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Abstract: In recent years, the rapidly-increasing demand for energy generation from renewable
resources has been noticeable. Additional requirements are consequently set on Wind Turbine (WT)
systems, primarily reflected in WT size and power rating increases. With the size increase of WT,
structural loads/fatigue stress on the wind turbine become larger, simultaneously leading to its
accelerated aging and the shortening of its lifetime. The primary goal of this contribution is to
establish an approach for structural load reduction while retaining or slightly sacrificing the power
production requirements. The approach/control strategy includes knowledge about current fatigue
damage and/or damage increments and consists of multi-input multi-output controllers with variable
control parameters. By the appropriate selection of the designed Multi-Input Multi-Output (MIMO)
controllers, the mitigation of structural loads in accordance with a predefined range of accumulated
fatigue damage or damage increments, exactly to the extent required to provide a predefined service
lifetime, is obtained. The validation of the aforementioned control strategy is based on the simulation
results and the WT model developed by National Renewable Energy Laboratory (NREL). The obtained
results prove the efficiency of the proposed control strategy with respect to the reduction of rotor blade
bending moments, simultaneously exhibiting no significant impact on the resulting power generation.

Keywords: wind turbine systems; structural load reduction; online fatigue damage evaluation

1. Introduction

Energy generation from renewable sources has gained much attention in the last decade due to the
drastic reduction of conventional energy sources from year to year and the rapid climate change primarily
related to global warming. Among renewable energy sources, energy production from wind has been
especially intensified. Concerning its growth trend, it is estimated that the installed capacity up to 2020
will reach almost 1300 TW world-wide [1,2]. Due not only to the facts that energy production using wind
is recognized as environmentally friendly and is probably the most effective solution among renewable
energy sources, but also due to the technological improvements achieved recently, WT systems have
been brought into focus. The latest achievements are mainly focused on the development of optimal
offshore solutions due to the higher potential for wind energy conversion at offshore sites in comparison
with onshore installments. Offshore installments entail completely different challenges taking into
consideration the difficult access to offshore sites and more complex hydrodynamical and aerodynamic
loading profiles [3]. It additionally faces the problems of energy transmission (laying cables under the
sea), platform design, and similar problems. However, the larger abundance and greater strength of the
wind at sea compared with onshore installments are sufficient reasons to investigate the possibilities of
surmounting the existing shortcomings of offshore WT systems.
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Further notable improvements are the development of advanced materials used for WT fabrication
or even the development of smart multi-functional structures adopting continuous Structural Health
Monitoring (SHM); for instance, smart sensor and actuator grids integrated in composite structures,
reinforced steel structures (nacelle), advanced data transmission facilities, and others, as mentioned in [4].
Most attention according to a number of existing publications is given to composite materials’ testing
and the examination of the impacts of different fabrication methodologies on the feasibility of using
composites (related to changes in strength and stiffness) [5–8]. As composite materials are mainly used for
WT rotor blades’ fabrication and these are simultaneously the most susceptible to failure due to their direct
exposure to the load, the integration of embedded sensing networks to enable continuous tracking of the
state-of-health of composites is a reasonable strategy. Structural health monitoring systems implemented
in such a way provide higher reliability of the system. Here, the information about the state-of-health
can be used to make decisions about appropriate actions. Along with smart sensor network integration,
the integration of in situ power sources in the composites has been discussed in some contributions [9–11].
Even the loading profiles (wind speed and wind direction) are variable, so power provided to the grid
has to fulfill dynamic requirements [12]. To enhance the flexibility of the entire grid, integrated in situ
power sources can be used to compensate lower energy production during low wind speed periods while
recharging energy sources during periods of greater availability of wind. Embedding lithium-ion batteries
into Carbon Fiber-Reinforced Polymers (CFRP) was proposed by Ladpli et al. [9], whereas the integration
of supercapacitors in CFRP was proposed by Shirshova et al. [10]. Additional power sources utilizable for
these purposes were reviewed and given in [11,13], each of them relating to different energy capacities
and densities. Moreover, power generation using wind is currently more often discussed concerning
wind farms, rather than individual WT systems. This additionally includes mutual relationships between
individual WT systems on wind farms. It can be concluded from [4] that the benefits of smart structures
are closely related to efficient SHM of WT components, at the same time making the decision about a
suitable response to changing inflow conditions possible. A suitable response in this case may include the
control of vibration, damping, stress distribution, and similar responses.

