
energies

Article

A Comparative Study of Methods for Measurement of
Energy of Computing

Muhammad Fahad , Arsalan Shahid , Ravi Reddy Manumachu * and Alexey Lastovetsky

School of Computer Science, University College Dublin, Belfield, Dublin-4, Ireland;
muhammad.fahad@ucdconnect.ie (M.F.); arsalan.shahid@ucdconnect.ie (A.S.); alexey.lastovetsky@ucd.ie (A.L.)
* Correspondence: ravi.manumachu@ucd.ie; Tel.: +353-1-716-2521

Received: 5 May 2019; Accepted: 28 May 2019; Published: 10 June 2019
����������
�������

Abstract: Energy of computing is a serious environmental concern and mitigating it is an important
technological challenge. Accurate measurement of energy consumption during an application
execution is key to application-level energy minimization techniques. There are three popular
approaches to providing it: (a) System-level physical measurements using external power meters;
(b) Measurements using on-chip power sensors and (c) Energy predictive models. In this work, we
present a comprehensive study comparing the accuracy of state-of-the-art on-chip power sensors and
energy predictive models against system-level physical measurements using external power meters,
which we consider to be the ground truth. We show that the average error of the dynamic energy
profiles obtained using on-chip power sensors can be as high as 73% and the maximum reaches 300%
for two scientific applications, matrix-matrix multiplication and 2D fast Fourier transform for a wide
range of problem sizes. The applications are executed on three modern Intel multicore CPUs, two
Nvidia GPUs and an Intel Xeon Phi accelerator. The average error of the energy predictive models
employing performance monitoring counters (PMCs) as predictor variables can be as high as 32%
and the maximum reaches 100% for a diverse set of seventeen benchmarks executed on two Intel
multicore CPUs (one Haswell and the other Skylake). We also demonstrate that using inaccurate
energy measurements provided by on-chip sensors for dynamic energy optimization can result in
significant energy losses up to 84%. We show that, owing to the nature of the deviations of the energy
measurements provided by on-chip sensors from the ground truth, calibration can not improve
the accuracy of the on-chip sensors to an extent that can allow them to be used in optimization of
applications for dynamic energy. Finally, we present the lessons learned, our recommendations for
the use of on-chip sensors and energy predictive models and future directions.

Keywords: energy efficiency; energy predictive models; performance monitoring counters; multicore
CPU; GPU; Xeon Phi; RAPL; NVML; power aensors; power meters

1. Introduction

International Energy Agency (IEA) has highlighted energy efficiency (in buildings, transport
and industry) as a key measure to mitigate the impact of climate change [1]. Information and
Communications Technology (ICT) devices and systems are presently consuming about 2000 terawatt
hours (TWh) per year which is about 10% of the global electricity demand [2]. This is now more than
2% of overall global CO2 emissions, which is on par with global aviation industry emissions due to
fuel combustion [3]. It is predicted that ICT could use up to 51% of global electricity in 2030 and it
could contribute up to 23% of greenhouse gas emissions [4].

Energy of computing, therefore, is a serious environmental concern and mitigating it has become
an important technological challenge. Energy efficiency in computing is driven by innovations in
hardware represented by the micro-architectural and chip-design advancements and software that can

Energies 2019, 12, 2204; doi:10.3390/en12112204 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-3595-8484
https://orcid.org/0000-0002-3748-6361
https://orcid.org/0000-0001-9181-3290
http://www.mdpi.com/1996-1073/12/11/2204?type=check_update&version=1
http://dx.doi.org/10.3390/en12112204
http://www.mdpi.com/journal/energies

Energies 2019, 12, 2204 2 of 42

be grouped into two categories: (a) System-level energy optimization and (b) Application-level
energy optimization. System-level optimization methods aim to maximize energy efficiency of
the environment where the applications are executed using techniques such as DVFS (dynamic
voltage and frequency scaling), Dynamic Power Management (DPM) and energy-aware scheduling.
Application-level optimization methods use application-level parameters and models to maximize the
energy efficiency of the applications.

Accurate measurement of energy consumption during an application execution is key to energy
minimization techniques at software level. There are three popular approaches to providing it:
(a) System-level physical measurements using external power meters, (b) Measurements using on-chip
power sensors and (c) Energy predictive models.

While the first approach is known to be accurate [5], it can only provide the measurement at a
computer level and therefore lacks the ability to provide fine-grained device-level decomposition of
the energy consumption of an application executing on several independent computing devices in
a computer.

The second approach is based on on-chip power sensors now provided in mainstream processors
such as Intel and AMD Multicore CPUs, Nvidia GPUs and Intel Xeon Phis. Intel CPUs offer Running
Average Power Limit (RAPL) [6] to monitor power and control frequency (and voltage). RAPL is
based on a software model using performance monitoring counters (PMCs) as predictor variables to
measure energy consumption for CPUs and DRAM for processor generations preceding Haswell such
as Sandybridge and Ivybridge E5 [7]. For latest generation processors such as Haswell and Skylake,
however, RAPL uses separate voltage regulators (VR IMON) for both CPU and DRAM. VR IMON
is an analog circuit within voltage regulator (VR), which keeps track of an estimate of the current. It,
however, adds some latency because the measured current-sense signal has a delay from the actual
current signal to CPU. This latency may affect the accuracy of the readings. The CPU samples this
reading periodically (100 µs to 1 ms) for calculating the power [8]. The accuracy of VR IMON for
different input current ranges is not known. According to [8], DRAM and CPU IMON report higher
errors when the system is idle and DRAM VR inaccuracy can be large if the system is allocated memory
capacity much lower than its capability.

Intel Xeon Phi co-processors are equipped with on-board Intel System Management Controller
chip (SMC) [9] providing energy consumption that can be programmatically obtained using Intel
manycore platform software stack (Intel MPSS) [10]. The accuracy of Intel MPSS is not available. AMD
starting from Bulldozer micro-architecture equip their processors with an estimation of average power
over a certain interval through the Application Power Management (APM) [11] capability. [12] report
that APM provides highly inaccurate data particularly during the processor sleep states. In this work,
we will not cover tools for AMD processors.

Nvidia Management Library NVML [13] provides programmatic interfaces to obtain the energy
consumption of an Nvidia GPU from its on-chip power sensors. There are, however, some issues with
the energy measurements provided by Nvidia on-chip sensors [14]. One important issue is how to relate
the energy consumption of an application and the energy consumption of the computing elements
that are involved in the execution of the application and containing the sensors. While sensors may
provide the power consumption of a component within sufficient accuracy, they may not determine the
energy consumed by an application when executing on the same component within the same accuracy
window. For example: while the accuracy of a power reading is reported by NVML for an Nvidia GPU
to be 5%, researchers found that when an application is executed on the GPU, the accuracy is often less.

The third approach is based on software energy predictive models, which emerged as a popular
alternative to determine the energy consumption of an application. A vast majority of such models is
linear and uses performance monitoring counters (PMCs) as predictor variables. While the models
provide fine-grained component-level energy consumption during the execution of the application,
there are research works highlighting their poor accuracy [15–18].

The three approaches and their advantages and shortcomings are detailed in the Appendix A.

Energies 2019, 12, 2204 3 of 42

We present an use case to highlight the importance of accurate measurement of dynamic energy
during the execution of an application for its optimization for dynamic energy. Consider a real-life
dynamic energy consumption profile segment of an application computing 2D fast Fourier transform
using FFTW3.3.7 of a complex signal matrix of dimension N × N as shown in the Figure 1. The profile
is obtained on a modern Intel skylake server comprising of two sockets of 28 cores each. Intel RAPL
reports the dynamic energy consumption for problem sizes {21184,21248,21312} shown by vertical lines
to be {776 J, 764 J, 634 J} whereas HCLWattsUp [19], which provides system-level power measurements
using external power meters and which we consider to be the ground truth, reports the dynamic
energy consumption to be {409 J, 540 J, 568 J}. If Intel RAPL is used for dynamic energy optimization
of an image processing application employing the 2D FFT dynamic energy profile for workload size
(or image size) N = 21,184, an optimization method for dynamic energy using Intel RAPL profile as
an input could use the solution for the workload size, N = 21,312, aiming to reduce dynamic energy
consumption by 22%. Instead, solving this workload size will result in increase of dynamic energy
consumption by 39% according to the ground truth.

Figure 1. Dynamic energy consumption profile segments of HCLWattsUp and Intel RAPL for 2D FFT
computation using FFTW-3.3.7 on HCLServer03.

In this work, we present a comprehensive study comparing the accuracy of state-of-the-art
on-chip power sensors and energy predictive models against system-level physical measurements
using external power meters, which we consider to be the ground truth. For the study comparing
the accuracy of on-chip power sensors with the ground truth, we employ an experimental platform
comprising of two optimized multithreaded scientific applications, dense matrix-matrix multiplication
and 2D fast Fourier transform, executed on one Intel Haswell and two Intel Skylake multicore CPUs,
two Nvidia Graphical Processing Units (GPUs) (Tesla K40c and Tesla P100 PCIe) and one Intel Xeon
Phi accelerator. We show that the average error between the dynamic energy profiles obtained using
on-chip power sensors and the ground truth ranges from 8% and 73% and the maximum reaches 300%.
We show that, owing to the nature of the deviations of the energy measurements provided by on-chip
sensors from the ground truth, calibration can not improve the accuracy of the on-chip sensors to an
extent that can allow them to be used in optimization of applications for dynamic energy.

For the study comparing the accuracy of energy predictive models with the ground truth, we use
an experimental platform containing a testsuite of seventeen benchmarks executed on an Intel Haswell
multicore CPU and an Intel Skylake multicore CPU. The average error between energy predictive
models employing performance monitoring counters (PMCs) as predictor variables and the ground
truth ranges from 14% to 32% and the maximum reaches 100%.

Energies 2019, 12, 2204 4 of 42

We also demonstrate using a parallel matrix-matrix multiplication on two Intel multicore CPU
servers that using inaccurate energy measurements provided by on-chip sensors for dynamic energy
optimization can result in significant energy losses up to 84%.

The main contributions of this work are:

1. The first comprehensive comparative study of the accuracy of state-of-the-art on-chip power
sensors and energy predictive models against system-level physical measurements using external
power meters, which we consider to be the ground truth.

2. A comparison of the accuracy of state-of-the-art on-chip power sensors against the ground truth
employing two scientific applications, matrix-matrix multiplication and 2D fast Fourier transform,
executed on three modern Intel multicore CPUs (one Haswell and two Skylake), two Nvidia
GPUs (Tesla K40 and Tesla P100 PCIe) and one Intel Xeon Phi accelerator. A comparison of the
accuracy of state-of-the-art energy predictive models employing PMCs as predictor variables
with the ground truth using a diverse set of seventeen benchmarks executed on two modern Intel
multicore Skylake CPUs.

3. We demonstrate significant losses of energy by employing inaccurate energy measurements
provided by on-chip sensors in optimization of applications for dynamic energy.

4. We show that, owing to the nature of the deviations of the energy measurements provided by
on-chip sensors from the ground truth, calibration can not improve the accuracy of the on-chip
sensors to an extent that can favour their use in optimization of applications for dynamic energy.

The rest of the paper is organized as follows. We present terminology related to power
and energy consumption in Section 2. Related work is discussed in Section 3. We explain our
experimental platforms, applications and methodology to ensure the reliability of our results in
Section 4. In Section 5, we explain our methodology to determine the component-level dynamic
energy consumption using system level power measurements from the power meters, HCLWattsUp.
We compare the dynamic energy profiles of our testbed applications with RAPL and HCLWattsUp
in Section 6. In Section 7, we compare the dynamic energy profiles using on-card sensors on GPUs
(NVML) and HCLWattsUp and Intel Xeon Phi sensors (MPSS) and HCLWattsUp. Then, we compare
the PMC-based dynamic energy predictive models with RAPL and HCLWattsUp in Section 8. In
Section 9, we study optimization of a parallel matrix-matrix multiplication application for dynamic
energy using RAPL and HCLWattsUp. Section 10 covers the lessons learned, our recommendations for
the use of on-chip sensors and energy predictive models and future directions. Finally, we conclude
our work in Section 11.

2. Terminology and Motivation

In this work, we consider only the dynamic energy consumption. We describe the rationale behind
using dynamic energy consumption in the Appendix B. It is calculated using the following formula:

ED = ET − (PS × TE) (1)

where ET is the total energy consumption of the platform during the execution of an application and
TE is the execution time of the application. PS is the static power consumption of the platform, which
is the power consumption of the platform when it is idle.

Let E(x)sensors represent the dynamic energy consumption by an application workload size x with
on-chip sensors and E(x)hclwattsup represent the dynamic energy consumption by the same application
workload size x with system-level physical measurements using external power meters (HCLWattsUp),
then the prediction error is calculated as |(E(x)hclwattsup − E(x)sensors)|/E(x)hclwattsup × 100.

