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Abstract: Wireless Power Transfer (WPT) is a promising technique, yet still an experimental solution,
to replace batteries in existing implants and overcome the related health complications. However,
not all techniques are adequate to meet the safety requirements of medical implants for patients.
Ensuring a compromise between a small form factor and a high Power Transfer Efficiency (PTE)
for transcutaneous applications still remains a challenge. In this work, we have used a resonant
inductive coupling for WPT and a coil geometry optimization approach to address constraints related
to maintaining a small form factor and the efficiency of power transfer. Thus, we propose a WPT
system for medical implants operating at 13.56 MHz using high-efficiency Complementary Metal
Oxide-Semiconductor (CMOS) components and an optimized Printed Circuit Coil (PCC). It is divided
into two main circuits, a transmitter circuit located outside the human body and a receiver circuit
implanted inside the body. The transmitter circuit was designed with an oscillator, driver and a
Class-E power amplifier. Experimental results acquired in the air medium show that the proposed
system reaches a power transfer efficiency of 75.1% for 0.5 cm and reaches 5 cm as a maximum
transfer distance for 10.67% of the efficiency, all of which holds promise for implementing WPT
for medical implants that don’t require further medical intervention, and without taking up a lot
of space.

Keywords: wireless power transfer; active implant; resonant inductive coupling; power transfer
efficiency; form factor; coil; DC/AC converter

1. Introduction

All over the world particular attention is paid to human health concerns, which represents the
first source of joy and well-being. Unfortunately, heart or hearing troubles, vision loss or stomach
pathologies in addition to other anomalies may engender in some cases serious issues and in some
cases threaten life. All these health problems have highlighted a major and urgent need to find
solutions that can not only overcome these complications, but also increase patients’ life expectancy,
improve their quality life and ensure their comfort and safety. Among the most important medical
inventions, implants have realized a very wide scope of biomedical applications and have saved
innumerable human lives. Implants are medical devices implanted inside the human body by surgical
intervention or by using a natural opening. By the same time, they must be removed only by medical
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intervention [1,2]. Depending on the application, they are either deeply implanted inside the human
body or just a few centimeters under the skin. Implants are classified as passive or active by following
the rule if they need power or not. Passive ones are used for support or mobility, such as simple
screws or artificial valves. By contrast, active implants replace organ functions or treat associated
diseases, such as neural or cardiac implants [3–5]. Figure 1 presents examples of current implants,
their localization in the human body and their power needs. The power requirements of most active
implants range from a few microwatts to a few tens of milliwatts and that usually depends on their
specific applications.
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Implementing electronics in the human body is not entirely new. Hence, for decades deep neural
stimulation has already been used to treat various pathologies. However, whenever the energy
of the implant is exhausted, the only solution is a second surgical operation to replace the battery.
This causes tissue infections and side effects. For this reason, technology is always looking for a
solution to make powering implants easier, safer, more efficient, and more comfortable. According
to the literature, there are multiple attempts and proposals for powering implants like electric wires,
batteries, energy recovery through the human body (piezoelectricity, magnetic induction generators,
and electrostatic generators), and energy recovery from the environment (thermal energy, infrared
radiation, and wireless power transfer (WPT)) [6,7]. WPT is the transfer of electrical power from
a transmitter point to a consumer power device through the air, vacuum or another environment
without the use of wires or any intermediate material. It is a generic term that refers to many different
power transfer technologies that use time-varying electromagnetic fields (EM) [8–12]. WPT includes
ultrasonic, optical and magnetic waves. However, not all the proposed techniques can satisfy the
design requirements of modern implants. Near-field WPT using resonant inductive coupling (RIC)
seems the best solution for transcutaneous applications. Table 1 summarizes the significant drawbacks
of the main proposed techniques to power-up implants. The RIC phenomenon is to transfer the
power between two coils when they are tuned to operate at the same frequency [13,14]. Nevertheless,
ensuring a compromise between small form factor, energy transfer efficiency, and patient safety
remains a challenge. By inspecting the literature, we can see that many researchers have paid attention
to the RIC design in order to improve the PTE. This includes servo loops that can automatically adjust
the link parameter variations in order to maintain the resonant state [15], RIC topology modification
by using three or four coils may provide a more significant transfer distance [16]. The Q-modulation
technique can provide adaptive and efficient inductive power transfer despite the load variations due
to the system distance or operation [17]. These solutions deal with the problem of transferring power
efficiently. In addition, they increase the implant form factor which is contrary to the objectives of
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modern implant design. In this work, we have used the RIC approach for WPT and a coil geometry
optimization approach to address the constraints related to maintaining a small form factor and the
efficiency of the power transfer. Thus, we propose a WPT system for medical implants that operates at
13.56 MHz using high-efficiency Complementary Metal Oxide Semiconductor (CMOS) components
and an optimized Printed Circuit Coil (PCC). The system implementation has been done in the air
medium. It is divided into two main circuits, a transmitter circuit located outside the human body
and a receiver circuit implanted inside the body. The transmitter circuit contains an oscillator, driver
and a Class-E power amplifier (PA) and it was designed with the software Althuim Designer 2017.
The latter allows us to design the circuit with the real package of components. Transmitter (TX) and
receiver (RX) circular spiral coils have been optimized using the software ADS momentum 2015 by
investigating their geometric parameters. All of this holds promise for implementing high efficiency
WPT for medical implants that don’t require further medical intervention, and without taking up a lot
of space.