Regardless of the location where the WT system is installed, fluctuating structural loads that
induce mechanical stress on the wind turbine to a lesser or greater extent affect the system’s reliability.
Due to the induced mechanical stresses, wind turbine systems and the systems’ components undergo
gradual degradation over time, which is related to the decreased reliability of the system. To guarantee
the reliability of the WT system, reducing the asymmetric structural loads on WT blades can
be considered. Through the reduction of structural loads, the predefined service lifetime by the
manufacturer of the wind turbine can be extended [14].

A number of control strategies taking into consideration the mitigation of structural loads have
been proposed [15–22]. In [15], the aforementioned structural loads on rotor blades were mitigated using
a nonlinear Individual Pitch Control (IPC). The controller proposed in [15] consists of a “blade vibration
damper and a pitch angle lead compensator” [15]. The vibration damper mitigates the blade vibrations,
whilst the angle lead compensator compensates for the delay between the desired/commanded and
the real pitch angle. Similarly, Houtzager et al. [16] introduced improvements to IPC by using the
so-called lifted repetitive controller. The lifted repetitive controller is designed with the aim to reject load
disturbances on rotor blades, leading to the reduction of structural loads and simultaneously extending
the service lifetime. The results presented in [16] proved that the lifted repetitive-based control reduced
the vibrations on the structure to a great extent. The use of IPC for load reduction was proposed also
in [17,18]. Combined pitch and trailing edge flap control for load mitigation was proposed in [18].
The proposed control strategy included an individual pitch control loop and a trailing edge flap control
loop, whereas the IPC control loop was used to mitigate the low frequency loads and the trailing edge
flap control loop to mitigate the high frequency loads [18]. The control strategy proposed in [19] consisted
of an optimal multivariable Linear Quadratic Gaussian (LQG) controller and a feedforward disturbance
rejection controller with inaccessible wind turbine states estimated using a Kalman filter. The main
objective of the LQG controller is the minimization of rotor tilt and yaw moments. The approach was
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tested and compared with the conventional IPC method “in simulation studies with models of different
complexities” [19]. In [20], a set of collective and individual pitch control algorithms was proposed,
whereas the control algorithms were LQR control algorithms with Integral action (LQRI) utilizing Kalman
filters to estimate system states. The proposed control algorithms [20] controlled rotor speed and blade
bending moments at the same time. Based on the simulation results, acceptable rotor speed regulation and
significant reduction of blade bending moments were achieved. Hence, a linear-quadratic regulator-based
individual pitch controller aiming to reduce structural loads of wind turbines was proposed in [21].

Beside IPC, a nonlinear Model Predictive Controller (MPC) considering wind predictions was
proposed for the reduction of structural loads on the WT tower and blades [23]. The information from
Laser Induced Differential Absorption Radar (LIDAR) systems was used to predict wind disturbances
at the front of wind turbines, which were further integrated into the control. According to [23], the use
of wind predictions in this sense contributes to the mitigation of structural loads by up to 30% with
almost no impact on energy production and additionally limits the pitch rates. The reduction of
structural loads in the aforementioned case was achieved through the mitigation of inflow transients
(gusts), which were understood as unknown disturbances to MPC. Such an implementation does
not guarantee the predefined service lifetime of WT. In [23], Damage Equivalent Load (DEL) was
calculated, but not integrated into the control as an online implementation of DEL calculation was
not carried out. The analysis was based on a comparison of a baseline controller and MPC controller
with integrated wind predictions, whereas the decrease in DEL was noticeable. Similarly, MPC was
proposed in [24] to minimize the damage accumulating in the system. Improved MPC, namely a
scheduled model predictive controller able to control MIMO systems with multiple control objectives,
was proposed in [25]. This approach allows the introduction of system input constraints, as well as
adjusting to the aerodynamic nonlinearities [25].