We now present the motivation behind studying the accuracy of the three approaches for
measuring the dynamic energy during an application execution.

Using the system-level physical measurements provided by external power meters, we determine
the dynamic energy consumption during an application execution by applying the Formula (1).

Energies 2019, 12, 2204 5 of 42

The total energy consumption ET is the area under the discrete function of the power samples provided
by the power meter versus the time intervals between the samples. Well-known numerical approaches
such as trapezoidal rule can be used to calculate this area approximately. The trapezoidal rule works
by approximating the area under a function using trapezoids rather than rectangles to get better
approximations. The execution time TE of the application execution can be determined accurately
using the processor clocks. The accuracy of obtaining the total energy consumption ET and the static
power consumption PS is equal to the accuracy provided in the specification of the power meter.
Therefore, we consider this approach to be the ground truth.

State-of-the-art on-chip power sensors (RAPL for CPUs, NVML for GPUs, MPSS for Xeon Phis)
provide power measurements at a high sampling frequency that can be obtained programmatically.
The dynamic energy consumption during an application execution on a compute device equipped
with on-chip sensors is also calculated using the Formula (1). The execution time TE of the application
execution can be determined accurately using the timers provided in the compute device. The base
power consumption PS is obtained using the on-chip sensors when the component is idle. The total
energy consumption ET is calculated from the power samples using the trapezoidal rule.

However, while the accuracy of GPU on-chip sensors is reported in the NVML manual, the
accuracies of the other sensors are not known. For the GPU and Xeon Phi on-chip sensors, there
is no information about how a power reading is determined that would allow one to determine its
accuracy. For the CPU on-chip sensors, RAPL uses separate voltage regulators (VR IMON) for both
CPU and DRAM. VR IMON is an analog circuit within voltage regulator (VR), which keeps track of an
estimate of the current [8]. There are two issues with these measurements. First, how this estimate is
determined. Second, the accuracy of the estimates is not reported in the vendor manual and therefore
is not available. Therefore, the accuracies of the on-chip sensors need to be thoroughly validated before
they can be used for optimization of applications for dynamic energy.

Energy predictive models are typically trained using a large suite of diverse benchmarks and
validated against a subset of the benchmark suite and some real-life applications. While the general
accuracy of the models has been widely researched, their application-specific accuracy, however, has
not been studied. We address the gap in this work by studying the accuracy of linear regression models
employing performance monitoring counters selected solely on the basis of correlation with dynamic
energy and additivity criteria for two scientific applications, dense matrix-matrix multiplication and
2D fast Fourier transform.

We use the term “calibration” throughout this work. We define it as a constant adjustment
(positive or negative value) made to the data points in a dynamic energy profile obtained using a
measurement approach (on-chip sensors or energy predictive models) with the aim to increase its
accuracy or reduce its error against the ground truth (the physical measurements using power meters).

3. Related Work

3.1. On-Chip Power Sensors

Burtsher et al. [14] examined the power profiles of three different Nvidia GPUs (Tesla K20c, K20m
and K20x) when executing a n-body simulation benchmark using integrated sensors. The authors
find that accurate power profiling of an application running on GPU is not straightforward and
there are multiple anomalies when using the on-board sensors on K20 GPUs. They find inaccurate
power readings on K20c and K20m, which lag behind the expected profile based on a software
model, which they consider to be the ground truth. Furthermore, the authors observe that the power
sampling frequency on K20 GPUs varies greatly and the GPU sensor does not periodically sample
power readings.

Hackenberg et al. [20] studied the RAPL accuracy on Haswell generation processors by
running different micro-benchmarks. They compare the RAPL readings with total system (AC)
power consumption using power meters and find the RAPL readings in strong correlation with

Energies 2019, 12, 2204 6 of 42

AC measurements. Our work differs from that in Reference [20] in several ways: (a) The authors
compare the total power consumption by the system with AC power and power consumption by the
micro-benchmarks with RAPL and therefore use different reference domains. However, we compare
the dynamic energy consumption by applications with both tools and thus compare the measurements
with both tools using the same reference domain. (b) The authors run micro-benchmarks in different
threading configurations, whereas we build the energy profiles of scientific applications representing
real world workloads using different configurations (problem size, CPU threads, CPU cores) (c) The
authors run their micro-benchmarks on Haswell platform only whereas our experiment testbed is more
diverse and includes advance generations of Intel CPU micro-architecture. (d) They find a correlation
between the measurements with both tools (power meters and RAPL) on Haswell. However, they
could not confirm if RAPL can be calibrated owing to different reference domain. We further extend
the knowledge-base by showing that we can not calibrate the measurements with both tools because
of their qualitative differences and interlacing behaviour.

3.2. Software Based Energy Predictive Models

Software based energy predictive models emerged as a predominant approach to predict the
energy consumed by a given platform during the execution of an application. A vast majority of such
models is linear and uses performance monitoring counters (PMCs) to predict the energy consumption.

Bellosa et al. [21] propose a model employing predictor variables such as integer operations,
floating-point operations, memory requests due to cache misses, etc., which they believe to be strongly
correlated with energy consumption. Icsi et al. [22] employ access rates of the components determined
using performance monitoring counters (PMCs) to model component-level power consumption.
Li et al. [23] employ instructions per cycle (IPC) as predictor variable to model power consumption
of the operating system (OS) Lee et al. [24] propose regression models using performance events to
predict power. References [15,25] propose power models based on the utilization of metrics of CPU,
disk, network components and memory. Fan et al. [26] propose a linear model employing utilization
as the predictor variable. References [27,28] propose multiple linear regression models employing
PMCs and temperature readings as predictor variables to model the power consumption of a core.

Basmadjian et al. [29] model power consumption of a server as sum of power consumption of its
components, the processor (CPU), memory (RAM), fans and disk (HDD) Bircher et al. [30] present an
power predictive model based on PMCs that capture interdependence between subsystems such as
CPU, disk, GPU and so forth. Dargie et al. [31] model the power consumption of multicore processor
based on rigorous statistical analysis of CPU utilization of a workload. Lastovetsky et al. [32] present
an application-level energy model where the dynamic energy consumption of a multicore CPU is a
highly non-linear and non-convex function of workload size.

We now present some of the latest works where PMCs have been used as predictor variables
for modeling total energy consumption. Rotem et al. [6] present Running Average Power Limit RAPL,
a software power model for CPU based architectures released in Intel Sandybridge. This model
predicts the energy consumption of core and uncore components based on an a undisclosed set
of PMCs. Li et al. [33] present Multicore Power Area and Timing simulator (McPAT) to estimate
the power consumption for various components in a multiprocessor, which includes shared caches,
integrated memory controllers, in-order and out-of-order processor cores and networks-on-chip.
Haj-Yihia et al. [34] proposed a linear power predictive model for Intel Skylake based CPUs based on
selected PMCs that are highly positively correlated with power consumption. Mair et al. [35] presented
Manila which is a power model based on PMC space generated as densely populated points gathered
via a large number of synthetic applications.

Energy Predictive Models for Accelerators

We now present some notable energy predictive models for accelerators such as GPU, Xeon Phi
and FPGA. Hong et al. [36] present an energy model for an Nvidia GPU based on a similar PMC-based

Energies 2019, 12, 2204 7 of 42

power prediction approach of Reference [22]. Nagasaka et al. [37] propose PMC-based statistical power
consumption modeling technique for GPUs that run CUDA applications. Song et al. [38] present
power and energy prediction models based on machine learning algorithms such as back propagation
in artificial neural networks (ANNs) Few selected PMCs obtained by CUPTI profiling tool are the input
to the machine learning algorithms. Shao et al. [39] develop an instruction-level energy consumption
model for a Xeon Phi processor. Khatib et al. [40] propose a linear instruction-level model to predict
dynamic energy consumption for FPGA.

4. Experimental Setup for Comparing On-Chip Sensors and System-Level Physical
Measurements Using Power Meters

We employ three nodes for our comparative study: (a) HCLServer01 (Table 1) has an Intel
Haswell multicore CPU having 24 physical cores with 64 GB main memory and integrated with two
accelerators: one Nvidia K40c GPU and one Intel Xeon Phi 3120P, (b) HCLServer02 (Table 2) has an
Intel Skylake multicore CPU consisting of 22 cores and 96 GB main memory and integrated with one
Nvidia P100 GPU and (c) HCLServer03 (Table 3) has an Intel Skylake multicore CPU having 56 cores
with 187 GB main memory. These nodes are representative of computers used in cloud infrastructures,
supercomputers and heterogeneous computing clusters.

Each node has a power meter installed between its input power sockets and the wall A/C outlets.
HCLServer01 and HCLServer02 are connected with a Watts Up Pro power meter; HCLServer03 is
connected with a Yokogawa WT310 power meter. Watts Up Pro power meters are periodically calibrated
using the ANSI C12.20 revenue-grade power meter, Yokogawa WT310.

The maximum sampling speed of Watts Up Pro power meters is one sample every second.
The accuracy specified in the data-sheets is ±3%. The minimum measurable power is 0.5 watts.
The accuracy at 0.5 watts is ±0.3 watts. The accuracy of Yokogawa WT310 is 0.1% and the sampling
rate is 100 k samples per second.

We use four applications for this study: (a) OpenBLAS DGEMM, OpenBLAS library routine to
compute the matrix product of two dense matrices, (b) MKL DGEMM: Intel Math Kernel Library
(MKL) routine, which computes the product of two dense matrices, (c) FFTW 2D: two dimensional
FFT routine to compute the discrete Fourier transform of a complex signal and (d) MKL FFT 2D:
two dimensional FFT routine provided by Intel MKL to compute the discrete Fourier transform of a
complex signal. The DGEMM applications computes C = α× A× B + β× C, where A, B and C are
matrices of size M× N, N × N and M× N and α and β are constant floating-point numbers. The FFT
applications compute 2D-DFT of a complex signal matrix of size M × N. The Intel MKL version
on the three nodes is 2017.0.2. The FFTW version used is 3.3.7. We choose applications employing
matrix-matrix multiplication and fast Fourier transform routines since they are fundamental kernels
employed in scientific applications [41].

To obtain the energy consumption provided by RAPL, we use a well known package, Intel
PCM [42]. We ensure that the RAPL values output by this package are correct by comparing with
values given by other well known package, PAPI [43].

We use the HCLWattsUp interface [19] to obtain the power measurements from the WattsUp Pro
power meters. The interface and the methodology used to obtain a data point are explained in the
Appendix C.

Energies 2019, 12, 2204 8 of 42

Table 1. HCLServer1: Specifications of the Intel Haswell multicore CPU, Nvidia K40c and Intel Xeon
Phi 3120P.

Intel Haswell E5-2670V3

Launch Date Q3’14

No. of cores per socket 12

Socket(s) 2

CPU MHz 1200.402

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30,720 KB

Total main memory 64 GB DDR4

Memory bandwidth 68 GB/s

Nvidia K40c

Launch Date Q4’13

No. of processor cores 2880

Total board memory 12 GB GDDR5

L2 cache size 1536 KB

Memory bandwidth 288 GB/s

Intel Xeon Phi 3120P

Launch Date Q2’13

No. of processor cores 57

Total main memory 6 GB GDDR5

Memory bandwidth 240 GB/s

Table 2. HCLServer2: Specifications of the Intel Skylake multicore CPU and Nvidia P100 PCIe.

Intel Xeon Gold 6152

Launch Date Q3’17

Socket(s) 1

Cores per socket 22

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30,976 KB

Main memory 96 GB

Nvidia P100 PCIe

Launch Date Q2’16

No. of processor cores 3584

Total board memory 12 GB CoWoS HBM2

Memory bandwidth 549 GB/s

We follow a statistical methodology (Appendix D) to ensure reliability of our experimental
results. The methodology determines a sample mean (execution time or dynamic energy or PMC) by
executing the application repeatedly until the sample mean meets the statistical confidence criteria
(95% confidence interval, a precision of 0.025 (2.5%)) Student’s t-test is used to determine the sample
mean. The test assumes that the individual observations are independent and their population follows
the normal distribution. We use Pearson’s chi-squared test to ensure that the observations follow
normal distribution.

Energies 2019, 12, 2204 9 of 42

Table 3. HCLServer3: Specifications of the Intel Skylake multicore processor (CPU) consisting of two
sockets of 28 cores each.

Technical Specifications Intel Xeon Platinum 8180

Launch Date Q3’17

Socket(s) 2

Cores per socket 28

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 1024 KB, 39,424 KB

Main memory 187 GB

5. Methodology to Determine the Component-Level Energy Consumption Using HCLWattsUp

We provide here the details of how system-level physical measurements using HCLWattsUp can
be used to determine the energy consumption by a component (such as a CPU or a GPU) during an
application execution.