Table 1. Significant drawbacks of main existing proposed techniques to power-up implants [18].

Techniques Drawbacks

Electric wires Limit patient mobility.
Tissue infection.

Batteries

Short lifetime.
Surgical operations necessity.

Big size.
Skin infection.

Harvesting energy from the human body
(piezoelectricity, electrostatic generator,

magnetic generator)

Low power.
Energy produced only at organ function (example: piezoelectricity produces

power only at walking).

WPT
Optical waves

They can’t penetrate deeply inside the human body due to the high absorption
factor. As a result, they can’t deliver reliable power to implants.

Laser beam raises the skin temperature.

Ultrasonic waves

Can only send data or energy over a short distance due to the massive power
absorption loss at high frequencies.

Power reception shows significant vulnerability to misalignment between
transmitter and receiver circuits.

Radio frequency The high-power absorption heat surrounding tissues.

The reminder of this paper is as follows: Section 2 presents the used method and materials
to design the proposed system, namely a description of the equivalent electrical circuit of our RIC
WPT system in Section 2.1, the choice of high efficiency components for the DC/AC converter in
Section 2.2 and optimization of the coils form factor and efficiency in Section 2.3. Section 3 describes the
testing methodology and the experimental results. Section 4 discusses the measured results, provides
a comparison with the literature methods and mentions the perspectives that open up following
this work.

2. Design of the Proposed System

WPT techniques are divided into two types, namely, far field and near-field WPT. The far field
type includes lasers and microwaves that transfer a high amount of power between the transmitter
and the receiver circuits. However, this category isn’t suitable for powering implants because it can
cause critical tissue heating. Near field techniques are ideal for short and midrange distances and rely
on the shape and the size of the transmitter and receiver coils. Near-field techniques include capacitive,
inductive, and RIC methods. In this work, we propose to apply the RIC technique. In fact, several
reasons justify our choice. Firstly, this technique has a simple implementation which responds to the
design requirements of modern implants. Secondly, it ensures high power transfer compared with
the inductive and the capacitive coupling [19]. Finally, it is safe and biocompatible with the human
body. According to the International Commission for Non-ionizing Radiation Protection (ICNIRP) [20]
and the Institute of Electrical and Electronics Engineers (IEEE) [21] for safety levels to radio frequency
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(RF) and electromagnetic field (EMF) exposures, human exposure to magnetic, electric and EM fields
can cause the body temperature to increase, heat body tissues, stimulate muscles and nerve tissues,
but there is no formal evidence that they will cause cancer.

In a near-field RIC system, the current flowing in the primary coil generates a magnetic flux
through the secondary one. The magnetic field lines shared between them induce an alternative voltage
in the receiver circuit, which is addressed to satisfy the power needs of the implant. To create the RIC
phenomenon and to supply the implant’s components, other circuits are required in the complete
system. In addition, to generate an alternating current with a precise amplitude, shape, and frequency,
an oscillator and a power amplifier are essential. Figure 2 illustrates the schematic diagram of the
proposed system to power-up a medical implant. During the system design, we have first put an
oscillator that generates a sinusoidal signal from a DC power supply, followed by a driver that allows
the class E power amplifier transistor to switch on and off. The Class-E power amplifier is supposed
to provide the maximum power to the primary coil when the primary resonance circuit is tuned at
the switching frequency (13.56 MHz). The received power in the implanted coil is an AC waveform.
What follows is a more in depth description of the proposed components and the justifications for
choosing them based on efficiency and small form factor considerations.
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Figure 2. Schematic diagram of the proposed system.

2.1. Equivalent Electrical Circuit of the Proposed RIC WPT System

Actually, inductive coupling links are considered the most attractive technology for transcutaneous
applications. WPT in bio-device systems is ensured between two coils (see Figure 3). The transmitter coil
(TX) is located outside the human body and the receiver coil (RX) is inside the body.
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For transcutaneous applications, high-coupling efficiency is desirable as it translates into lower
power loss in the form of heat dissipation. The first step towards increasing PTE is the use of resonant
tuning as first proposed by Tesla [14]. The resonant inductive coupling technique allows power transfer
at a midrange between two coils when they are in a resonance state [11]. The equivalent electrical
circuit of the RIC between two coils has four possible resonant topologies that are: series-parallel
(SP), parallel-series (PS), series-series (SS) and parallel-parallel (PP) [22,23]. For the proposed system,
we have selected the SP topology (see Figure 4) for the three main reasons listed below:

(1) According to [24–28] the SP topology ensures greater power transfer efficiency than the other
topologies in WPT applications.