Active load control of wind turbine tower structural loads using the disturbance accommodating
control was proposed in [26]. State-space control here was introduced to consider the coupled wind
turbine dynamics. The disturbance accommodating control technique was applied to cancel the effect
of wind disturbances. In a similar manner, disturbance tracking control was applied to the design
of a torque controller, which optimized the energy capture under the influence of “persistent wind
disturbances” [27]. In both aforementioned contributions, the mitigation of blade bending moments
was reported. Disturbance accommodating-based control was also used in [28] to regulate rotor
speed at above-rated wind speeds, mitigating at the same time cyclic blade root loads. Similarly,
a parameterized disturbance observer-based controller with an individual pitch control strategy
was designed in [29] to reduce cyclic loads generated due to wind shear and tower shadow effects.
The proposed controller was able to reduce “output power fluctuation, tower oscillation and drive-train
torsion” [29]. An approach to estimate the fatigue loads based on the reconstruction of data series of
the stochastic properties measured at wind turbines was discussed in [30,31]. The authors here proved
the possibility of accurate estimation of fatigue loads in any wind turbine on a wind farm using “only
the load measurements at one single turbine and the set of wind speed measurements” [30]. For these
purposes, a stochastic differential equation describing the evolution of the torque for one wind turbine
driven by the wind speed was derived and used for the prediction of fatigue loads [30].

Structural loads on WT rotor blades can be reduced by appropriate WT blade design, as proposed
in [32]. In accordance with this, improvements primarily in rotor blade geometry and airfoil properties
ultimately affect annual energy production, the overall mass of WT, as well as WT thrust/structural
loads. These three parameters are considered for optimization. It is shown that changes introduced
to WT rotor blades (blade thickness, changes in chord, airfoil geometry) have a high impact on the
overall performance of the WT system [32].

Although structural load mitigation of WT was discussed and achieved using different approaches
in the mentioned contributions, the lack of solutions that include the information about the current
state-of-health of WT and precisely-defined levels of the load that needs to be mitigated to achieve the
predefined service lifetime is noticeable.
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In this contribution, the evaluation of fatigue loads, targeted at integrating the knowledge about
accumulated damage in the control strategy to mitigate structural loads, is given. Contrary to the
aforementioned contributions, different easy to design and implement LQR-based IPC controllers
and a suitable control selection module are used to achieve integration with the online estimated
state-of-health and to guarantee the predefined service lifetime. The controller parameters are changed
depending on the actual degradation state of WT rotor blades.

2. Model Description and Fatigue Load Evaluation

2.1. Model Description

The simulation model used in this contribution is the WindPACT1.5-MW upwind three-bladed
Horizontal Axis Wind Turbine (HAWT) model developed by NREL [33]. The model has 24 Degrees
of Freedom (DoFs) of which only DoFs relevant to the controller design are enabled. The DoFs
enabled here are related to: top-tower fore-aft bending mode τf , variable generator speed mode ψ,
and individual top flap-wise blade bending modes ζ1, ζ2, and ζ3. The wind turbine is modeled by the
nonlinear equation of motion:

M(q, u, t)q̈ + f (q, q̇, u, ud, t) = 0, (1)

where M and f denote the mass matrix and a nonlinear function, respectively. Model control inputs
are denoted as u, whilst the wind profile (primarily wind speed, its stochastic nature, and present
fluctuations in both inputs and outputs of the system) is denoted as ud. Component ud as such
considers also fluctuations in generated power. The enabled degrees of freedom are denoted as q,
whereas their velocities and accelerations are denoted as q̇ and q̈, respectively. Five different Multi-Input
Multi-Output (MIMO) controllers are designed, each of them adapted to different loading profiles.
Changed loading profiles imply the change of the state-of-health indicator values (damage increments
Dj or the sum of damage increments). A detailed description of the controller selection module is
further given in Section 3. Each of the five different controllers is designed to provide different ratios
between the power production objective and the related system’s reliability; the trade-off between the
aforementioned conflicting objectives is different for the five different controllers.

For controller design purposes, the model expressed by Equation (1) is linearized about different
operating points. Controllers are designed in accordance with predefined nearly constant wind
profiles. Due to this, five different operating points are taken into consideration, namely 14 m/s,
16 m/s, 18 m/s, 20 m/s, and 22 m/s, with a generator rotational speed of 20 rpm and pitch angles
of 12.69, 16.435, 19.585, 22.289, and 24.685◦, respectively. The resulting model is highly periodic
due to the existence of deterministic and fluctuating load (primarily wind shear, tower deflection,
and yaw misalignment). To consider model periodicity within controller design, multi-blade coordinate
transformation converting the coordinates from the rotating reference frame to the non-rotating
reference frame has to be done. Detailed information about multi-blade coordinate transformation is
given in [33]. Finally, wind turbine representation in the state space model takes the following form:

ẋ = Ax + Bu + Bdud,

y = Cx + Du + Ddu.
(2)

Here, state space vector x is represented as x = [∆q, ∆q̇]T and the control input as u =

[∆β1, ∆β2, ∆β3]
T . Matrices A, B, C, D, and Dd denote the model system matrix, the control input

and output matrix, the disturbance input matrix, and the disturbance transmission matrix, respectively.
The state space model given by Equation (2) is used for the control design.