We define the group of components running a given application kernel as an abstract processor.
For example, consider a matrix multiplication application running on a multicore CPU. The abstract
processor for this application, which we call AbsCPU, comprises of the multicore CPU processor
consisting of a certain number of physical cores and DRAM. In this work, we use only such
configurations of the application which execute on AbsCPU and do not use any other system resources
such as solid state drives (SSDs), network interface cards (NIC) and so forth. Therefore, the change
in energy consumption of the system reported by HCLWattsUp reflects solely the contributions from
CPU and DRAM. We take several precautions in computing energy measurements to eliminate any
potential interference of the computing elements that are not part of the abstract processor AbsCPU.
To achieve this, we take following precautions:

1. We ensure the platform is reserved exclusively and fully dedicated to our experiments.
2. We monitor the disk consumption before and during the application run and ensure that there is

no I/O performed by the application using tools such as sar, iotop, and so forth.
3. We ensure that the problem size used in the execution of an application does not exceed the main

memory and that swapping (paging) does not occur.
4. We ensure that network is not used by the application by monitoring using tools such as sar,

atop, etc.
5. We set the application kernel’s CPU affinity mask using SCHED API’s system call

SCHED_SETAFFINITY() Consider for example mkl-DGEMM application kernel running on
only abstract processor A. To bind this application kernel, we set its CPU affinity mask to 12
physical CPU cores of Socket 1 and 12 physical CPU cores of Socket 2.

6. Fans are also a great contributor to energy consumption. On our platform fans are controlled in
two zones: (a) zone 0: CPU or System fans, (b) zone 1: Peripheral zone fans. There are 4 levels to
control the speed of fans:

• Standard: BMC control of both fan zones, with CPU zone based on CPU temp (target speed
50%) and Peripheral zone based on PCH temp (target speed 50%)

• Optimal: BMC control of the CPU zone (target speed 30%), with Peripheral zone fixed at
low speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed 50%), Peripheral zone fixed at 75%
• Full: all fans running at 100%

In all speed levels except the full, the speed is subject to be changed with temperature and
consequently their energy consumption also changes with the change of their speed. Higher

Energies 2019, 12, 2204 10 of 42

the temperature of CPU, for example, higher the fans speed of zone 0 and higher the energy
consumption to cool down. This energy consumption to cool the server down, therefore, is not
consistent and is dependent on the fans speed and consequently can affect the dynamic energy
consumption of the given application kernel.

Hence, to rule out the fans’ contribution in dynamic energy consumption, we set the fans at full
speed before launching the experiments. When set at full speed, the fans run consistently at a
fixed speed until we do so to another speed level. Hence, fans consume same amount of power
which is included in static power of the platform.

7. We monitor the temperature of the platform and speed of the fans (after setting it at full) with
help of Intelligent Platform Management Interface (IPMI) sensors, both with and without the
application run. We find no considerable difference in temperature and find the speed of fans the
same in both scenarios.

Thus, we ensure that the dynamic energy consumption obtained using HCLWattsUp, reflects the
contribution solely by the abstract processor executing the given application kernel.

6. Comparison of Measurements Using RAPL and HCLWattsUp

We first present a brief on RAPL before introducing our methodology to compare the
measurements of dynamic energy consumption by RAPL and HCLWattsUp.

RAPL (Running Average Power Limit) [6] provides a way to monitor and -dynamically-set the
power limits on processor and DRAM. So, by controlling the maximum average power, it matches
the expected power and cooling budget. RAPL exposes its energy counters through model-specific
registers (MSRs) It updates these counters once in every 1 ms. The energy is calculated as a multiple
of model specific energy units. For Sandy Bridge, the energy unit is 15.3 µJ, whereas it is 61 µJ for
Haswell and Skylake. It divides a platform into four domains, which are presented below:

1. PP0 (Core Devices): Power plane zero includes the energy consumption by all the CPU cores in
the socket(s).

2. PP1 (Uncore Devices): Power plane one includes the power consumption of integrated graphics
processing unit – which is not available on server platforms– uncore components.

3. DRAM: Refers to the energy consumption of the main memory.
4. Package: Refers to the energy consumption of entire socket including core and uncore:

Package = PP0 + PP1.

PP0 is removed in the the Haswell E5 generation [8]. For our experiments, we use Package
and DRAM domains to obtain the energy consumption by CPU and DRAM when executing a
given application.

6.1. Methodology

To compare the RAPL and HCLWattsUp energy measurements, we use the following workflows
of the experiments. The workflow to determine the dynamic energy consumption by the given
application using RAPL follows:

1. Using Intel PCM/PAPI, we obtain the base power of CPUs (core and un-core) and DRAM (when
the given application is not running).

2. Using HCLWattsUp API, we obtain the execution time of the given application.
3. Using Intel PCM/PAPI, we obtain the total energy consumption of the CPUs and DRAM, during

the execution of the given application.
4. Finally, we calculate the dynamic energy consumption (of CPUs and DRAM) by subtracting the

base energy from total energy consumed during the execution of the given application.

Energies 2019, 12, 2204 11 of 42

The workflow to determine the dynamic energy consumption using HCLWattsUp follows:

1. Using HCLWattsUp API, we obtain the base power of the server (when the given application is not
running).

2. Using HCLWattsUp API, we obtain the execution time of the application.
3. Using HCLWattsUp API, we obtain the total energy consumption of the server, during the

execution of the given application.
4. Finally, we calculate the dynamic energy consumption by subtracting the base power from total

energy consumed during the execution of the given application.

We make sure that the execution time of the application kernel is the same for dynamic energy
calculations by both tools. So, any difference between the energy readings of the tools comes solely
from their power readings.

We analyzed 51 energy profiles of different application configurations of aforementioned
applications, using RAPL and HCLWattsUp. Our configuration parameters are: (a) Problem size
(M× N) where M ≤ N, (b) Number of CPU threads or number of CPU cores.

The cost in terms of number of measurements to determine the dynamic energy consumption of
the application using sensors is same for both tools as we need three (Base power, Execution Time and
Total Energy) measurements to obtain a single data point of the application dynamic energy profile.

6.2. Experimental Results on HCLServer03

We design three sets of experiments to illustrate three different types of patterns.
In the first set of experiments, we explore the FFTW and MKL-FFT energy consumption by a

given workload size N = 32,768 and N = 43,328 as a function of logical threads (1 to 112) and CPU cores
(1 to 56) of CPU respectively. For next run of experiments, we study the FFTW energy consumption by
two teams of 28 cores each when distributing the workload sizes range from 0× N/2 to each team
with a step size of 512 for the first dimension M whereas the second dimension N is fixed. We run
this configuration for 18 different problem sizes N ranging from 20,480 to 21,568 with a step size of 64.
In our next run of experiments, we explore the FFTW energy consumption behavior when both the
teams of 28 cores has different workloads. To achieve this, we distribute the first dimension M of the
problem size 32,768 × 32,768 so that we assign the workload size ranges from 0× N to N/2× N to
the first team whereas the workload size of second team ranges from N/2 to N. Figure 2a,b illustrate
the results.

(a) MKL-FFT, N = 43, 328 (b) FFTW, N = 32, 768, Threadgroups = 7, Threads = 16

Figure 2. Dynamic energy profiles with Running Average Power Limit (RAPL) and HCLWattsUp on
HCLServer03, class A. RAPL calib. means that RAPL readings have been calibrated.

We find RAPL reports less dynamic energy consumption for all aforementioned application
configurations than HCLWattsUp. RAPL profile follows the same pattern as that of HCLWattsUp for
most of the data points. We can significantly reduce the average error between both the profiles by
calibrating the RAPL readings. For example, we can reduce this average error from 13.05% to 2.19% for

Energies 2019, 12, 2204 12 of 42

the dynamic energy profile of MKL FFT as a function of CPU cores for the workload size N = 43,328.
This calibration, nevertheless, is application dependent and is also different for different application
configurations.

In the second set of experiments, we study the dynamic energy profiles of different configurations
of OpenBLAS DGEMM. Each application configuration is executed using G threadgroups where
each group contains equal number of T threads. We study eight such configurations, (G,T) = {(2,56),
(4,28), (7,16), (8,14), (14,8), (16,7), (28,4), (56,2)}. We construct the dynamic energy profile for each
configuration as a function of problem size. The problem size N × N ranges from 10,240 × 10,240
to 26,112 × 26,112 with a constant step size of 512. Figure 3a,b show the results. Like the first set of
experiments, RAPL profiles lag behind the HCLWattsUp profiles. Unlike the first set of experiments
where we can reduce the error between both the profiles significantly by calibration, we can only
reduce half of the average error for most of the application configurations. This calibration, however,
is again not the same for all the application configurations.

(a) Threadgroups=28, Threads=4 (b) Threadgroups=28, Threads=2

Figure 3. Dynamic energy profiles by RAPL and HCLWattsUp on HCLServer03, class B. RAPL calib.
means that RAPL readings have been calibrated. (a) DGEMM, N = 10,240–25,600, (b) MKL-FFT,
N = 32,768–43,456.

In our third set of experiments, we study the dynamic energy behavior of FFTW as a function of
problem size N × N in our next set of experiments. We make three sets of application configurations
using three different problem ranges: (i) 35,480× 41,920 , (ii) 30,720 × 34,816 and (iii) 20,480 × 26,560,
all with a constant step size of 64. We group the 112 CPU threads into the teams considering following
factors {112, 56, 28, 16, 14, 8, 7}. In this way, we build dynamic energy profiles for 21 different
application configurations. Unlike the previous sets of experiments, we observe different behavior of
RAPL profiles. For most of the application configurations, RAPL over reports the energy consumption
than HCLWattsUp. Furthermore, RAPL exhibits different trend for dynamic energy consumption
than HCLWattsUp. Consider, for example, the dynamic energy profile with RAPL and HCLWattsUp
of application configuration: problem size range = 20,480 × 26,560, groups = 16, number of CPU
threads = 7. The average and maximum difference of RAPL with HCLWattsUp is 31% and 147%.
Figure 4 illustrates its dynamic energy profile. One can observe that for many data points, RAPL
reports an increase in dynamic energy consumption with respect to the previous data point in the
profile whereas HCLWattsUp reports a decrease and vice versa. We can not therefore use calibration to
reduce the average error between the profiles because of their interlacing behaviour.

Figures 3b and 4a,b show drastic variations in the dynamic energy profiles for OpenBLAS
DGEMM, MKL-FFT and FFTW. The variations are caused by the inherent complexities in modern
multicore CPU platforms such as resource contention for shared resources on-chip such as last
level cache (LLC) and interconnect. References [32,44,45] demonstrate by executing real-life
multi-threaded data-parallel applications on modern multicore CPUs that the functional relationships
between performance and workload size and between energy and workload size have complex
(non-linear) properties.

Energies 2019, 12, 2204 13 of 42

(a) Threadgroups=16, Threads=7 (b) Threadgroups=14, Threads=8
Figure 4. Dynamic energy profiles of FFTW (N = 20, 480− 26, 560) by RAPL and HCLWattsUp on
HCLServer03, class C.

(Appendix E Tables A1–A3) present the statistics of prediction error between RAPL and
HCLWattsUp on HCLServer03. We also present the error reduction between the dynamic energy
profiles with RAPL and HCLWattsUp after using calibration. We discuss the results of the experiments
on HCLServer01 and HCLServer02 in Appendix F. The behavior is the same as that observed for
HCLServer03.

6.3. Discussion

In summary, we use a broad set of application configurations to study their energy consumption
behavior and compare the results of RAPL with different power meters on three different Intel
architectures. We classify the applications into four broad categories with respect to RAPL:

• Class A: RAPL follows most of the energy consumption pattern of the power meter. We can
reduce more than 75% difference between RAPL and power meter readings after calibration.
Figures 2a,b and A3a are the examples representing this class.

• Class B: RAPL does not follow most of the energy consumption pattern of the power meter.
The difference between both profiles can be reduced to some extent using calibration. Figures 3a,b,
A2a,b and A3b represent this class.

• Class C: RAPL does not follow the energy consumption pattern of the power meter and therefore
can not be calibrated. Figures 4a,b and A4b are the examples representing this class.

Some other important findings are that the calibration is not fixed for a given architecture, is not
application independent and is specific to an application configuration.

7. Comparison of Measurements by GPU and Xeon Phi Sensors with HCLWattsUp

We present in this section a comparative study of energy consumption measurements by on-chip
sensors for Nvidia GPUs and Intel Xeon Phi processors and HCLWattsUp. We use two applications,
matrix multiplication (DGEMM) and 2D-FFT, for the study. To obtain the dynamic energy consumption
of application executing on a GPU, we follow the same methodology as explained in Section 5.

We run our experiments on two different Nvidia GPUs (K40c on HCLServer01, P100 PCIe on
HCLServer02) and one Intel Xeon Phi 3120P (on HCLServer01) The DGEMM application computes
the matrix product of two dense matrices A and B of sizes M× N and N × N where M <= N. We
use ZZGEMMOOC out-of-card package [46] to compute DGEMM on Nvidia GPU K40c and CUBLAS
DGEMM for Nvidia P100. The ZZGEMMOOC package reuse CUBLAS for in-card DGEMM calls.
We use Intel MKL FFT for Xeon Phis and CUFFT for Nvidia GPUs to compute 2D Discrete Fourier
Transform of a complex signal matrix of size M × N where M <= N. The Intel MKL and CUDA
versions on HCLServer01 is 7.5 and on HCLServer02 is 9.2.148.