(2) The serial topology in the transmitter circuit is appropriate with the Class-E power amplifier
topology since the chosen Class-E power amplifier has a tuning capacitor in parallel and a tuning
capacitor in series [29,30] reducing the complexity of the system.

(3) In the case where a rectifier will be added to the proposed system, the parallel topology is the
most adequate. As the authors in the review paper [31] have explained, the resonance at the
receiver circuit can be tuned in series or in parallel. Both parallel and serial topologies deliver
the same power to the implant. However, the resonant serial topology does this by using a
high voltage and a low current. Since rectifiers work better at large voltages and low currents,
this makes the parallel topology the leading choice in biomedical implants.
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Figure 4a shows that the transmitter coil (TX) is connected to an AC source supply and the load is
connected to the receiver coil (RX). Both coils and capacitors in the two circuits form the transmitter
and the receiver resonators of a series-parallel topology (SP). RIC coupling takes place when the two
circuits are tuned to operate at the same frequency f0 (Equation (1)). At resonance, the impedance
and the current of an RLC-circuit are at their extrema. As a result, the voltages at capacitors and at
coil terminals are also at their extrema. In addition, the PTE reaches its maximum value (PTEmax).
According to Figure 4b, L1 in series with R1 and L2 in series with R2 form the equivalent electrical
model of TX and RX , respectively. In addition, capacitors C1 in series with TX and C2 in parallel with
RX coils, form the transmitter and the receiver resonators. They are tuned at the desired frequency in
the aim to ensure an optimum WPT circuit [10]. WPT between the two coils is ensured by the mutual
inductance, M [14].

f0 =
1

2π
√

L1C1
=

1
2π
√

L2C2
(1)

The mutual inductanceHaut du formulaireBas du formulaire M existing between two coils is in
terms of the self-inductance of each coil, is expressed as:

M =
√

L1L2 (2)

where L1 and L2 are as follows:

L1 =
µ0µr N2

1 A
l

(3)

L2 =
µ0µr N2

2 A
l

(4)

with:
L1 and L2 in Henry,
µ0: the permeability of free space (4, π, 10−7),
N: turns number,
A: The inner core area (π·r2) in m2,
l: the length of coil in meters,
µr: the relative permeability of the iron core.
It should be noted that M can be also expressed as a function of the coupling coefficient, K.

The latter is the fraction of the total possible flux linkage between coils [12]. The mathematical
expression of K is:

K =
M√
L1L2

(5)

In inductive coupling, the transmitter and the receiver coils are loosely coupled for the reason that
their separation is comparable with the receiver coil dimensions. Under such conditions, the system
presents a low efficiency. From (2) to (5), we can infer that improving the system efficiency is possible
by increasing the magnetic strength (by increasing the current), the rate of the magnetic field change (by
increasing the frequency), and the flux linkage between the two coils (by reducing the misalignment
and distance). The reflected impedance (ZR) from the secondary circuit to the primary circuit is
expressed as follows [22]:

ZR =
−jwMI2

I1
=

w2M2

Z2
(6)

where I1 and I2 are the current in TX and RX, respectively, and w = 2π f is the angular frequency
measured in radian/sec. The impedance of a parallel topology in the secondary side, Z2 is:

Z2 = R2 + jwL2 +
1

jwC2 +
1

RLoad

(7)
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According to (6), for the parallel-secondary circuit, the reflected impedance is expressed as the
reflected resistance and the reactance, at the resonance w0 = 1√

L2C2
, as follows:

Parallel− secondary circuit


Re(ZR) =

M2(C2R2
LoadR2+L2RLoad+R2L2)C2w2

0
2R2RLoad L2C2+R2

2L2C2+R2
2C2

2 R2
Load+L2

2

Im(ZR) =
M2L2w0

2R2RLoad L2C2+R2
2L2C2+R2

2C2
2 R2

Load+L2
2

(8)

In the case where R2 = 0, Equation (8) is expressed as follows [22]:

Parallel − secondary circuit

 Re(ZR) =
RLoad M2

L2
2

Im(ZR) = −w0 M2

L2

(9)

The PTE is determined as follows:
PTE =

P2

P1
(10)

With P1 is the power in the transmitter circuit, and P2 is the transferred power from the transmitter
circuit to the receiver circuit. Table 2 lists the parameters of the RIC circuit proposed in this work.

Table 2. Parameters of the RIC circuit.