2.2. Fatigue Evaluation and Controller Selection Module

As stated in the previous section, five different controllers are designed with respect to different
loading profiles. Each of them realizes a different level of structural load reduction. The induced
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structural loads taking into consideration different loading profiles are different. Higher structural
loads lead accordingly to higher related damage contribution. The main objective concerned in
controller design is to ensure the control of structural loads along with the desired objective related to
power production.

Due to the SoHcalculation with respect to the Remaining Useful Lifetime (RUL), the lifetime itself
becomes controllable. Briefly speaking, two control levels are combined: (i) WT control as the primary
control and (ii) lifetime control as the secondary control. Lifetime control is realized through a simple
calculation regarding the desired lifetime; the achieved SoH and resulting RUL, affecting thereby the
primary control level. In the first case, the knowledge about overall damage accumulated in the system
is used to select one of five designed controllers, implying that the selection is based on reaching
threshold levels of accumulated damage. In the second case, controller selection is based solely on
information about the damage increments. This means that only the information about the rate of
change in accumulated damage at a particular moment is concerned. Results obtained using controller
selection based on information about overall damage or damage increments in the two aforementioned
cases are compared, targeting at revealing the efficiency of the proposed control strategy.

The calculation of damage increments and resulting overall damage in the system is carried out
by using the Palmgren–Miner damage accumulation rule and the online Rainflow Counting Algorithm
(RCA). RCA in its original form cannot be applied here, as it assumes knowledge about arbitrary
loads over the complete service lifetime and is therefore not intended for online implementation [34].
Further, offline implementation is useful neither in real-time systems, nor in simulation models, where
control inputs are affected by outputs from RCA. The output of the controller module (including five
controllers and the controller selection module) is affected by the output of RCA, so an online RCA
implementation is required. In this contribution, an implementation of the online RCA proposed
by Musallam et al. [34] is employed. Such an implementation of RCA does not require tracking of
complete time-history data (here, structural loads) to obtain equivalent half- and full-loading cycles.
The above-mentioned algorithm processes each extremal value (minimum and maximum) at the time
of their occurrence, as depicted in Figure 1. Equivalent half and full cycles generated using online RCA
are further integrated in the Palmgren–Miner damage accumulation rule to calculate the Remaining Useful
Lifetime (RUL) under the assumption of a known predefined service lifetime given by the manufacturer.
The wind turbine predefined service lifetime is assumed as 20 years.
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Figure 1. Graphical representation for the online implementation of Rainflow Counting Algorithm
(RCA) (here: different colors represent crossing extremal values t1, t2, t3, and t4) [21].
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The calculation of the damage increments and accumulated damage using the Palmgren–Miner
rule is given by:

Dj =
j

∑
i=1

di =
j

∑
i=1

ni

Ni
, (3)

where ni denotes the number of half or full cycles corresponding to the ithstress level, Ni denotes the
number of cycles until failure, and Dj refers to the accumulated damage.

It is important to emphasize that no run-to-failure data are used for RUL calculation. Here,
cycles are understood as the individual load units. On the contrary, representative time-series data
of flap-wise bending moments of rotor blades corresponding to 600 s of simulation time are chosen
as the input in RCA. Using the considered dataset, damage increments up to the predefined failure
are extrapolated. In this contribution, the applied load is composed of a repetition of 600-s loading
profile elements. This includes, without loss of generality, in combination with the different controllers
(levels), the resulting damage increments that can be calculated and are therefore considered as known.

As the input to the fatigue damage evaluation module, any of the fatigue-equivalent variables
(measurements) can be utilized: flap- and edge-wise bending moments of blades, tower fore-aft
deflection of the tower, or side-to-side bending moment. The analysis is limited to the examination of
RUL estimation using flap-wise bending moments of rotor blades and is chosen as the input to the
fatigue damage accumulation module.

3. Controller Design

It is important to emphasize that the model of WT is provided by NREL. For controller design,
it is important to determine which inputs and outputs are of high importance in terms of controller
objectives and load mitigation. Simulation parameters, as well as the wind profile used for simulation
are transferred to the model through configuration files provided by NREL, whereas also, the sampling
rate is defined. Determined inputs and outputs in this case are closely related to enabled DoFs,
which are explained in detail in Section 2.1 and shown in Figure 2.
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Figure 2. Proposed control strategy.