Energies 2019, 12, 2204 14 of 42

We use Nvidia NVML [13] to acquire the power values from on-chip sensors on Nvidia GPUs
and Intel System Management Controller chip (SMC) [9] to obtain the power values from Intel Xeon
Phi that can be programmatically obtained using Intel manycore platform software stack (MPSS) [10].
The steps (methodology) taken to compare the measurements using GPU and Xeon Phi sensors and
HCLWattsUp are similar to those for RAPL (Section 6.1) and presented in Appendix G.

Briefly, HCLWattsUp API provides the dynamic energy consumption of an application using
both CPU and an accelerator (GPU or Xeon Phi) instead of the components involved in its execution.
Execution of an application using GPU/Xeon Phi involves the CPU host-core, DRAM and PCIe to copy
the data between CPU host-core and GPU/Intel Xeon Phi. On-chip power sensors (NVML and MPSS)
only provide the power consumption of GPU or Xeon Phi only. Therefore, to obtain the dynamic
energy profiles of applications, we use RAPL to determine the energy contribution of CPU and DRAM.
We ignore the energy contribution from data transfers using PCIe assuming that it is not significant.

7.1. Experimental Results Using GPU Sensors (NVML)

We execute DGEMM on HCLServer01 with workload sizes ranging from 12,032× 21,504 to 21,504
× 21,504 with a constant step size of 256. Figure 5a illustrates the dynamic energy profiles of DGEMM
using HCLWattsUp and sensors (RAPL and NVML) The energy readings from the sensors exhibit
a linear profile whereas HCLWattsUp does not. We find that sensors do not follow the application
behavior exhibited by HCLWattsUp for 67.58% of the data points. Consider, for example, the data
points (M×N): 20,480× 21,504, 19,200× 21,504 and 16,640× 21,504 where HCLWattsUp demonstrates
a decrease of 6.11%, 11.09% and 9.26%, whereas sensors exhibit an increase of 1.33%, 1.07% and 1.46%
respectively. We find the maximum and average error to be 35.32% and 10.62%. We can reduce
marginally the average and maximum error using calibration to 10.44% and 30.5% respectively but the
minimum error increases from 0.08% to 0.19%.

One can observe in Figure 5a that the combined dynamic energy profiles with RAPL and NVML
follow the same trend for 90.6% of the data points. This can mislead to assume that the difference of
sensors with HCLWattsUp comes from both RAPL and NVML together. But, we find that dynamic
energy profile with RAPL exhibits opposite behavior to NVML for 28.12% of those data points whereas
combined profile with RAPL and NVML exhibits different trends with HCLWattsUp. Consider for
example, the data points (M× N): 21,504 × 21,504, 19712 × 21,504, 18,176 × 21,504. RAPL suggests a
decrease of 1.81%, 1.93% and 1.56% respectively in comparison with previous data points in dynamic
energy profile whereas NVML suggest an increase of 1.25%, 1.34% and 1.48% respectively for these
data points. But, the combined profile follows the trend of NVML and we observe an overall increase
in combined dynamic energy profile. This is because NVML has the higher contribution in dynamic
energy consumption than RAPL and therefore drives the overall trend. Hence, the difference between
dynamic energy profiles with RAPL and NVML and HCLWattsUp is mainly due to NVML.

Figure 5b shows the dynamic energy profiles of 2D FFT on HCLServer01 with NVML and
HCLWattsUp. Measurements by NVML follow the same trend for 71.88% of the data points. Consider,
for example, the data points (M× N): 15,360 × 23,552, 16,000 × 23,552, 16,704 × 23,552 and 17,280
× 23,552 where HCLWattsUp exhibits a decrease of 22.08%, 33.78%, 21.66% and 29.14% but NVML
displays an increase of 9.24%, 2.86%, 4.04% and 81.77%. Similarly, HCLWattsUp shows an increase of
7.17%, 11.5%, 29.83% and 25.7% for the data points (M× N): 15744 × 23,552, 15,936 × 23,552, 16,576 ×
23,552 and 17,088 × 23,552. However, NVML exhibit a decrease of 1.48%, 37.47%, 10.91% and 16.27%
for them.

We find an average and maximum error of NVML with HCLWattsUp is 12.45% and 57.77%
respectively. We can reduce slightly the average error using calibration to 10.87%. But it increases the
maximum error up to 94.55%.

Energies 2019, 12, 2204 15 of 42

(a) DGEMM (b) CUDA FFT
Figure 5. Dynamic energy consumption profiles of DGEMM and CUDA FFT on Nvidia K40c GPU on
HCLServer01. RAPL+GPUSensors calib. means that RAPL+GPUSensors values have been calibrated.

We find that RAPL and NVML both exhibit the same trend for FFT. Therefore, the difference with
HCLWattsUp come from both sensors collectively. Table 4 illustrates the errors using on-chip sensors
with and without using calibration.

Table 4. Percentage error of dynamic energy consumption by Nvidia K40c GPU with and without
calibration and HCLWattsUp on HCLServer01.

Without Calibration

application Min Max Avg

DGEMM 0.076% 35.32% 10.62%

FFT 0.52% 57.77% 12.45%

With Calibration

application Min Max Avg

DGEMM 0.19% 30.50% 10.43%

FFT 0.18% 94.55% 10.87%

We compare and discuss the dynamic energy profiles of CUDA DGEMM and CUDA FFT with
HCLWattsUp and on-chip sensors on Nvidia P100 GPU (HCLServer02) in Appendix H.

7.2. Experimental Results Using Intel Xeon Phi Sensors (Intel MPSS)

We construct the dynamic energy profile of DGEMM on Intel Xeon Phi using the Intel MKL
DGEMM routine. The profile is a discrete function of problem sizes ranging from 7936 × 13,824 to
13,824 × 13,824 with a constant step size of 256. Figure 6a illustrates the dynamic energy profiles
with sensors (RAPL and MPSS) and HCLWattsUp. We find that sensors follow the trend exhibited by
HCLWattsUp for 73.91% of the data points. However, sensors reports higher dynamic energy than
HCLWattsUp. The average and maximum error of sensors with HCLWattsUp is 64.5% and 93.06%.
But we can reduce this error significantly using calibration to 2.75% and 93.06%.

Energies 2019, 12, 2204 16 of 42

(a) MKL DGEMM (b) MKL FFT
Figure 6. Dynamic energy consumption profiles of Intel MKL DGEMM and Intel MKL FFT on Xeon
Phi co-processor. RAPL+PHISensors calib. means that RAPL+PHISensors values have been calibrated.

MPSS shows trend opposite to HCLWattsUp for 26.09% of the data points. Consider, for example,
the data point 9216× 13, 824 where MPSS exhibits a decrease of 1.24% whereas HCLWattsUp shows
an increase of 4.88%. Similarly, MPSS suggests an increase of 1.1% for the data point 9728 × 13,824
whereas HCLWattsUp suggest a decrease of 3.2%.

RAPL do not follow the trend of MPSS for 53.85% of the data points. We do not, however, find
this effect reflected in the profile of the combined sensors. Consider, for example, the data point 12,032
× 13,824 where RAPL suggests a decrease of 3.98% in dynamic energy consumption with respect to
previous data point in the profile whereas MPSS suggests an increase of 6.1% and we find an increase
of 1.86% in the combined profile. This is because of the fact that MPSS has higher contribution in
combined dynamic energy profile and thus drives the overall trend. Hence, the difference between
dynamic energy profiles with MPSS and HCLWattsUp comes mainly from MPSS.

We use Intel MKL FFT to compute the discrete Fourier transform of 2D signal of complex data
type and build the dynamic energy profiles with HCLWattsUp and sensors (RAPL and MPSS) as a
function of problem size (M × N) ranges from 15,104 × 23,552 to 17,152 × 23,552 with a constant
step size of 64. Figure 6b illustrates the dynamic energy profiles with sensors and HCLWattsUp.
We find that sensors follow the trend of HCLWattsUp for 92.59% of the data points. However, sensors
behave oppositely with HCLWattsUp for the data points such as 15,616 × 23,552 where they display
an increase of 30.95% with respect to previous data point whereas HCLWattsUp exhibits a decrease
of 7.55%. Similarly, sensors show a decrease of 4.75% for data point 16,576 × 23,552 with respect to
previous data point whereas HCLWattsUp exhibits an increase of 6.98%.

We find RAPL and MPSS exhibit the same trend of dynamic energy consumption. Hence, the
difference between the dynamic energy profiles with combined sensors and HCLWattsUp comes from
both sensors collectively. However, given the fact that MPSS has higher contribution in comparison
with RAPL, therefore, MPSS drives the trend and influences the overall dynamic energy consumption
reported by combined sensors. We also observe that RAPL and MPSS consume almost same amount
of dynamic energy for running FFT. It shows that data transfer between the CPU host core, DRAM
and Xeon Phi consumes almost as much dynamic energy as it takes to compute the given FFT plan.

MPSS overall reports less dynamic energy consumption than HCLWattsUp. The average and
maximum error are 40.68% and 55.78% respectively. We can reduce them significantly to 9.58% and
32.3% by using calibration. Table 5 illustrates the statistics for dynamic energy profiles of DGEMM
and FFT on Xeon Phi with and without using calibration.

Energies 2019, 12, 2204 17 of 42

Table 5. Percentage error of dynamic energy consumption with and without calibration and
HCLWattsUp on Intel Xeon Phi.

Without Calibration

Application Min Max Avg

DGEMM 45.1% 93.06% 64.5%

FFT 22.58% 55.78% 40.68%

With Calibration

Application Min Max Avg

DGEMM 0.06% 9.54% 2.75%

FFT 0.06% 32.3% 9.58%

7.3. Discussion

We observe that the average error between measurements using sensors and HCLWattsUp can be
reduced using calibration, which is, nevertheless, specific for an application configuration. Another
important finding is that CPU host-core and DRAM consume equal or more dynamic energy than the
accelerator for FFT applications (FFTW 2D and MKL FFT 2D) We find that data transfers (between
CPU host-core and an accelerator) consume same amount of energy as that for computations on the
accelerator for older generations of Nvidia Tesla GPUs such as K40c and Intel Xeon Phi such as 3120P.
However, for newer generations of Nvidia Tesla GPUs such as P100, the data transfers consume more
dynamic energy than computations. It suggests that optimizing the data transfers for dynamic energy
consumption is important.

8. Comparison of Dynamic Energy Consumption Using PMC-Based Energy Predictive Models
and HCLWattsUp

We compare in this section the prediction accuracy of linear energy predictive models employing
performance monitoring counters (PMCs) as predictor variables with HCLWattsUp and Intel RAPL.
Popular tools to read the PMCs on a given platform include Likwid [47], Linux Perf [48], PAPI [43]
and Intel PCM [42]. Extrae and Paraver tools [49,50] can also be used to gather the PMCs. These tools
are built on top of PAPI.

There are three main restrictions that make difficult the process of employing PMCs as a
predictor variable in models. First, there is a large number of PMCs to consider. In a typical Intel
Haswell architecture (see Table 1), there are 167 PMCs offered by Likwid tool. Second, tremendous
programming effort and time are required to automate and collect all the PMCs. This is because of the
limited number of hardware registers available on platforms for storing the PMCs. In a single run of
an application only 3-4 PMCs can be collected. Third, a model purely based on PMCs lacks portability.
The reason is that all the PMCs available on a CPU platform may not necessarily be available on a
GPU platform. This makes the process of collecting the suitable subset of PMCs critical. The main
techniques used to select PMCs for modeling can be divided into following four categories:

• Techniques that consider all the PMCs offered for a computing platform with the goal to capture
all possible contributors to energy consumption. To the best of our knowledge, we found no
research works that adopt this approach because of the models’ complexities.

• Techniques using a statistical methodology such as correlation, principal component analysis
(PCA) and so forth. to choose a suitable subset [35,51].

• Techniques that use expert advice or intuition to pick a subset of PMCs and that, in experts’
opinion, are dominant contributors to energy consumption [34].

• Techniques that select parameters with physical significance based on fundamental laws such as
the energy conservation of computing [18]. Shahid et al. [18] introduced a new property of PMCs

Energies 2019, 12, 2204 18 of 42

that is based on an experimental observation that dynamic energy consumption of serial execution
of two applications is equal to the sum of the dynamic energy consumption of those applications
when they are run separately. The property is based on a simple and intuitive rule that if the PMC
is intended for a linear predictive model, the value of it for a serial execution of two applications
should be equal to the sum of its values obtained for the individual execution of each application.
The PMC is branded as non-additive on a platform if there exists an application for which the
calculated value differs significantly from the value observed for the application execution on the
platform. The use of non-additive PMCs in a model impairs its prediction accuracy.