Parameter Value

L1 5.48 uH
C1 28 pF
L2 1 uH
C2 137.75 pF

The equivalent impedance of the secondary circuit is expressed as:

Zeq =
w2M2

(
RLoad +

√
R2

Load − 4w2L2
2

)
2w2L2

2 + R2.RLoad + RL2

√
R2

Load − 4w2L2
2

(11)

To make sure that (11) is true, the following condition should be satisfied:

R2
Load − 4 w2L2

2 > 0 ⇒ RLoad > 2wL2 (12)

The used load RLoad satisfies the requirement:

RLoad= 300 Ω > 170.4 Ω

2.2. DC/AC Converter – Choices of Components and Justification

In order to power-up the transmitter coil, the system must generate an AC voltage at a precise
amplitude and frequency. For that, an oscillator and a power amplifier are indispensable. For the
oscillator, our choice is a SiT8008B and for the amplifier, we have chosen a Class-E power amplifier.

2.2.1. Oscillator SiT8008B

An oscillator is an electronic circuit or component that generates a single frequency periodic
output signal from a DC voltage source. This signal goes from a low level to a high level. It remains for
a short time in the low state then goes back to the high state, and the cycle continues in this way without
stopping, as long as the required conditions for the oscillation to occur are met. The quality of the signal
is represented by the harmonic distortion rate (THD). It is defined as the ratio between the overall
root mean square (RMS) value of the harmonics and the (RMS) value of the fundamental component.
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In addition, the fundamental frequency has a range of variation [f 0-∆f, f 0 + ∆f ]. The frequency stability
ratio σ reflects the ability of the oscillator to produce a stable frequency. It is often measured in parts
per million “ppm” at a given temperature usually chosen at 25 ◦C:

σpmm = 106 ∆ f
f0

(13)

In our case, the SiT8008B produces an AC signal in the chosen frequency 13.56 MHz. Its main
advantage is its simplicity. This type of oscillator is exact and stable in frequency (±50 ppm) and its
energy consumption is low. In addition, it is only weakly influenced by temperature variations.

2.2.2. The Operating Frequency: 13.56 MHz

The allowed frequency (13.56 MHz) is not arbitrary; contrariwise, it satisfies the industrial,
scientific and medical (ISM) bands. Table 3 presents the common distribution band allocated for all
(ISM) applications.

Table 3. Distribution ISM bands.

Frequency Bands Low Frequencies
(LF) High Frequencies (HF) Ultra-High Frequency

(UHF)

Values 100 to 150 KHz 6.78 MHz, 13.56 MHz, 27 MHz, 125
MHz and 40.68 MHz

433.92 MHz, 869 MHz
and 2.4 GHz

According to the standard established by the International Telecommunication Union (ITU),
the permitted currents at 100–135 KHz, 6.78 MHz and 13.56 MHz are respectively 66 dBµA/m,
42 dBµA/m and 42 dBµA/m. The intensity allowed at a low frequency is higher than the one
allowed to the HF band. In addition, the heating effect of the tissues in this band is negligible or even
non-existent. Actually, 13.56 MHz is considered the most appropriate frequency in research works.
In fact, it ensures a compromise between the authorized magnetic field strength, the transmission
range and the biocompatibility [20,21].

2.2.3. Class-E Power Amplifier

Usually, a system for transcutaneous applications begins with a power amplifier (PA),
which supplies the power to the transmitter coil at a particular frequency and a voltage amplitude.
Higher transmission frequencies place a specific focus on utilizing power amplifiers which operate
efficiently at these levels. Switched power amplifiers are a popular choice to drive inductive power
coupling for implants due to their ability to minimize losses at higher frequencies. Table 4 presents
their main characteristics [29]. During the WPT system design for implants, several challenges should
be realized. Among them, we notice the achieving of a high PTE and the reducing of the system
dimension. These objectives make the Class-E power amplifier very suitable for implants since it
has a 100% of theoretical efficiency. In addition, it can operate at a frequency range from 3 MHz to
10 GHz [17]. Moreover, it contains only one active device that is a transistor. This component drives a
series resonant circuit (see Figure 5).

Table 4. Switched power amplifiers.

Switcher Power Amplifiers Characteristics

Class D The theoretical efficiency of 100%. The parasitic capacitance Css causes an
energy dissipation during switching cycles.

Class-F Useable for radio frequencies (from 9 kHz to 300 Mhz). Has a unit efficiency.

Class-E The theoretical efficiency of 100%. High-frequency applications, from
3 MHz until 10 GHz.



Energies 2019, 12, 1890 9 of 21

Energies 2019, 12, x FOR PEER REVIEW 9 of 22 

 

Table 4. Switched power amplifiers. 

Switcher Power 
Amplifiers 

Characteristics 

Class-D 
The theoretical efficiency of 100%. The parasitic capacitance 𝐶௦௦ causes an energy dissipation 
during switching cycles. 
 