Five controllers are designed, affecting structural loads to a greater or lesser extent depending on
the loading profile and accompanying damage increments, whilst generator power and rotor speed
have to be maintained as close as possible to the desired values. To provide the control of generator
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power and rotor speed, a baseline PI controller is used, but is not further elaborated here. Additionally,
individual blade pitch (IPC) controllers are proposed for the reduction of flap-wise rotor blade bending
moments [35]. Individual blade pitch controllers are designed as LQR-based controllers. As introduced
in detail in [35], the objective function to be minimized is expressed as:

J =
∫ t

0

(
xTQx + uT Ru

)
dt, (4)

where u is the control input and x denotes the system state variable, while Q and R are the state
and control weighting matrices, respectively. Here, Q optimizes the trade-off between power/speed
regulation and structural load reduction. On the other hand, R is used to penalize the control efforts.

The tuning of controllers includes the selection of suitable Q and R matrices corresponding to
different levels of structural load reduction. Not all system states are directly accessible, implying
the utilization of the Kalman filter to estimate the inaccessible system states. The linearized model
introduced in Section 2.1 is used to design the controllers. The complete control scheme with integrated
fatigue load examination is depicted in Figure 2. Inputs to the control module according to Figure 2
are, besides measured or estimated system variables, estimated damage increments or accumulated
damage over time (depending on the considered case).

4. Simulation Results

The results obtained under the usage of the fatigue damage evaluation model along with controller
selection based on information about the damage accumulated over the service lifetime are depicted in
Figures 3 and 4. Similarly, the results obtained using controller selection based solely on information
about damage increments are given in Figures 5 and 6.

Energies 2018, xx, 5 8 of 16

0 100 200 300 400 500 600
10

15

20

25

Hub height wind speed

Time [s]

S
p

e
e

d
 [

m
/s

]

0 100 200 300 400 500 600

18

20

22

24

Rotor rotational speed

Time [s]

S
p

e
e

d
 [

rp
m

]

0 100 200 300 400 500 600

1000

1200

1400

1600

Generator power

P
o

w
e

r 
[k

W
]

0 100 200 300 400 500 600

0

0.05

0.1

0.15

0.2

Tower fore-aft bending moment

Time [s]

M
o
m

e
n
t 
[k

N
m

]

0 100 200 300 400 500 600

-500

0

500

1000

1500

Blade #1 root bending moment

Time [s]

M
o
m

e
n
t 
[k

N
m

]

0 100 200 300 400 500 600
0

0.5

1

1.5
x 10

-6 Damage accumulation

Time [s]

A
c
c
u
m

u
la

te
d
 d

a
m

a
g
e

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Figure 3. Simulation results concerning controller selection using the information about accumulated
damage (Part I).

Figure 3. Cont.



Energies 2018, 11, 3429 8 of 15

Energies 2018, xx, 5 8 of 16

0 100 200 300 400 500 600
10

15

20

25

Hub height wind speed

Time [s]

S
p
e
e
d
 [
m

/s
]

0 100 200 300 400 500 600

18

20

22

24

Rotor rotational speed

Time [s]

S
p
e
e
d
 [
rp

m
]

0 100 200 300 400 500 600

1000

1200

1400

1600

Generator power

P
o
w

e
r 

[k
W

]

0 100 200 300 400 500 600

0

0.05

0.1

0.15

0.2

Tower fore-aft bending moment

Time [s]

M
o
m

e
n
t 
[k

N
m

]

0 100 200 300 400 500 600

-500

0

500

1000

1500

Blade #1 root bending moment

Time [s]

M
o
m

e
n
t 
[k

N
m

]

0 100 200 300 400 500 600
0

0.5

1

1.5
x 10

-6 Damage accumulation

Time [s]

A
c
c
u
m

u
la

te
d
 d

a
m

a
g
e

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Without damage evaluation model
With damage evaluation model

Figure 3. Simulation results concerning controller selection using the information about accumulated
damage (Part I).

Figure 3. Simulation results concerning controller selection using the information about accumulated
damage (Part I).