To facilitate clarity of exposition, the mathematical form of the linear regression models can be
stated as follows: ∀a = (ak)

n
k=1, ak ∈ R,

fE(a) = β0 + β× a =
n

∑
k=1

βk × ak (2)

where β0 is the intercept and β = {β1, ..., βn} is the vector of coefficients (or the regression coefficients)
In real life, there usually is stochastic noise (measurement errors) Therefore, the measured energy is
typically expressed as

f̃E(a) = fE(a) + ε (3)

where the error term or noise ε is a Gaussian random variable with expectation zero and variance σ2,
written ε ∼ N (0, σ2).

8.1. Experimental Setup

The experimental setup is composed of two multicore CPU platforms (specifications given in
Tables 1 and 2) Appendix J Table A6 shows the list of applications employed in our experimental
suite. The application suite contains highly optimized memory bound and compute bound scientific
routines such as DGEMM and FFT from Intel Math Kernel Library (MKL), benchmarks from NASA
Application Suite (NAS), Intel HPCG, stress, naive matrix-matrix multiplication and naive matrix-vector
multiplication. The reason to select a diverse set of applications is to avoid bias in our models and to
have a range of PMCs for different executions of diverse applications.

For a given application, we measure three quantities during its execution on our platforms. First is
the dynamic energy consumption provided by HCLWattsUp API [19] using the methodology explain
in Section 5. Second, we measure the execution time. Lastly, we collect all the PMCs available on our
platforms using Likwid tool [47].

Likwid can be used using a simple command-line invocation as given below where the EVENTS
represents PMCs (4 at maximum in one invocation) of the given application, APP:

likwid-perfctr -f -C S0:0-11@S1:12-23 -g EVENTS APP

The application (APP) during its execution is pinned to physical cores (0–11, 12–23) of our
platform. Likwid use likwid-pin to bind the application to the cores on any platform and lack the facility
to bind an application to memory. Therefore, we have used numactl, a command-line linux tool to pin
our applications to available memory blocks.

For Intel Haswell and Intel Skylake platform, Likwid offers 164 PMCs and 385 PMCs, respectively.
We eliminate PMCs with counts less than or equal to 10 since we found them to have no physical
significance for modeling the dynamic energy consumption and they are non-reproducible over several
runs of the same application on our platforms.

The reduced set contains 151 PMCs for Intel Haswell and 323 for Intel Skylake. As in a single
application run we can collect only 4 PMCs, it takes a huge amount of time to collect all of them.
Moreover, some PMCs can only be collected individually or in sets of two or three for an application
run. Therefore, we observe that each application must be executed about 53 and 99 times on Intel
Haswell and Intel Skylake platform, respectively, to collect all the PMCs.

Energies 2019, 12, 2204 19 of 42

We now divide our experiments in to following two classes, Class A and Class B, as follows:

1. Class A: In this class, we study the accuracy of platform-level linear regression models using a
diverse set of applications.

2. Class B: In this class, we study the accuracy of application-specific linear regression models.

8.2. Accuracy of Platform-Level Linear PMC-Based Models

We select Intel Haswell multicore CPU platform (Table 1) for this class of experiments. We select
the PMCs commonly used by these models and they are listed below:

• IDQ_MITE_UOPS (X1)
• IDQ_MS_UOPS (X2)
• ICACHE_64B_IFTAG_MISS (X3)
• ARITH_DIVIDER_COUNT (X4)
• L2_RQSTS_MISS (X5)
• FP_ARITH_INST_RETIRED_DOUBLE (X6)

These PMCs count floating-point and memory instructions and are considered to have a very
high positive correlation with energy consumption. Table 6 shows the correlation of the PMCs with
the dynamic energy consumption.

Table 6. Correlation of performance monitoring computers (PMCs) with dynamic energy consumption
(ED). Correlation matrix showing relationship of dynamic energy with PMCs. 100% correlation is
denoted by 1.

ED X1 X2 X3 X4 X5 X6

ED 1 0.53 0.50 0.42 0.58 0.99 0.99
X1 0.53 1 0.41 0.25 0.39 0.45 0.44
X2 0.50 0.41 1 0.19 0.99 0.48 0.48
X3 0.42 0.25 0.19 1 0.21 0.41 0.40
X4 0.58 0.39 0.99 0.21 1 0.57 0.56
X5 0.99 0.45 0.48 0.41 0.57 1 0.99
X6 0.99 0.44 0.48 0.40 0.56 0.99 1

We used all the applications listed in Table A6 with different configurations of problem sizes
to build a data-set of 277 points. Each point represents the data for one application configuration
containing its dynamic energy consumption and the PMC counts. We split this data-set in two subsets,
one for training (with 227 points) the models and the other to test (50 points) the accuracy of models.
We used this division based on best practices and experts’ opinion in this domain.

Using the dataset, we build 6 linear models {A, B, C, D, E, F} using regression analysis. Model A
employs all the selected PMCs as predictor variables. Model B is based on five best PMCs with the
least energy correlated PMC (X3) removed. Model C uses four PMCs with two least correlated PMCs
(X2, X3) removed and so on until Model F, which contains just one the most correlated PMC (X6)

The models are summarized in the Table 7. We also show the minimum, average and maximum
prediction errors of RAPL.

We will now focus on the minimum, average and maximum prediction errors of these models.
They are (2.7%, 32%, 99.9%) respectively for Model A. Model B based five most correlated PMCs has
prediction errors of (0.53%, 21.80%, 72.9%) respectively. The average prediction error significantly
dropped from 32% to 21%. The prediction errors for Model C are (0.75%, 29.81%, 77.2%) respectively.
The average prediction error in this case is in between that of Model A and Model C. Model F
with just one most correlated PMC (X6) has least average prediction error of 14%. The prediction
errors of RAPL are (4.1%, 30.6%, 58.9%) From these results, we conclude that selecting PMCs using

Energies 2019, 12, 2204 20 of 42

correlation with energy does not provide any consistent improvements in the accuracy of linear energy
predictive models.

Table 7. Linear predictive models (A-F) with intercepts and RAPL with their minimum, average and
maximum prediction errors.

Model PMCs Intercept Followed by Coefficients
Percentage
Prediction Errors
(min, avg, max)

A X1, X2, X3, X4, X5, X6 10, 3× 10−9, 1.9× 10−8, 3.3× 10−7, −1× 10−6, 6× 10−8, −9.3× 10−11 (2.7, 32, 99.9)
B X1, X2, X4, X5, X6 3× 10−9, 1.9× 10−8, −1× 10−6, 6.2× 10−8, −1.2× 10−10, 230 (0.53, 21.80, 72.9)
C X1, X4, X5, X6 3.7× 10−9, 7.9× 10−9, 7.5× 10−8, −5.1× 10−10, 270 (0.75, 29.81, 77.2)
D X4, X5, X6 6.7× 10−8, 9.4× 10−8, −9.7× 10−10, 490 (0.21, 23.19, 80.42)
E X5, X6 9.7× 10−8, −1.02× 10−9, 520 (2, 21.03, 83.40)
F X6 1.5× 10−9, 740 (2.5, 14.39, 34.64)
RAPL (4.1, 30.6, 58.9)

We also identified a few more causes of inaccuracy in linear regression based models by looking
at the coefficients of PMCs employed in them. Salient observations of these models are outlined below:

• All the models have a significant intercept (β0) Therefore, the model would give predictions for
dynamic energy based on the intercept values even for the case when there is no application
executing on the platform, which is erroneous. We consider this to be a serious drawback of
existing linear energy predictive models (given in Section 3), which do not understand the physical
significance of the parameters with dynamic energy consumption.

• Model A has negative coefficients (β = {β1, ..., β6}) for PMCs, X4 and X6. Similarly, Model B
have negative coefficients for PMC X4 and X6. and in Models C-E, X6 has negative coefficient.
The negative coefficients in these models can give rise to negative energy consumption predictions
for specific applications where the counts for X4 and X6 are relatively higher than the other PMCs.

8.3. Accuracy of Application-Specific PMC-Based Models

In this section, we study the accuracy of application specific energy predictive models built
using linear regression. We choose a single-socket Intel Skylake server (Table 2) for the experiments.
We choose two highly optimized scientific kernels: Fast Fourier Transform (FFT) and Dense
Matrix-Multiplication application (DGEMM), from Intel Math Kernel Library (MKL).

We select six PMCs (Y1-Y6) listed in the Table 8, which have been employed as predictor variables
in energy predictive models given in literature (Section 3).

Table 8. Selected PMCs for Class B experiments along with their energy correlation for DGEMM and
FFT. 0 to 1 represents positive correlation of 0% to 100%.

Selected PMCs Corr DGEMM Corr FFT

Y1 FP_ARITH_INST_RETIRED_DOUBLE 0.99 0.98

Y2 MEM_INST_RETIRED_ALL_STORES 0.99 0.99

Y3 MEM_INST_RETIRED_ALL_LOADS 0.98 0.55

Y4 MEM_LOAD_RETIRED_L3_MISS 0.60 0.99

Y5 MEM_LOAD_RETIRED_L1_HIT 0.98 0.34

Y6 ICACHE_64B_IFTAG_MISS 0.99 0.77

We build a dataset containing 362 and 330 points representing DGEMM and FFT for a range of
problem sizes from 6400× 6400 to 29,504 × 29,504 and 22,400 × 22,400 to 41,536 × 41,536, respectively,

Energies 2019, 12, 2204 21 of 42

with a constant step sizes of 64. We split the dataset into training and test datasets. Training dataset for
DGEMM and FFT contains 271 and 255 points used to train the energy predictive models. Test dataset
contains 91 and 75 points for both applications respectively.

Using the datasets, we build two linear models for both applications. These are Model MM and
Model FT. Figure 7a,b shows the percentage deviations of dynamic energy consumption of PMC models
and RAPL from HCLWattsUp for DGEMM and FFT, respectively.

(a) Model MM (b) Model FT

Figure 7. Percentage deviations of predictive models and RAPL from HCLWattsUp. The dotted lines
represent the averages.

Comparing with HCLWattsUp, the minimum, average and maximum error for DGEMM using
Model MM and RAPL are (0, 26, 218) and (0.4, 35, 161), respectively. In case of FFT, the minimum,
average and maximum error using Model FT and RAPL is (0.8, 27, 147) and (0.3, 31, 155) respectively.
We observe that both the models perform better in terms of average prediction accuracy than RAPL.

9. Energy Losses From Employing an Inaccurate Measurement Tool

In this section, we demonstrate that using inaccurate energy measuring tools in energy
optimization methods may lead to significant energy losses.

We study optimization of a parallel matrix-matrix multiplication application for dynamic energy
using two measurement tools, RAPL and system-level physical measurements using HCLWattsUp
which we believe are accurate.

We run a parallel application DGEMM which uses IntelMKL routine to compute the dot product
of two dense matrices A and B of sizes N × N on two Intel multi-core processors, HCLServer01 and
HCLServer02. We partition the matrix A in both aforementioned processors into A1 and A2. So that
the product of matrices B and A1 of size M × N is computed by HCLServer01 and HCLServer02
computes the product of matrices B and A2 of size K × N. There is no communication involve in
these experiments.

The decomposition of the matrix A is computed using a model-based data partitioning
algorithm. The inputs to the algorithm are the number of rows of the matrix A, N and the dynamic
energy consumption functions of the processors, {E1, E2}. The output is the partitioning of the
rows, (M, K). The discrete dynamic energy consumption function of processor Pi is given by
Ei = {ei(x1, y1), ..., ei(xm, ym)} where ei(x, y) represents the dynamic energy consumption during the
matrix multiplication of two matrices of sizes x× y and y× y by the processor i. The dimension y
ranges from 14, 336 to 16, 384 in steps of 512. For HCLserver1, the dimension x ranges from 512 to
y/2 in increments of 512. For HCLserver2, the dimension x ranges from y− 512 to y/2 in decrements
of 512.

Energies 2019, 12, 2204 22 of 42

Figure 8a–d illustrate the dynamic energy profiles for workload sizes (N):{14,336, 14,848, 15,360,
16,384} using RAPL and HCLWattsUp, respectively. We follow the same strict methodology (Section 5)
to ensure the reliability of our experiments.

(a) N = 14,336 (b) N = 14,848

(c) N = 15,360 (d) N = 16,384

Figure 8. Dynamic energy consumption profiles of DGEMM on HCLServer01 and HCLServer02.

For each workload configuration of N:{14,336, 14,848, 15,360, 16,384}, RAPL reports more
dynamic energy consumption than HCLWattsUp. The average errors for the problem sizes are
{65%, 58%, 56%, 56%}. Table 9 provides the error of RAPL against HCLWattsUp.

Table 9. Prediction errors of RAPL against HCLWattsUp for dynamic energy consumption by DGEMM.