Class-F 
Useable for radio frequencies (from 9kHz to 300Mhz). Has a unit efficiency. 
 

Class-E The theoretical efficiency of 100%. High-frequency applications, from 3 MHz until 10 GHz. 

 

RFC 

Excitation

vdd

R L
oa

d

L1 R1C1

Cd

Vgs

TX

 
Figure 5. Class-E power amplifier. 

2.2.4. Class-E Power Amplifier Transistor DMG230UK-7 

During system design, our aim is to reduce the power losses as much as possible, which makes 
the “Enhancement-mode” N-junction type transistor an optimal choice. For the proposed system, we 
have used the DMG230UK-7 that is a high-speed N-junction metal oxide semiconductor field 
transistor (MOSFET). From its data sheet, 𝑅𝑑𝑠= 13 mΩ, which is small, which supports our choice. 
Note also that the 𝐶௦௦ input capacitance value is high. However, that is inevitable if we want to get 
a low resistance 𝑅𝑑𝑠, this large capacity must have a large current to ensure a short switching 
time. Only an oscillator couldn’t provide a sufficient amount of the current at a high frequency of 
13.56MHz. Therefore, adding a preamplifier “driver” is essential. It will be configured as a voltage 
follower at the oscillator output. 

2.2.5. Driver LM5134 

The current through a capacitor is as follows: 𝐼 = 𝐶௦௦.𝑣௦𝑡  (14) 

where 𝑡 is the time required to recharge the gate capacity of the transistor fully. In general, it takes 
a total time equal to 4τ to recharge completely the capacitor: 𝑡 = 4𝜏൫𝑅ௗ + 𝑅൯𝐶௦௦ (15) 𝑅ௗ is the driver output resistor and 𝑅 is the internal gate resistance. According to the data 
sheets 𝑅ௗ= 0.2 Ω and 𝑅= 1.7 Ω. If the transition time 𝑇 is chosen to correspond to 2% of the 
control signal period (f = 13.56 𝑀𝐻𝑧), and considering that the target gate voltage (𝑣௦)is 3.3 V, we 
obtain: 𝑇 = 0.02𝑇 = 1.475𝑛𝑠 (16) 

Figure 5. Class-E power amplifier.

2.2.4. Class-E Power Amplifier Transistor DMG230UK-7

During system design, our aim is to reduce the power losses as much as possible, which makes
the “Enhancement-mode” N-junction type transistor an optimal choice. For the proposed system,
we have used the DMG230UK-7 that is a high-speed N-junction metal oxide semiconductor field
transistor (MOSFET). From its data sheet, Rdson = 13 mΩ, which is small, which supports our choice.
Note also that the Ciss input capacitance value is high. However, that is inevitable if we want to get a
low resistance Rdson, this large capacity must have a large current to ensure a short switching time.
Only an oscillator couldn’t provide a sufficient amount of the current at a high frequency of 13.56 MHz.
Therefore, adding a preamplifier “driver” is essential. It will be configured as a voltage follower at the
oscillator output.

2.2.5. Driver LM5134

The current through a capacitor is as follows:

I =
Ciss.vgs

ton
(14)

where ton is the time required to recharge the gate capacity of the transistor fully. In general, it takes a
total time equal to 4τ to recharge completely the capacitor:

ton = 4τ
(

Rd + Rg
)
Ciss (15)

Rd is the driver output resistor and Rg is the internal gate resistance. According to the data sheets
Rd = 0.2 Ω and Rg = 1.7 Ω. If the transition time Ton is chosen to correspond to 2% of the control signal
period (f = 13.56 MHz), and considering that the target gate voltage (vgs) is 3.3 V, we obtain:

Ton = 0.02T = 1.475ns (16)

I =
400pF.3.3V

1.474ns
= 897.95mA (17)

Then, our choice is the LM5134 Texas Instrument driver for a peak output current value of 7.6 A
in the sink and 4.4 A source and a driver output resistance Rd = 0.2 Ω, which is appropriate with the
MOSFET used. Therefore, both the SiT8008 and the LM5134 are good choices to ensure the proper
operation of the Class E power amplifier. To power-up SiT8008B oscillator, we have chosen a MCP1501
3.3 V/DC power supply.
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2.2.6. Ceramic Capacitors

In order to have a stable transmitter in frequency and temperature, we propose the use of
multilayer ceramic capacitors. Hence, they have high stability, a very low-temperature coefficient and
a considerable quality factor. All these characteristics help to reduce power losses.

2.3. Transmitter and Receiver Coils Design Optimization

In this section, we will look at the influence of different parameters of the circular coils and the
steps of our methodology to find an optimal balance between the coil size or form factor and the coil
efficiency. Figure 6 presents the parameters of a circular coil and Equation (18) determines the number
of turn corresponding to each inductance value [18]. In the following, we deal with the coupled printed
spiral coils (PSC) geometry optimization of the two inductance values (L1 and L2) using the advanced
design system (ADS) software.
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with:
D: coil outer diameter (mm),
d: coil inner diameter (mm),
s: conductor spacing (mm),
W: conductor width (mm),
T: conductor thickness (mm).