0 100 200 300 400 500 600

-0.1

-0.05

0

0.05

Tower side-side bending moment

Time [s]

M
o
m

e
n
t 
[k

N
m

]

0 100 200 300 400 500 600

5

6

7

8

9

HSS torque

Time [s]

M
o
m

e
n
t 
[k

N
m

]

0 100 200 300 400 500 600
10

15

20

25

Individual blade pitch angles

Time [s]

P
it
c
h
 a

n
g
le

 [
d
e
g
]

0 100 200 300 400 500 600

10

15

20

25

Hub height wind speed

S
p
e
e
d
 [
m

/s
]

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

Bld. 1

Bld. 2

Bld. 3

Figure 4. Simulation results concerning controller selection using the information about accumulated
damage (Part II).



Energies 2018, 11, 3429 9 of 15

0 100 200 300 400 500 600

10

20

Hub height wind speed

Time [s]

S
p

e
e

d
 [

m
/s

]

0 100 200 300 400 500 600

18

20

22

24

Rotor rotational speed

Time [s]

S
p

e
e

d
 [

rp
m

]

0 100 200 300 400 500 600

1000

1500

Generator power

Time [s]

0 100 200 300 400 500 600

0

0.1

0.2

Tower fore-aft bending moment

Time [s]

M
o

m
e

n
t 

[k
N

m
]

0 100 200 300 400 500 600

-500

0

500

1000

1500

Blade #1 root bending moment

Time [s]

M
o

m
e

n
t 

[k
N

m
]

0 100 200 300 400 500 600
0

1

2
x 10

-6 Damage accumulation

A
c
c
u

m
u

la
te

d
d

a
m

a
g

e

0 100 200 300 400 500 600
0

0.5

1
x 10

-6 Damage increments

Time (s)

D
a
m

a
g
e

in
c
re

m
e
n
t

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Figure 5. Simulation results concerning controller selection using only the information about damage
increments (Part I).

Energies 2018, xx, 5 11 of 16

0 100 200 300 400 500 600

-0.1

-0.05

0

0.05

Tower side-side bending moment

Time [s]

M
o

m
e

n
t 

[k
N

m
]

0 100 200 300 400 500 600

5

6

7

8

9

HSS torque

Time (s)

M
o

m
e

n
t 

[k
N

m
]

0 100 200 300 400 500 600
10

20

Individual blade pitch angles

Time [s]

P
it
c
h

 a
n

g
le

 [
d

e
g

]

0 100 200 300 400 500 600

10

20

Hub height wind speed

Time [s]

S
p

e
e

d
 [

m
/s

]

Without damage evaluation model

With damage evaluation model

Without damage evaluation model

With damage evaluation model

Bld. 1

Bld. 2

Bld. 3

Figure 6. Simulation results concerning controller selection using only the information about damage
increments (Part II).

In the upper diagrams of Figures 3–6, wind speed at hub height, serving as one input to the wind
turbine model, is given beside the controller outputs. Relevant system variables to be monitored are the
generator power and rotor rotational speed. Here, no significant impact on generator power and rotor
rotational speed was noticeable as the sacrifice of generator power/rotor rotational speed has to be in
acceptable limits. Besides these two system variables, the root bending moment of Blade #1, fore-aft
bending moment of the tower, as well as the accumulated damage are depicted in the lower diagrams
in Figures 3 and 5. Additionally, the effect of the adopted control strategy on the tower side-to-side
bending moment, as well as high-speed shaft torque is illustrated in Figures 4 and 6. The accumulated
damage and accompanying damage increments (for the case where controller selection is done solely
based on tracking damage increments) are given in Figures 3 and 5. Controller #1 is the controller
that provides the lowest impact on structural load reduction, whilst Controller #5 is that with the
highest one.

4.1. Discussion about the Results Obtained

At first glance, it can be noticed that the level of flap-wise bending moment reduction (here, Blade #1)
was much higher concerning controller selection based on accumulated damage than it was in the case
when a particular controller was chosen based exclusively on information about the damage increments.