Problem Size (N) Min Max Avg

14,336 17% 172% 65%

14,848 12% 153% 58%

15,360 13% 240% 56%

16,384 2% 300% 56%

The main steps of the data partitioning algorithm are as follows:

1. Plane intersection of dynamic energy functions: Dynamic energy consumption functions
{E1, E2} are cut by the plane y = N producing two curves that represent the dynamic energy
consumption functions against x given y is equal to N.

Energies 2019, 12, 2204 23 of 42

2. Determine M and K:

(M, K) =M∈(512,N/2),K∈(N−512,N/2),M+K=N (e1(M, N) + e2(K, N)) (4)

The data partitioning algorithm takes the dynamic energy functional model as an input and finds
the optimal workload configuration which optimizes the total dynamic energy consumption for the
given application using load imbalance technique. We determine the workload distribution for each
workload size using the dynamic energy profiles with RAPL and HCLWattsUp as an input to the data
partitioning algorithm. Using this workload distribution, we run the application in parallel on both
servers and determine its dynamic energy consumption with RAPL and HCLWattsUp separately.
Let (erapl represent the total dynamic energy consumption by the given workload distribution
on both servers with RAPL and ehclwattsup) represent the total dynamic energy consumption by
the same workload distribution on both servers using HCLWattsUp. Then, we can calculate the
percentage loss of total dynamic energy consumption with RAPL compared with HCLWattsUp as
(erapl − ehclwattsup)/ehclwattsup × 100.

Table 10 illustrates the total dynamic energy losses by using RAPL in comparison with
HCLWattsUp, which are {54, 37, 31, 84}. After calibrating RAPL with HCLWattsUp on both platforms,
we can reduce the losses to {16, 8, 12, 40}.

Table 10. Dynamic energy loss with RAPL in comparison with HCLWattsUp.

Problem Size (N) Energy Loss without Calibration Energy Loss after Calibration

14,336 54 16

14,848 37 8

15,360 31 12

16,384 84 40

10. Current Picture, Recommendations and Future Directions

We will cover the lessons learned and our recommendations for the use of on-chip sensors and
energy predictive models before expressing some future directions.

Based on our study, we can not recommend use of state-of-the-art on-chip sensors (RAPL for
multicore CPUs, NVML for GPUs, MPSS for Xeon Phis) The fundamental issue with this measurement
approach is the lack of information about how a power reading for a component is determined during
the execution of an application utilizing the component. While the accuracy of this information is
reported in the case of NVML, experimental results demonstrate that practical accuracy is worse.
Moreover, the dynamic energy profile patterns of the on-chip sensors differ significantly from the
patterns obtained using the ground truth, which suggests that the measurements using on-chip sensors
do not capture the holistic picture of the dynamic energy consumption during an application execution.
At the same time, we observed that the energy measurements reported by the on-chip sensors are
deterministic and reproducible and, therefore can be used as parameters in energy predictive models.

Energy predictive models based on PMCs are plagued by poor accuracy [15–18]. The sources
of this inaccuracy are the following: (a) Model parameters in most cases are not deterministic and
reproducible and (b) Model parameters are selected chiefly based on correlation with energy and not
their physical significance originating from fundamental physical laws such as conservation of energy
of computing.

We will now state our recommendations and possible future directions. Since system-level
physical measurements based on power meters are accurate and the ground truth, we recommend
using this approach as the fundamental building block for the fine-grained device-level decomposition
of the energy consumption during the parallel execution of an application executing on several
independent computing devices in a computer.

Energies 2019, 12, 2204 24 of 42

We envisage hardware vendors maturing their on-chip sensor technology to an extent where
energy optimization programmers will be provided necessary information of how a power
measurement is determined for a component, the frequency or sampling rate of the measurements,
its reported accuracy and finally how to programmatically obtain this measurement with sufficient
accuracy and low overhead.

Linear energy predictive models can be employed in the optimization of applications for dynamic
energy provided they meet the following criteria: (a) Model parameters employed in the models must
be deterministic and reproducible, (b) Model parameters are selected based on physical significance
originating from fundamental physical laws such as conservation of energy of computing. Both the
criteria are contained in the additivity test proposed in Reference [18]. Use of parameters with high
additivity improves the prediction accuracy of the model. Additivity test can also be employed to
select parameters for machine learning (or black box) methods such as neural networks, random
forests, etc., provided the methods use linear functional building blocks internally. While there is
experimental evidence demonstrating good accuracy for these types of models, a sound theoretical
analysis is lacking. At this point, we do not recommend the use of non-linear energy predictive models
since they lack serious theoretical and experimental analysis. It will be one of our future research
directions.

We believe that high-level model parameters designed by combining PMCs (using functions
based on physical significance with dynamic energy) may be deterministic and reproducible instead of
individual PMCs, which are raw counters. PMCs traditionally have been developed to aid low-level
performance analysis and tuning but have been widely adopted for energy predictive modeling. We
would call the high-level model parameters, energy monitoring counts (EMCs), that are discovered
from insights based on fundamental physical laws such as conservation of energy of computing and
that are ideal for employment as predictor variables in energy predictive models.

11. Conclusions

In this work, we present a comprehensive study comparing the accuracy of state-of-the-art
on-chip power sensors and energy predictive models against system-level physical measurements
using external power meters, which we consider to be the ground truth. The measurements provided
by on-chip sensors are obtained programmatically using RAPL for Intel multicore CPUs, NVML for
Nvidia GPUs and Intel System Management Controller chip (SMC) for Intel Xeon Phis. To compare the
approaches reliably, we presented a methodology to determine the component-level dynamic energy
consumption of an application using system-level physical measurements using power meters, which
are obtained using HCLWattsUp API.

For the study comparing the accuracy of on-chip power sensors with the ground truth, we
employ 61 different application configurations of two scientific applications, dense matrix-matrix
multiplication and 2D fast Fourier transform, executed on one Intel Haswell and two Intel Skylake
multicore CPUs, two Nvidia Graphical Processing Units (GPUs) (Tesla K40c and Tesla P100 PCIe)
and one Intel Xeon Phi accelerator. We show that the average error between the dynamic energy
profiles obtained using on-chip power sensors and the ground truth ranges from 8% and 73% and the
maximum reaches 300%.

For 2D-FFT applications executing on accelerators (GPUs or Intel Xeon Phis), we find that RAPL
reports higher dynamic energy than the on-chip power sensors in the accelerators. It should be
noted that RAPL reports energy consumption for only CPU and DRAM domains. It shows that the
data transfers (between CPU host-core and the accelerator) consume more dynamic energy than the
computations on the accelerator. This suggests that we can reduce the dynamic energy consumption
by optimizing the dynamic energy of data transfer operations. Furthermore, we found that for 2D FFT,
Intel MPSS and NVML provide more accurate dynamic energy consumption and exhibit similar trend
as that of HCLWattsUp. For DGEMM, however, we find that RAPL measurements are significantly

Energies 2019, 12, 2204 25 of 42

less than on-chip sensor values of the accelerators, which suggests that computations are the main
contributor to the total dynamic energy consumption.

We show that, owing to the nature of the deviations of the energy measurements provided by
on-chip sensors from the ground truth, calibration can not improve the accuracy of the on-chip sensors
to an extent that can allow them to be used in optimization of applications for dynamic energy.

For the study comparing the prediction accuracy of energy predictive models with the ground
truth, we use an experimental platform containing a testsuite of seventeen benchmarks executed on an
Intel Haswell multicore CPU and an Intel Skylake multicore CPU. The average error between energy
predictive models employing performance monitoring counters (PMCs) as predictor variables and
the ground truth ranges from 14% to 32% and the maximum reaches 100%. We highlighted one of the
causes of the inaccuracy in PMC based models, which is that they do not take into account the physical
significance of the parameters based on fundamental law of conservation of energy of computing. Our
experimental results illustrated that methods solely based on correlation with energy to select PMCs
are not effective in improving the average prediction accuracy.

We demonstrated through a parallel matrix-matrix multiplication on two Intel multicore CPU
servers that using inaccurate energy measurements provided by on-chip sensors for dynamic energy
optimization can result in significant energy losses up to 84%.

Author Contributions: conceptualization, M.F., A.S., R.R.M., and A.L.; methodology, M.F., A.S., R.R.M.,
and A.L.; software, M.F., A.S., and R.R.M.; validation, M.F., and A.S.; formal analysis, M.F., A.S., R.R.M.,
and A.L.; investigation, M.F., A.S., and R.R.M.; resources, M.F., A.S., and R.R.M.; data curation, M.F., and
A.S.; writing—original draft preparation, M.F., A.S., and R.R.M.; writing—review and editing, R.R.M., and
A.L.; visualization, M.F., A.S., R.R.M., and A.L.; supervision, R.R.M.; project administration, A.L.; funding
acquisition, A.L.

Funding: This publication has emanated from research conducted with the financial support of Science Foundation
Ireland (SFI) under Grant Number 14/IA/2474.

Acknowledgments: We thank Roman Wyrzykowski and Lukasz Szustak for allowing us to use their Intel Skylake
server, HCLServer03.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Three Popular Approaches to Measure the Dynamic Energy Consumption

The first approach using the external power meters to obtain system-level power measurements
is considered to be accurate [5]. It, however, lacks the ability to provide fine-grained component-level
decomposition of the energy consumption of an application. This is a serious drawback. Consider,
for example, a computer consisting of a multicore CPU and an accelerator (GPU or Xeon Phi),
which is representative of nodes in modern supercomputers. While it is easy to determine the total
energy consumption of a hybrid application run that utilizes both the processing elements (CPU and
accelerator) using the first approach, it is difficult to determine their individual contributions. This
decomposition is essential to energy models, which are key inputs to data partitioning algorithms that
are fundamental building blocks for optimization of the application for energy. Without the ability to
determine accurate decomposition of the total energy consumption, one has to employ an exhaustive
approach (involving huge computational complexity) to determine the optimal data partitioning that
optimizes the application for energy.

Instrumentation systems such as PowerMon [52], PowerPack [53] and PowerInsight [54])
are custom-designed to provide fine-grained component-level energy consumption of the
System-Under-Test (SUT) Apart from issues related to temporal resolution (sampling rate) and
topological granularity (for example, whether it can measure the energy consumption by the cores
individually or it reports the aggregated energy consumption by all the cores at socket level), the
systems suffer from an important disadvantage, which is to manually instrument the hardware that is
a highly specialized skill for computer scientists.

The second approach is based on on-chip power sensors now provided in mainstream processors
such as Intel and AMD Multicore CPUs, Nvidia GPUs and Intel Xeon Phis. Intel CPUs offer Running

Energies 2019, 12, 2204 26 of 42

Average Power Limit (RAPL) [6] to monitor power and control frequency (and voltage) RAPL is
based on a software model using performance monitoring counters (PMCs) as predictor variables to
measure energy consumption for CPUs and DRAM for processor generations preceding Haswell such
as Sandybridge and Ivybridge E5 [7]. For latest generation processors such as Haswell and Skylake,
however, RAPL uses separate voltage regulators (VR IMON) for both CPU and DRAM. VR IMON
is an analog circuit within voltage regulator (VR), which keeps track of an estimate of the current. It,
however, adds some latency because the measured current-sense signal has a delay from the actual
current signal to CPU. This latency may affect the accuracy of the readings. The CPU samples this
reading periodically (100 µs to 1 ms) for calculating the power [8]. The accuracy of VR IMON for
different input current ranges is not known. According to Reference [8], DRAM and CPU IMON report
higher errors when the system is idle and DRAM VR inaccuracy can be large if the system is allocated
memory capacity much lower than its capability. Hackenberg et al. [12] report systematic errors in
RAPL energy counters and find that it is inclined towards certain types of workload and can give
poor power predictions for others. However, in another study later [20], they demonstrate that RAPL
improves the accuracy of energy measurements for Haswell generation processors due to employment
of VR IMON for power measurement [8].

Intel Xeon Phi co-processors are equipped with on-board Intel System Management Controller chip
(SMC) [9] providing energy consumption that can be programmatically obtained using Intel manycore
platform software stack (Intel MPSS) [10]. The accuracy of Intel MPSS is not available. AMD starting
from Bulldozer micro-architecture equip their processors with an estimation of average power over
a certain interval through the Application Power Management (APM) [11] capability. Reference [12]
reports that APM provides highly inaccurate data particularly during the processor sleep states.

Nvidia Management Library NVML [13] provides programmatic interfaces to obtain the energy
consumption of an Nvidia GPU from its on-chip power sensors. The reported accuracy of the instant
current readings in the NVML manual is 5%. Burtsher et al. [14] examine the power profiles of three
different Nvidia GPUs (Tesla K20c, K20m and K20x) when executing a N-body simulation benchmark.
They find multiple anomalies when using the on-chip sensors on K20 GPUs and inaccurate power
readings on K20c and K20m that lag behind the expected power profile based on a software model,
which they believe to be the ground truth. Furthermore, the authors observe that the power sampling
frequency on K20 GPUs varies greatly and the GPU sensor do not update power readings regularly.