L =
u0N2DavgC1

2

(
ln
(

C2

ϕ

)
+ c3 ϕ + c4 ϕ2

)
(18)

with:
L: inductance in Henry,
u0: is the absolute permeability of the free space,
D: coil outer diameter (m),
d: coil inner diameter (d),
N: Turns number,
Davg: coil average diameter,
C: for a circular coil are as follows: C1 = 1, C2 = 2.46, C3 = 0 and C4 = 0.20,
ϕ: filling factor,
Davg = (D + d)/2, ϕ = (D − d)/(D + d).

Iterative Design Procedure for the Coil Optimization

With the aim of optimizing the size and the quality factor of the two coils, we have followed an
iterative procedure that consists of four steps as presented in Figure 7.
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Each step is explained as follows:
• Step (1): applying design constraints and step (2): applying initial values
To design the coils we have used the copper as a conductor and Flame Resistant 4 (FR4) as a

dielectric. Table 5 presents their physical characteristics that we must respect during the system
simulation. The first step in the optimization of coils is to apply the design parameters limited by the
implant and the fabrication technology. For our case, these parameters are listed in Table 6. Figure 8
presents a 3D visualization of TX in the ADS momentum software.

Table 5. FR4 and conductor: copper parameters.

Parameter value

Copper resistivity 1.68 × 10−8 Ωm
Copper conductivity 5.96 × 107 Ω−1m−1

Relative FR4 constant (Er) 4.15 until 500 MHz
FR4 loss tangent (TanD) 0.02 until 500 MHz

Table 6. parameters limited by the implant and the fabrication technology.

Parameters Unit Value

Frequency (MHz) 13.56
Inductor (L1) of the transmitter coil TX (H) 5.48 × 10−6

Inductor (L2) of the receiver coil RX (H) 10−6

Copper thickness (mm) ≥0.0445
W:Conductor width (mm) ≥0.203
S:Conductor spacing (mm) ≥0.203

Via diameter (mm) 0.6
FR4 thickness (mm) 1.4986

Figure 8 presents a 3D visualization of TX in the ADS momentum software.Energies 2019, 12, x FOR PEER REVIEW 12 of 22 
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• Step (2): Transmitter coil (TX) and receiver coil (RX) optimization
To get the desired inductance values (L1 and L2) of the two coils, several coil geometries are

possible. Nevertheless, not all of them give coils with a high-quality factor (QL). Coil quality factor
(QL) is an important parameter in improving the inductive coupling of a WPT system. Improving
this parameter leads to minimize the electromagnetic heating of the tissue, the interference with other
devices, and imperatively the safety of the patient. The quality factor of an unloaded (PSC) can be
expressed as [32]:

QL =
wnLn

Rn
(19)

with wn is the angular frequency, Ln is the inductor of the coil and Rn is the parasitic resistance. Q is
related to the parasitic resistance and the capacitance of the inductor. Taking account, the skin effect,
the total parasitic resistance can be calculated as follows:

Rn = Rdc
tc

δ
(

1− e−
tc
δ

) (20)

with δ being the skin metal depth and Rdc the DC resistance, expressed as follows:

Rdc = ρc
lc

W.tc
(21)

δ =

√
ρc

π.µ. f
; µ = µr.µ0 (22)

where lc is the total length of the conductor, tc is the conductor thickness, W is the conductor width,
ρc is the metal resistivity, µ is the permeability (constant), and µr is the relative permeability of
the conductor.

To optimize the transmitter and the receiver coil, we have done five tests for each one following the
same steps. Figure 9 illustrates the circuit block diagram coil form factor and the efficiency optimization
using ADS. Firstly, we have used the “S-PARAMETRS” bloc in which we have fixed the desired
frequency (13.56 MHz) to simulate the coil. Secondly, in “M Sub” bloc we have inserted the substrate
thickness (H), the relative dielectric constant (Er), the relative permeability (Mur), the conductor
thickness (T), the conductor conductivity (Cond), and the dielectric loss tangent (TanD), respectively
(see Tables 5 and 6). Thirdly, we have used a part impedance value equal to 50 Ω. Finally, we have still
varying the coil number of turns (N), the conductor spacing (S), the conductor width (W) and the inner
radius (Ri); using an optimization function offered by ADS, accompanying by the calculation of the
parasitic resistance (R_Coil), the inductance value of the coil (L_Coil) and the equivalent impedance
(ZS_Coil) (see Figures 9 and 10). These parameters are determined in ADS momentum using the
following equations (written in the style required by ADS):

R_Coil = real(Zin(S11, PortZ1) (23)