This result can be explained by the fact that in the case of controller selection based solely on the
values of damage increments, the previously accumulated damage was not considered. Otherwise,
it would be considered that the previous loading profile had no impact on damage accumulation
and the consequent aging of system, but was still usable for the examination of structural loads in
a short time framework. As such, the controller with the best performance regarding the reduction
of structural loads was chosen only when the damage increment became very high. Accordingly,
with the decrease of the damage increment, the controller with the worst performance according to the
reduction of structural loads was chosen.
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generator power and rotor rotational speed. Here, no significant impact on generator power and rotor
rotational speed was noticeable as the sacrifice of generator power/rotor rotational speed has to be in
acceptable limits. Besides these two system variables, the root bending moment of Blade #1, fore-aft
bending moment of the tower, as well as the accumulated damage are depicted in the lower diagrams
in Figures 3 and 5. Additionally, the effect of the adopted control strategy on the tower side-to-side
bending moment, as well as high-speed shaft torque is illustrated in Figures 4 and 6. The accumulated
damage and accompanying damage increments (for the case where controller selection is done solely
based on tracking damage increments) are given in Figures 3 and 5. Controller #1 is the controller
that provides the lowest impact on structural load reduction, whilst Controller #5 is that with the
highest one.
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a short time framework. As such, the controller with the best performance regarding the reduction
of structural loads was chosen only when the damage increment became very high. Accordingly,
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In the upper diagrams of Figures 3–6, wind speed at hub height, serving as one input to the wind
turbine model, is given beside the controller outputs. Relevant system variables to be monitored are the
generator power and rotor rotational speed. Here, no significant impact on generator power and rotor
rotational speed was noticeable as the sacrifice of generator power/rotor rotational speed has to be in
acceptable limits. Besides these two system variables, the root bending moment of Blade #1, fore-aft
bending moment of the tower, as well as the accumulated damage are depicted in the lower diagrams
in Figures 3 and 5. Additionally, the effect of the adopted control strategy on the tower side-to-side
bending moment, as well as high-speed shaft torque is illustrated in Figures 4 and 6. The accumulated
damage and accompanying damage increments (for the case where controller selection is done solely
based on tracking damage increments) are given in Figures 3 and 5. Controller #1 is the controller
that provides the lowest impact on structural load reduction, whilst Controller #5 is that with the
highest one.

Discussion about the Results Obtained

At first glance, it can be noticed that the level of flap-wise bending moment reduction (here, Blade #1)
was much higher concerning controller selection based on accumulated damage than it was in the case
when a particular controller was chosen based exclusively on information about the damage increments.

This result can be explained by the fact that in the case of controller selection based solely on the
values of damage increments, the previously accumulated damage was not considered. Otherwise,
it would be considered that the previous loading profile had no impact on damage accumulation
and the consequent aging of system, but was still usable for the examination of structural loads in
a short time framework. As such, the controller with the best performance regarding the reduction
of structural loads was chosen only when the damage increment became very high. Accordingly,
with the decrease of the damage increment, the controller with the worst performance according to the
reduction of structural loads was chosen.

From another point of view, if values of damage increments were considered along with the
overall damage accumulated in the system, then the controller with the best performance according
to the reduction of structural loads was chosen as the system approached the end of its lifetime.
This means that the highest level of the reduction of structural loads was achieved shortly before the
end of the lifetime, albeit at a slightly compromised speed/power production objective. This caused
the selection of the controller to be carried out in a successive way, and the controller with a higher
level of structural load reduction, once chosen, was never swapped with a controller providing a lower
level of structural load reduction.

Moreover, the tower side-side bending moment, as well as tower fore-aft bending moments
were slightly decreased, even if the controllers were not designed to consider the reduction of the
bending moments of the tower. As depicted in Figures 3 and 4, the generator power and generator
rotational speed were in both cases slightly scarified; but to a lesser extent, so that the decrease in
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power production was still acceptable. It is worth emphasizing that the controller with the highest
impact on structural load reduction (Controller #5) produced in general a higher deviation between
the desired and actual power generation. Exactly this fact justifies the integration of fatigue load
examination in the control module, so that the sacrifice of power generation is acceptable in the case
that the RUL of its lifetime is decreased to a predefined level.

The results presented in Section 4 are compliant with the desired optimization goal, which is the
determination of the trade-off between energy production and WT reliability. As such, the proposed
control strategy can be considered as efficient.

The resulting dependence and effects between rotor bending moment and generated power are
depicted in Figures 7 and 8. The dependence between High-Speed Shaft (HSS) torque and generated
power is shown in Figures 9 and 10.
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Figure 7. The change of the rotor bending moment depending on the power with the controller
selection using the information about the accumulated damage.
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Figure 9. The change of HSS torque depending on the power with the controller selection using the
information about the accumulated damage.
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Figure 10. The change of the HSS torque in depending on the power with the controller selection using
only the information about the damage increments.