There are, however, many issues with the second approach. First, how to relate the energy
consumption of an application and the energy consumption of the computing elements that are
involved in the execution of the application and containing the sensors. While sensors may provide
the power consumption of a component within sufficient accuracy, they may not determine the
energy consumed by an application when executing on the same component within the same accuracy
window. For example: while the accuracy of a power reading is reported by NVML for an Nvidia
GPU to be 5%, researchers found that when an application is executed on the GPU, the accuracy
is often lower. The locus of sensors on component and the topological granularity of readings are
also vitally important to take into consideration while measuring the energy consumption by the
application. Sensors only provide the power drawn by a group of computing elements but not
the individual contributions of the elements. The power readings also lack details such as update
frequency and suffer from potential complications such as sampling interval variability or sensor lag as
reported by Reference [14]. Portability is another issue with on-chip sensors due to vendor-specific but
non-standardized programmatic interfaces. Existing data center management standards such as IPMI
(Intelligent Platform Management Interface) [55] and DCMI (Data Center Manageability Interface) [56])
provide low-resolution data for supported motherboards only. Furthermore, all hardware are not
equipped with power sensors and therefore, their lack of pervasiveness is another important factor
limiting their efficacy as a viable approach to determine the energy consumption of an application.

To summarize, a good understanding and validation of energy measurement instrumentation
systems and on-chip power sensors is necessary for trusting and employing their readings in

Energies 2019, 12, 2204 27 of 42

application-level energy optimization techniques. Furthermore, for energy optimization and
energy-centric performance analysis of applications, we need sufficiently accurate measurements of
the energy consumed by the application when running on a component instead of an instrumentation
system or component-level sensors that measure the instantaneous power drawn by the component
within a sufficient accuracy.

The third approach is based on software energy predictive models, which emerged as a popular
alternative to determine the energy consumption of an application. A vast majority of such models
is linear and uses performance monitoring counters (PMCs) as predictor variables. Performance
monitoring counters are special-purpose registers provided in modern microprocessors to store the
counts of software and hardware activities. We will use the acronym PMCs to refer to software
events, which are pure kernel-level counters such as page-faults, context-switches, etc. as well as
micro-architectural events originating from the processor and its performance monitoring unit called
the hardware events such as cache-misses, branch-instructions, etc. The most common approach
proposing an energy predictive model is to determine the energy consumption of a hardware
component based on linear regression of the performance events occurring in the hardware component
during an application run. The total energy consumption is then calculated as the sum of these
individual energy consumption. Therefore, this approach constructs component-level models of
energy consumption and composes them using summation to predict the energy consumption during
an application run.

While the models provide fine-grained component-level energy consumption during the execution
of the application, there are research works highlighting their poor accuracy. Economou et al. [15]
highlight the fundamental limitation of PMC-based models, which is the restricted access to read PMCs
(generally four at a single run of an application) It becomes an extremely important task to carefully
select the best subset of PMCs as suitable contenders to be used as predictor variables in a model.
McCullough et al. [16] found the predictions errors of such predictive energy models for modern
node architectures to be as high as 150%. O’Brien et al. [17] highlight in their survey on predictive
energy models for heterogeneous and hierarchical node architectures, the poor prediction accuracy
and ineffectiveness of such models to accurately predict the dynamic power consumption of modern
nodes due to the inherent complexities: contention for shared resources such as Last Level Cache
(LLC), Non-Uniform Memory Access (NUMA) and dynamic power management. Shahid et al. [18]
also question the reliability and reported prediction accuracy of these models. They report that
many PMCs that are used as key predictor variables in state-of-the-art predictive models are not
reproducible and does not satisfy the criterion of additivity, which is derived from the application of
energy conservation law for computing. The criterion is based on an experimental observation that
dynamic energy consumption of serial execution of two applications is equal to the sum of the dynamic
energy consumption of those applications when they are run separately. The criterion, therefore, is
based on a simple and intuitive rule that if the parameter is intended for a linear predictive model, the
value of a PMC for a serial execution of two applications is equal to the sum of its values obtained
for the individual execution of each application. The PMC is branded as non-additive on a platform if
there exists an application for which the calculated value differs significantly from the value observed
for the application execution on the platform. The use of non-additive PMCs in a model impairs its
prediction accuracy.

In summary, energy predictive models and physical measurements using power meters or on-chip
sensors are two dominant approaches to determine the energy consumption of a given application.
Power meters provide accurate system-level physical energy measurements during the execution of
an application but the decomposition of energy consumption into the energy consumption of the
components involved in executing the application is not straightforward. While energy predictive
models and on-chip sensors allow component-level decomposition of the energy consumption during
an application execution, their accuracy, however, can be poor and needs further validation.

Energies 2019, 12, 2204 28 of 42

Appendix B. Rationale Behind Using Dynamic Energy Consumption Instead of Total
Energy Consumption

We consider only the dynamic energy consumption in our work for reasons below:

1. Static energy consumption is a constant (or a inherent property) of a platform that can not be
optimized. It does not depend on the application configuration.

2. Although static energy consumption is a major concern in embedded systems, it is becoming less
compared to the dynamic energy consumption due to advancements in hardware architecture
design in HPC systems.

3. We target applications and platforms where dynamic energy consumption is the dominating
energy dissipator.

4. Finally, we believe its inclusion can underestimate the true worth of an optimization technique
that minimizes the dynamic energy consumption. We elucidate using two examples from
published results.

• In our first example, consider a model that reports predicted and measured total energy
consumption of a system to be 16,500 J and 18,000 J. It would report the prediction error to be
8.3%. If it is known that the static energy consumption of the system is 9000 J, then the actual
prediction error (based on dynamic energy consumption only) would be 16.6% instead.

• In our second example, consider two different energy prediction models (MA and MB) with
same prediction errors of 5% for an application execution on two different machines (A and
B) with same total energy consumption of 10,000 J. One would consider both the models
to be equally accurate. But supposing it is known that the dynamic energy proportions
for the machines are 30% and 60%. Now, the true prediction errors (using dynamic energy
consumption only) for the models would be 16.6% and 8.3%. Therefore, the second model
MB should be considered more accurate than the first.

Appendix C. Application Programming Interface (API) for Measurements Using External Power
Meter Interfaces (HCLWattsUp)

HCLServer01, HCLServer02 and HCLServer03 have a dedicated power meter installed between
their input power sockets and wall A/C outlets. The power meter captures the total power
consumption of the node. It has a data cable connected to the USB port of the node. A perl script
collects the data from the power meter using the serial USB interface. The execution of this script is
non-intrusive and consumes insignifcant power.

We use HCLWattsUp API function, which gathers the readings from the power meters to determine
the average power and energy consumption during the execution of an application on a given platform.
HCLWattsUp API can provide following four types of measures during the execution of an application:

• TIME—The execution time (seconds).
• DPOWER—The average dynamic power (watts).
• TENERGY—The total energy consumption (joules).
• DENERGY—The dynamic energy consumption (joules).

We confirm that the overhead due to the API is very minimal and does not have any noticeable
influence on the main measurements. It is important to note that the power meter readings are only
processed if the measure is not hcl::TIME. Therefore, for each measurement, we have two runs. One
run for measuring the execution time. And the other for energy consumption. The following example
illustrates the use of statistical methods to measure the dynamic energy consumption during the
execution of an application.

The API is confined in the hcl namespace. Lines 10–12 construct the Wattsup object. The inputs
to the constructor are the paths to the scripts and their arguments that read the USB serial devices
containing the readings of the power meters.

Energies 2019, 12, 2204 29 of 42

The principal method of Wattsup class is execute. The inputs to this method are the type of
measure, the path to the executable executablePath, the arguments to the executable executableArgs and
the statistical thresholds (pIn) The outputs are the achieved statistical confidence pOut, the estimators,
the sample mean (sampleMean) and the standard deviation (sd) calculated during the execution of
the executable.

1 # include <wattsup . hpp>
2 i n t main (i n t argc , char * * argv)
3 {
4 std : : s t r i n g pathsToMeters [2] = {
5 "/opt/powertools/bin/wattsup1 " ,
6 "/opt/powertools/bin/wattsup2 " } ;
7 std : : s t r i n g argsToMeters [2] = {
8 "−−i n t e r v a l =1 " ,
9 "−−i n t e r v a l =1 " } ;

10 hcl : : Wattsup wattsup (
11 2 , pathsToMeters , argsToMeters
12) ;
13 hcl : : P r e c i s i o n pIn = {
14 maxRepeats , c l , maxElapsedTime , maxStdError
15 } ;
16 hcl : : P r e c i s i o n pOut ;
17 double sampleMean , sd ;
18 i n t rc = wattsup . execute (
19 hcl : : DENERGY, executablePath ,
20 executableArgs , &pIn , &pOut ,
21 &sampleMean , &sd
22) ;
23 i f (r c == 0)
24 std : : c e r r << " P r e c i s i o n NOT achieved .\n" ;
25 e l s e
26 std : : cout << " P r e c i s i o n achieved .\n" ;
27 std : : cout << "Max r e p e t i t i o n s "
28 << pOut . reps_max
29 << " , Elasped time "
30 << pOut . time_max_rep
31 << " , R e l a t i v e e r r o r "
32 << pOut . eps
33 << " , Mean energy "
34 << sampleMean
35 << " , Standard Deviat ion "
36 << sd
37 << std : : endl ;
38 e x i t (EXIT_SUCCESS) ;
39 }

Figure A1. Example illustrating the use of HCLWattsUp API for measuring the dynamic energy consumption.

The execute method repeatedly invokes the executable until one of the following conditions
is satisfied:

• The maximum number of repetitions specified in maxRepeats is exceeded.
• The sample mean is within maxStdError percent of the confidence interval cl. The confidence

interval of the mean is estimated using Student’s t-distribution.
• The maximum allowed time maxElapsedTime specified in seconds has elapsed.

If any one of the conditions are not satisfied, then a return code of 0 is output suggesting that
statistical confidence has not been achieved. If statistical confidence has been achieved, then the
number of repetitions performed, time elapsed and the final relative standard error is returned
in the output argument pOut. At the same time, the sample mean and standard deviation are
returned. For our experiments, we use values of (1000, 95%, 2.5%, 3600) for the parameters
(maxRepeats, cl, maxStdError, maxElapsedTime) respectively. Since we use Student’s t-distribution
for the calculation of the confidence interval of the mean, we confirm specifically that the observations
follow normal distribution by plotting the density of the observations using R tool.

Energies 2019, 12, 2204 30 of 42

Appendix D. Methodology to Obtain a Reliable Data Point

We follow the following strict methodology described below to make sure the experimental
results are reliable:

• The server is fully reserved and dedicated to these experiments during their execution. We also
made certain that there are no drastic fluctuations in the load due to abnormal events in the server
by monitoring its load continuously for a week using the tool sar. Insignificant variation in the
load was observed during this monitoring period suggesting normal and clean behaviour of
the server.

• We set the application kernel’s CPU affinity mask using SCHED API’s system call
SCHED_SETAFFINITY() Consider for example mkl-DGEMM application kernel running on
HCLServer01. To bind this application kernel, we set its CPU affinity mask to 12 physical CPU
cores of Socket 1 and 12 physical CPU cores of Socket 2.

• To make sure that pipelining, cache effects and so forth, do not happen, the experiments are not
executed in a loop and sufficient time (120 s) is allowed to elapse between successive runs. This
time is based on observations of the times taken for the memory utilization to revert to base
utilization and processor (core) frequencies to come back to the base frequencies.

• To obtain a data point, the application is repeatedly executed until the sample mean lies in the 95%
confidence interval and a precision of 0.025 (2.5%) has been achieved. For this purpose, Student’s
t-test is used assuming that the individual observations are independent and their population
follows the normal distribution. We verify the validity of these assumptions by plotting the
distributions of observations.

The function MeanUsingTtest, shown in Algorithm 1, describes this step. For each data point,
the function is invoked, which repeatedly executes the application app until one of the following
three conditions is satisfied:

1. The maximum number of repetitions (maxReps) have been exceeded (Line 3).
2. The sample mean falls in the confidence interval (or the precision of measurement eps has

been achieved) (Lines 15–17).
3. The elapsed time of the repetitions of application execution has exceeded the maximum

time allowed (maxT in seconds) (Lines 18–20).

So, for each data point, the function MeanUsingTtest is invoked and the sample mean mean is
returned at the end of invocation. The function Measure measures the execution time or the
dynamic energy consumption using the HCL’s WattsUp library [19] based on the input, TIME
or ENERGY. The input minimum and maximum number of repetitions, minReps and maxReps,
differ based on the problem size solved. For small problem sizes (32 ≤ n ≤ 1024), these values
are set to 10,000 and 100,000 respectively. For medium problem sizes (1024 < n ≤ 5120), these
values are set to 100 and 1000. For large problem sizes (n > 5120), these values are set to 5 and
50. The values of maxT, cl and eps are respectively set to 3600, 0.95 and 0.025. If the precision of
measurement is not achieved before the maximum number of repeats have been completed, we
increase the number of repetitions and also the maximum elapsed time allowed. However, we
observed that condition (2) is always satisfied before the other two in our experiments.