ZS_Coil = imag(Zin(S11, PortZ1) (24)

L_Coil = (ZS_Coil)/(2*pi*freq) (25)
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• Step (3): Validation
Before proceeding to the practical validation of the coils, we have compared the five test

configurations made for each coil. Figure 12 illustrates the quality factor of the transmitter coil (QTx)
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and the receiver coil (QRx) in addition to their form factor measured in (mm). According to Figure 12a,
for the TX coil, the test number 2 gives the best compromise between the quality factor (QTx) equal
to 46.8 and the form factor of 65.6 mm. For the RX coil, test number 5 gives the best result yielding a
quality factor (QRx) equal to 95.96 and a form factor of 27.91 mm. Table 7 presents more details about
the optimal geometry of the two selected coils configurations based on the simulation results.
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Table 7. Parameters of the optimal geometry of the two coils using ADS momentum.

Parameter TX RX Unit

N: Number of turns (N) 18 7 –
Ri: Inner radius measured to the center of the conductor 9.1 9.1 mm

W: Conductor width 0.508 0.381 mm
S: Conductor spacing 0.8382 0.254 mm
Ln (H) at 13.56 MHz 5.096 × 10−6 1.012 × 10−6 H

Rs at 13.56 MHz 9.558 0.890 Ω
Coil size (length = width) 57.63 27.96 mm
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3. Testing Methodology and Experimental Results

In order to confirm the validity of the proposed system, we have conducted the following
experiments including and collecting relevant data. First, we have made the DC/AC converter in
order to supply the transmitter coil (already explained in Section 2.2). Second, we have made the coils
designed with ADS momentum on printed circuit boards using copper as the conductor and the FR4
as a substrate (as already explained in Section 2.3). Finally, we have measured the correlation of the
power transmission with the distance between (TX) and (RX) coils using an RS PRO digital caliper.
During transfer distance measurements, the two coils was perfectly aligned.

Figure 13 presents the block diagram of the proposed near-field RIC WPT system to power-up
active implant and Figure 14 is its electrical model made with the Althuim designer software. Firstly,
it contains a DC/AC converter producing an efficient power to the primary coil. Secondly, the near-field
RIC, which is a serial-parallel resonant topology, is given. This circuit ensures WPT by mutual
inductance (M). Table 8 presents parameter values of the system, which result from an accurate
calculation. Figure 15 illustrates the experimental measurements of the transferred power as a function
of the transfer distance. Figure 16 illustrates the made transmitter and receiver coils.
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Table 8. System parameters values.

Parameters Values Unit

Supply voltage (Vdd) 3.3 (V)
Supply voltage of the oscillator 3.3 (V/DC)

Choke inductor (L1) 12 (µH)
Shunt capacitor (C11) 56.5 (pF)

Resonator capacitor (C9) 28 (pF)
Transmitter coil (TX) 5.48 × 10−6 (H)

Receiver coil (RX) 1.0 × 10−6 (H)
Resonator capacitor (C10) 137.75 (µF)

Load resistance (RLoad) 300 (Ω)
Frequency 13.56 (MHz)

Coupling Factor 0.15
Duty cycle 50

Period 73.74 (ns)
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4. Results

In this section we present our findings related to the DC/AC converter and the power transfer
efficiency as a function of the power transfer distance after implementing the proposed design.
Figure 17 is the voltage output form of the SiT8008B oscillator at 13.56 MHz generating a single
frequency periodic output signal from the DC voltage source. Figure 18 presents the voltage waveform
in the transmitter coil (VTX ) which is a perfect sine wave, resulting from the DC/AC converter
(oscillator, driver and class E power amplifier). This waveform is an amplified AC voltage of 10 V/AC
at 13.56 MHz. The determined power in the transmitter coil (TX) is 0.21 Watts. To determine the
maximum power transfer efficiency and the maximum power transfer distance that can be reached
by the proposed system, we have gradually increased the transfer distance between the two coils.
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During the experiment, we have maintained the transmitter coil fix and we have varied the position of
the receiver one. We have started with 0.5 cm as a first transfer distance and we have increased this
distance until a maximum of 5 cm. For each experience, we have measured the transfer distance with
a caliper. Figure 19 illustrates the measured voltage waveform in the transmitter coil (VTX ) and the
transferred voltage to the receiver coil (VRX ) for a transfer distance equal to 3.5 cm, that are 10 V/AC
and 5 V/AC, respectively. Figure 20 shows the received voltage (V) and current (mA) at the receiver
coil (Rx) as a function of the transfer distance (cm).
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5. Discussion

Due to the constant increase in the age of the population and social protection against chronic
diseases, studies on medical implants are being actively conducted and their market is growing
remarkably. Moreover, these devices are increasingly used for conditions such as artificial retinal
prostheses or neurostimulators. The energy requirements of most implants range from a few
microwatts to tens of milliwatts and this generally depends on their specific applications. Whenever
they are active, they require an electrical power source to operate correctly. Nevertheless, the short
lifetimes of batteries that supply these devices are the major disadvantage of their good use because of
the surgical operations necessary to replace them. According to the literature, there are ubiquitous
attempts and proposals for powering implants. However, not all the proposed techniques can satisfy
modern implant design requirements (human body safety, size, produced power, etc.). Near-field WPT
using resonant inductive coupling (RIC) seems the best solution for transcutaneous applications.