The control results based on the use of the accumulated damage are depicted in Figures 7 and 9,
whilst the control results based on the actual resulting damage increments are shown in
Figures 8 and 10. Such a graphical illustration of the results obtained was used here to evaluate
the performance of the newly-developed control strategy.

According to the results presented, a high impact on the flap-wise rotor blade bending moment
was noticeable. The result of the implemented mechanism becomes clear in Figures 7 and 8. The control
reduced the number of outliers strongly affecting the lifetime, but the overall behavior was not effected.
At the same time, the reduction of the high-speed shaft torque was much less. This implies that the
reduction of structural loads on rotor blades did not have a high impact on HSS torque. This proves
the capability of the proposed control strategy to reduce structural loads on WT blades without a
significant impact on HSS torque. In addition, the standard deviation of generated power, HSS torque,
and Blade #1 root bending moment are calculated and presented in Table 1 to show not only qualitative,
but also quantitative indicators.

Table 1. Values of the standard deviation.

Generated Power HSS Torque Blade #1 Root Bending Moment

Case I 177.8914 0.9057 494.5175
Case II 176.9045 0.9004 479.5804
Case III 177.2104 0.9041 482.5486
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All cases depicted in Figures 9 and 8 were analyzed. Three cases are stated in Table 1 as:
(i) Case I, the model without structural load reduction consideration: the baseline PI controller;
(ii) Case II, the model with the consideration of structural load reduction: controller selection based on
accumulated damage; and (iii) Case III, the model with the consideration of structural load reduction:
controller selection based on damage increments. However, the same conclusion was made, as the
highest discrepancy in the standard deviation was obtained for bending moments, whilst the same did
not change to a great extent for HSS torque and generated power.

5. Summary and Conclusions

In this contribution, a new control strategy for WT systems is introduced. The developed
control strategy provides a trade-off between the mitigation of structural loads and the desired power
production. By the evaluation of fatigue loads and the appropriate adoption of the control strategy
according to the examined fatigue loads, it was intended to achieve the mitigation of structural loads.
For this purpose, five different MIMO controllers corresponding to different levels of structural load
reduction were designed. All MIMO controllers were LQR-based controllers, where the adjustment of
the level of structural load reduction was obtained by appropriate selection of the Q and R matrices.
Moreover, the usage of a number of MIMO controllers is equivalent to the usage of a single controller
with adaptive controller parameters. The selection of a particular MIMO controller was conditioned
by the actual value of damage accumulation or the damage increment, which were calculated using an
appropriate fatigue damage evaluation model.

The results obtained prove that the proposed control strategy enabled the reduction of structural
loads in combination with a slight compromise on the power generation. The mitigation of structural
loads was analyzed using (i) successive controller selection, whereas the MIMO controller providing
the highest level of structural load reduction corresponded to the highest values of accumulated
damage, or (ii) damage increment-conditioned controller selection, whereas the MIMO controller
providing the highest level of structural load reduction corresponded to the highest values of damage
increments. In the case that the controller selection was carried out using accumulated damage,
the reduction of structural loads was higher as the system was closer to its end of lifetime. On the
contrary, in the case that the controller selection was conditioned by the tracking of damage increments,
the reduction of structural loads had a short time span with a noticeable change of the structural loads.

This approach implicitly assumed that the damage between two subsequent load cycles stays
constant. As this case rarely occurs in practice, the development of additional fatigue damage
evaluation models can be investigated in the future to obtain a more accurate prediction of RUL.
Besides the development of improved fatigue damage accumulation models, further improvements
are still possible concerning the control strategy. These improvements may lead to an investigation
of the possibilities to consider the mitigation of other structural loads of WT along with rotor blade
structural loads, such as top-tower fore-aft and top-tower side-to-side tower structural loads.
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Abbreviations

The following abbreviations are used in this manuscript:

WT Wind Turbine
MIMO Multi-Input Multi-Output
NREL National Renewable Energy Laboratory
SHM Structural Health Monitoring
CFRP Carbon Fiber-Reinforced Polymers
MES Multifunctional Energy Storage composites
MPC Model Predictive Controller
DEL Damage Equivalent Load
IPC Individual blade Pitch Controller
HSS High-Speed Shaft
DoF Degree of Freedom
LQG Linear Quadratic Gaussian
RUL Remaining Useful Lifetime
RCA Rainflow Counting Algorithm
LIDAR Laser Induced Differential Absorption Radar
HAWT Horizontal Axis Wind Turbine
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