) (%)

Relative Mean
Absolute

Percentage Error
(RMAE) (%)

RRMSE (%) RMAE (%)

M1 Eo 7.381 5.650 8.947 7.497
M2 Wsped + Eo 4.704 3.528 7.283 6.108
M3 Wspeed + VPD + Eo 3.218 2.157 5.581 4.127
M4 Wspeed + Tmin + Hmin + Eo 2.440 1.639 4.629 3.198
M5 Wspeed + Tmin + Hmin + VPD + Eo 1.952 1.176 3.597 2.734

M6
Wspeed + Tmin + Hmax + Hmin +

VPD + Eo
1.305 0.686 3.584 2.646

M7 ALL 1.179 0.574 3.780 2.748

5. Discussion: Limitations and Further Remarks

In this paper, the suitability of the FOS-ELM benchmarked with the ELM for daily solar radiation
prediction was investigated. The FOS-ELM outperformed the ELM model for the selected region,
revealing that the FOS-ELM model was efficient in utilizing the meteorological data as inputs to
predict solar radiation. The FOS-ELM model, being a robust hybrid AI algorithm, is able to extract
vital information from the meteorological variables, and subsequently simulates the stochastic and
complex behavior of solar radiation. The FOS-ELM model has been proven to yield good performance
with high prediction accuracy. The benefit of the FOS-ELM model is that it efficiently approximates
numerous linear or nonlinear systems without predefining the constraints of climate input data or
target solar radiation.

Coal and oil are normally considered for non-renewable energy sources of electricity generation
to meet the marked demands. The intermittent availability is a challenging problem to all renewable
energy sources. Solar energy in the form of solar radiation is a naturally available renewable energy
resource which has the lowest environmental impact [3]. However, the solar energy is only available
during daylight hours, which is aggravated by the highly variable availability owing to environmental
and meteorological factors that have obvious correlations [29]. The FOS-ELM can successfully adapt to
design the new smart grids to predict the demand and supply needs which can reduce the downtimes
and enhance efficiency.

Moreover, the Paris climate agreement has recently urged the use of cleaner renewable energy
to reduce carbon emissions. Hence, a more reliable production of electricity from these renewable
energies is predetermined. Consequently, the smart grids incorporating the FOS-ELM model could
handle this challenge to predict accurately in order to generate electricity from renewable energy.

6. Conclusions

In this work, a novel ELM-based model, a regularized online sequential extreme learning
machine with variable forgetting factor, was proposed and first applied to daily global solar radiation
prediction. Using wind speed, maximum and minimum temperature, maximum and minimum
humidity vapor pressure, and the eccentricity correction factor as seven different input variables of
this study, we investigated the correlation between different variables and solar radiation and the
influence of different input combinations on the prediction accuracy of the model, and selected the
optimal model input combination with a different number of input variables by BIC. The statistical
performance evaluation indicates that global solar radiation prediction accuracy can achieve excellent
prediction accuracy with wind speed, minimum temperature, maximum and minimum humidity vapor
pressure and the eccentricity correction factor as input variables (RRMSE ≈ 1.305%, RMAE ≈ 0.686%,
RRMSE ≈ 3.584%, RMAE ≈ 2.646%, R ≈ 0.997). Compared with ELM, the results clearly demonstrate
the effectiveness and outstanding performance of the proposed FOS-ELM model. Compared with the
papers mentioned in the literature, the proposed model develops a new way to deal with complex
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non-stationary time series. The proposed model tries to update the output weight of the network and
“fix” the network model every day to achieve higher prediction accuracy. However, References [22,32]
reported in the literature optimized the network structure and initialization weights through different
methods, such as a genetic algorithm, etc. Therefore, for future work, we will try to develop models
based on an optimal network structure of online learning, including but not limited to optimizing the
number of hidden layer neurons and multiple hidden layer neural networks. We will also introduce
more meteorological factors in order to improve prediction accuracy.
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machine-firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644.
[CrossRef]

32. Salcedo-Sanz, S.; Casanova-Mateo, C.; Pastor-Sánchez, A.; Sánchez-Girón, M. Daily global solar radiation
prediction based on a hybrid Coral Reefs Optimization—Extreme Learning Machine approach. Sol. Energy
2014, 105, 91–98. [CrossRef]

33. Wang, R.; Li, J.; Wang, J.; Gao, C. Research and application of a hybridwind energy forecasting system based
on data processing and an optimized extreme learning machine. Energies 2018, 11. [CrossRef]

34. Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Alrbai, M.; Qawasmeh, R.B. Extreme Learning Machines for Solar
Photovoltaic Power Predictions. Energies 2018, 11. [CrossRef]

35. REN21. Renewables 2015-Global Status Report; REN21: Pairs, France, 2015; Volume 4, ISBN 978-92-4-150061-6.
36. REN21. Renewables 2017: Global Status Report; REN21: Pairs, France, 2017; Volume 72, ISBN 978-3-9818107-0-7.
37. Saadi, N.; Miketa, A.; Howells, M. African Clean Energy Corridor: Regional integration to promote renewable

energy fueled growth. Energy Res. Soc. Sci. 2015, 5, 130–132. [CrossRef]
38. Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978. [CrossRef]
39. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing

2006, 70, 489–501. [CrossRef]
40. Huang, G.B.; Chen, L. Convex incremental extreme learning machine. Neurocomputing 2007, 70, 3056–3062.

[CrossRef]

http://dx.doi.org/10.1016/j.ijhydene.2017.09.150
http://dx.doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224)
http://dx.doi.org/10.1016/j.compag.2015.08.020
http://dx.doi.org/10.1016/j.rser.2015.05.068
http://dx.doi.org/10.3103/S0003701X1202020X
http://dx.doi.org/10.1016/j.solener.2016.03.015
http://dx.doi.org/10.1007/s00521-012-1039-6
http://dx.doi.org/10.1016/j.renene.2013.11.064
http://dx.doi.org/10.1016/j.enconman.2014.12.050
http://dx.doi.org/10.1016/j.rser.2017.01.114
http://dx.doi.org/10.1016/j.proeng.2011.08.864
http://dx.doi.org/10.1016/j.apenergy.2005.06.003
http://dx.doi.org/10.1016/j.solener.2015.03.015
http://dx.doi.org/10.1016/j.solener.2014.04.009
http://dx.doi.org/10.3390/en11071712
http://dx.doi.org/10.3390/en11102725
http://dx.doi.org/10.1016/j.erss.2014.12.020
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2007.02.009


Energies 2018, 11, 3415 19 of 19

41. Sanikhani, H.; Deo, R.C.; Yaseen, Z.M.; Eray, O.; Kisi, O. Non-tuned data intelligent model for soil
temperature estimation: A new approach. Geoderma 2018, 330, 52–64. [CrossRef]

42. Crisosto, C.; Hofmann, M.; Mubarak, R.; Seckmeyer, G. One-Hour Prediction of the Global Solar Irradiance
from All-Sky Images Using Artificial Neural Networks. Energies 2018, 11, 2906. [CrossRef]
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