WPT in RIC is ensured by the magnetic induction phenomenon. When the transmitter coil
generates a magnetic field, the receiver coil receives this magnetic field and induces an electrical
power current. As the magnetic coupling between the two coils is high the power transfer efficiency is
important. However, the weakness of the inductive coupling efficiency is usually the bottleneck in the
overall WPT system efficiency. That makes the power transfer efficiency the most important parameter
to be considered during the system design. Improving this parameter, increases the human safety and
reduces the system form factor.

In this paper, we have looked for a way to satisfy the power needs of implanted medical devices
without the need for batteries. For this reason, we have investigated a novel design for WPT using a
high-efficiency Complementary Metal Oxide-Semiconductor (CMOS) and an optimized Printed Circuit
Coil (PCC). The system operates at 13.56 MHz. It is divided into two main circuits, a transmitter circuit
located outside the human body and a receiver circuit implanted inside the body. The transmitter
circuit contains an oscillator, driver and a Class-E power amplifier and it has been designed with the
software Althuim designer 2017. Transmitter (Tx) and receiver (Rx) coils have been optimized using
the ADS momentum 2015 software.

Figure 21 illustrates the system power transfer efficiency and the received voltage in the receiver
coil (RX) versus the transfer distance measured during the experiments. The maximum power transfer
efficiency reaches by our system is 75.1% for a 0.5 cm (the measured voltage is 8.2 V and the current is
19 mA). This efficiency decreases to 10.67% with the transfer distance for 5 cm (the measured voltage
is 2.8 V and the current is 8 mA). The received power in the receiver coil (RX) for the distances 0.5 cm
and 5 cm are 157.7 mWatts and 22.4 mWatts, respectively. These results are very useful and promising,
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especially knowing that implants are devices with a low power consumption. In most cases, the power
requirements of active implants range from a few microwatts to tens of milliwatts. Moreover, the skin
depth in the human body is about 0.6 mm.
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Table 9 illustrates a comparison between our result and other studies based on the transferring
distance and the wireless transfer efficiency between the transmitter and the receiver circuits. All the
presented works have used the RIC technique to design WPT systems for medical implants. The system
proposed in [33] ensures a high power transfer distance and efficiency compared with our work, but it
operates at a low frequency. Low frequency magnetic waves have a low absorption rate in the human
body, which causes a rise of the skin temperature and limits their application. The system proposed
in [34] operates at 27 MHz, for high frequency bands. If the rate increases, the transmitted power
increases, but the tissue warming effects become severe. This system reaches a transfer distance greater
than our system but gives a low transfer efficiency between the two circuits. Systems proposed in [35]
and [36] operate at the same frequency of our system, but our system achieves the highest transfer
distance (0.5 cm) and the highest transfer efficiency (75.1%). Finally, the work presented in [37] has a
lower efficiency than the proposed system. These results confirm the reliability and the utility of our
proposed system for transcutaneous applications that use low power consumption devices. Moreover,
the result of this work can be used as a model for WPT for transcutaneous applications that need a
short transfer range.

Table 9. Comparison between the previous literature and this work.

Previous literature Used Approach Transfer
Distance(cm)

Power Transfer
Efficiency (%) Frequency

[33]

RIC

1 86 742 kHz
[34] 5 11.3 27 MHz
[35] 3 21.7 13.56 MHz
[36] 1 58 13.56 MHz
[37] 1 41.62 Not available

This work 0.5 75 13.56 MHz

While investigating coil geometries, we have found that current technology fabrication constraints
limit our ability to decrease the form factor of the coils and increase their efficiency (reduce their
parasitic resistance). Moreover, system implementation has been done in an air medium without
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considering the human body and the EMF safety (specific absorption rate or SAR, human body
exposure limits to EM fields, etc.). As a first follow-up, we plan to investigate the coil geometry with
another technology, namely the low temperature co-fired ceramics (LTCC) to meet these challenges.
This technology offers the possibility to make coils with different materials (silver, gold, etc.),
and substrates (Ferro L8, ceramic, etc.) that may provide a compromise between a small coil size or
form factor and a high efficiency. Another perspective of this work, is to consider the different human
body media (fat, skin, etc.) during system design. The maximum distance obtained in this work is
5 cm in the air medium which is different from what would be possible in biological material due to
the permeability of the medium, especially for deep implants.
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