Energies 2019, 12, 2204 31 of 42

Algorithm 1 Function determining the sample mean using Student’s t-test.

1: procedure MEANUSINGTTEST(
app, minReps, maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut, mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0
The maximum number of repetitions, maxReps ∈ Z>0
The maximum time allowed for the application to run, maxT ∈ R>0
The required confidence level, cl ∈ R>0
The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, repsOut ∈ Z>0
The confidence level achieved, clOut ∈ R>0
The accuracy achieved, epsOut ∈ R>0
The elapsed time, etimeOut ∈ R>0
The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← MEASURE(TIME)
5: EXECUTE(app)
6: et← MEASURE(TIME)
7: reps← reps + 1
8: etime← etime + et− st
9: ObjArray[reps]← et− st

10: sum← sum + ObjArray[reps]
11: if reps > minReps then
12: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1))

× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum
22: etimeOut← etime; mean← sum

reps
23: end procedure

Energies 2019, 12, 2204 32 of 42

(a) FFTW, N = 35,480–41,920, G = 4, T = 28 (b) FFTW, N = 35,480–41,920, G = 7, T = 16
Figure A2. Dynamic energy profiles by RAPL and HCLWattsUp on HCLServer03 falling into Class B.
G = Threadgroups and T = Threads.

Appendix E. Comparison of RAPL and HCLWattsUp on HCLServer03

Table A1. Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer03. G = Threadgroups and T = Threads.

Application
Problem Size,

Step-Size
Configuration

Parameter
Avg Actual

Error

Avg. Error
after
Calibration

Reduction
after
Calibration

FFTW N = 32, 768 CPU Threads
(1–112)

12.68% 3.69% 70.9%

MKL-FFT N = 43, 328 CPU Cores
(1–56)

13.05% 2.19% 83.22%

FFTW N =
20,480–21560,
SS = 512

problem size
(M × N)
where 0 ≥
M ≤ N/2

8.15% 5.56% 31.78

FFTW N = 32, 768,
SS = 16

Load
Imbalance:
problem size
(M × N)
where 0 ≥
M ≤ N/2

10.45% 0.6% 94.26%

Table A2. Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer03. G = Threadgroups and T = Threads.

Application Problem Size,
Step-Size

Configuration
Parameter

Avg
Actual
Error

Avg. Error
after
Calibration

Reduction
after
Calibration

OpenBlas DGEMM N =
10,240–25,600,
SS = 512

CPU
Threads

G = 56, T = 2 12.84% 6.66% 48.13%

G = 28, T = 4 13.28% 8.58% 35.39%

G = 16, T = 7 14.02% 8.54% 39.09%

G = 14, T = 8 13.61% 7.98% 41.37%

G = 8, T = 14 18.59% 9.64% 48.14%

G = 7, T = 16 19% 9.7% 48.95%

Energies 2019, 12, 2204 33 of 42

Table A2. Cont.

Application Problem Size,
Step-Size

Configuration
Parameter

Avg Actual
Error

Avg. Error after
Calibration

Reduction after
Calibration

G = 4, T = 28 20.89% 10.38% 50.31%

G = 2, T = 56 23.41% 11.21% 52.11%

MKL-FFT N =
32,768–43,456,
SS = 64

problem size

G = 28, T = 2 15.08% 4.91% 67.4%

G = 14, T = 4 13.63% 4.97% 63.54%

G = 8, T = 7 13.24% 5.25% 60.35

G = 7, T = 8 13.21% 5.4% 59.12%

G = 4, T = 14 13.03% 5.65% 56.64%

G = 2, T = 28 13.02% 5.64% 56.68%

G = 1, T = 56 14.12% 6.22% 55.95%

MKL-FFT N =
25,600–46,080,
SS = 512

problem size

G = 28, T = 2 14.46% 5% 65.42%

G = 14, T = 4 13% 4.51% 65.31%

G = 8, T = 7 12.4% 4.49% 63.79%

G = 7, T = 8 12.34% 4.45% 63.94%

G = 4, T = 14 11.97% 4.58% 61.74%

G = 2, T = 28 12.35% 4.8% 61.13%

G = 1, T = 56 13.56% 6.27% 53.76%

FFTW N =
35,480–41,920,
SS = 64

problem size

G = 16, T = 7 12.4% 10.35% 16.53%

G = 14, T = 8 13.19% 11.54% 12.51%

G = 8, T = 14 13.66% 12.73% 6.81%%

G = 7, T = 16 14.59% 13.3% 8.84%

G = 4, T = 28 13.73% 12.78% 6.92%

G = 2, T = 56 12.3% 5.58% 54.63%

G = 1, T = 112 24.62% 3.9% 84.16%

Energies 2019, 12, 2204 34 of 42

Table A3. Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer03. ’-’ denotes that calibration does not be improve the difference.

Application
Problem

Size,
Step-Size

Configuration
Parameter

Avg
Actual
Error

Avg. Error
after
Calibration

Reduction
after
Calibration

FFTW N =
30,720–34,816,
SS = 64

problem size

G = 16, T = 7 14.51% - -

G = 14, T = 8 16.32% - -

G = 8, T = 14 16.15% - -

G = 7, T = 16 14.89% - -

G = 4, T = 28 9.32% - -

G = 2, T = 56 10.94% 5.34% 51.19%

G = 1, T = 112 25.05% 10.44% 58.32%

FFTW N =
20,480–26,560,
SS = 64

problem size

G = 16, T = 7 31% - -

G = 14, T = 8 28.16% - -

G = 8, T = 14 21.59% - -

G = 7, T = 16 17.76% - -

G = 4, T = 28 7.6% 4.83 36.45%

G = 2, T = 56 9.76% 6.12% 37.3%

G = 1, T = 112 25.63% 10.22% 60.12

Appendix F. Experimental Results of RAPL and HCLWattsUp on HCLServer01 and HCLServer02

For our sets of experiments on HCLServer01 and HCLServer02, we use fixed number of cores and
build the application profile as a function of problem size. On HCLServer01, the workload sizes for
MKL-DGEMM range from 512 × 16,384 to 16,384 × 16,384 with a step size of 512 and for 2D MKL-FFT
range from 16256 × 22,528 to 22,528 × 22,528 with a step size of 128. On HCLServer02, the workload
sizes for MKL-DGEMM range from 6400 × 6400 to 29,504 × 29,504 with a step size of 64. For 2D-FFT
executed on HCLServer02, the workload sizes range from 22,400 × 22,400 to 41,536 × 41,536 with a
step size of 64.

Figure A3a,b show the dynamic energy profiles of 2D MKL-FFT and MKL-DGEMM on
HCLServer01 respectively. For most of the data points in dynamic energy profile of 2D MKL-FFT,
RAPL reports more dynamic energy consumption than HCLWattsUp. There are, however, many data
points where it reports otherwise. The maximum and average errors of RAPL with HCLWattsUp is
37.1% and 16.01%. We can reduce them to 9.93% and 3.48% by calibrating RAPL readings.

Energies 2019, 12, 2204 35 of 42

(a) 2D MKL-FFT (b) MKL-DGEMM
Figure A3. Dynamic energy consumption of RAPL, RAPL calibrated and HCLWattsUp on HCLServer01.

(a) 2D MKL-FFT (b) MKL-DGEMM
Figure A4. Dynamic energy consumption of RAPL and HCLWattsUp on HCLServer02.

For MKL-DGEMM on HCLServer01, we find that RAPL readings are leading the HCLWattsUp
readings. Further, both profiles do not exhibit the same pattern. One can observe many data points
such as 1024 × 16,384, 2048 × 16,384, 6656 × 16,384, 14,336 × 16,384 and et cetera, where HCLWattsUp
suggests an increase of 14.67%, 81.53%, 55.05%, 23.2% in dynamic energy consumption whereas RAPL
suggest a decrease of 38.25%, 8.05%, 19.89%, 3.76%. The maximum and average difference of RAPL
with HCLWattsUp is 266.42% and 62.42%. However, we can reduce this error to 130.53% and 42.87%
using calibrating RAPL readings. But, this increases the divergence between the data points where
both the tools provide dynamic energy consumption values oppositely. Consider, for example, the
data point 1024 × 16,384. RAPL, after calibrating, suggests a decrease of 49.12% which was 38.25% in
the absence of calibration.

Figure A4a,b show the dynamic energy profiles of 2D MKL-FFT and MKL-DGEMM on
HCLServer02 respectively. For most of the data points of MKL-DGEMM profile, RAPL suggests
a decrease in dynamic energy consumption whereas HCLWattsUp reports the otherwise and vice
versa. Consider, for example, the problem sizes 43454464, 125440000, 228130816, 270536704 and others
where RAPL suggests a decrease of 11.92%, 15.29%, 8.68%, 27.6% whereas HCLWattsUp suggests an
increase of 41.11%, 30.59%, 70.24%, 37.94%; and the problem sizes, for example, 42614784, 170459136,
249892864, 268435456 and others where RAPL suggests an increase of 14.09%, 17.3%, 20.92%, 38.99%
whereas HCLWattsUp suggests a decrease of 29.67%, 19.51%, 11.83%, 28.75%. The maximum and
average difference between both profiles is 205% and 36.13%.

We also find many such data points in MKL-FFT profile where both the tools reports the dynamic
energy consumption oppositely. Consider, for example, the problem sizes 916393984, 1167998976,

Energies 2019, 12, 2204 36 of 42

1425817600, 1450086400 where RAPL suggests a decrease of 12.39%, 31.33%, 18.77%, 5.4% whereas
HCLWattsUp reports an increase of 11.68%, 35.84%, 6.46%, 31.25%; and the the problem sizes such
as 507510784, 800210944, 1150566400, 1099055104 and others where RAPL suggests an increase of
1.26%, 19.9%, 40.87%, 4.74% whereas HCLWattsUp suggests a decrease of 22.24%, 4.79%, 9.54%, 6.02%,
28.75%. The maximum and average difference between both profiles is 156.38% and 28.67%.

Table A4 presents the prediction errors of RAPL against HCLWattsUp on HCLServer01 and
HCLServer02. We also present the percentage of error reduction between the dynamic energy profiles
with RAPL and power meter after using calibration.

Table A4. Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer01 and HCLServer02. ’-’ denotes that calibration does not improve the difference.

Application Platform Avg Max Min Avg after Calibration Reduction
after Calibration

FFT HCLServer01 16.01% 37.1% 0.01% 3.48% 78.26%

DGEMM HCLServer01 62.42% 266.42% 12.54% 42.86% 31.34%

FFT HCLServer02 28.67% 156.38% 0.03% - -

DGEMM HCLServer02 36.13% 205% 0.39% - -

Appendix G. Methodology To Compare Measurements Using Sensors and HCLWattsUp

To analyze the dynamic energy consumption by a given component when running an application,
we need to build application profiles on them. HCLWattsUp API provides the dynamic energy
consumption of application instead of component. It, therefore, contains the contributions by other
components including CPU host-core and DRAM. Built-in sensors, on the other hand, only provide
the power consumption of GPU or Xeon Phi only (we offload the applications to run on Intel Xeon
Phi, so it includes the CPU host core, DRAM and PCIe to copy and migrate the data between CPU
host core and Xeon Phi) Therefore, to compare both methodologies in a most fair equitable way and to
obtain the dynamic energy profiles of applications, we use RAPL as an aide to sensors for determining
the application energy. Because, RAPL also determine the power consumption of CPU and DRAM
using on-chip voltage regulator and current sensor [8].

Now, we present the work-flow of experiments that we follow to determine the dynamic energy
consumption of the application. To obtain the CPU host-core and DRAM contribution in dynamic
energy consumption of the application, we use RAPL in following way:

1. Using Intel PCM/PAPI, we obtain the base power of CPU and DRAM (when the given application
is not running).

2. Using HCLWattsUp API, we obtain the execution time of the given application.
3. Using Intel PCM/PAPI, we obtain the total energy consumption of the CPU host-core (because all

other cores are idle) and DRAM, during the execution of the given application.
4. Finally, we calculate the dynamic energy consumption (of CPU and DRAM) by subtracting the base

energy from total energy consumed during the execution of the given application.

To obtain the GPU/Xeon Phi contribution, we use NVML/Intel SMC in following way:

1. Using NVML/Intel SMC, we obtain the base power of GPU/Xeon Phi (when the given application
is not running).

2. Using HCLWattsUp API, we obtain the execution time of the given application.
3. Using NVML/Intel SMC, we obtain the total energy consumption of GPU/Xeon Phi during the

execution of the given application.
4. Finally, we calculate the dynamic energy consumption GPU/Xeon Phi by subtracting the base

energy from total energy consumed during the execution of the given application.

Energies 2019, 12, 2204 37 of 42

Now, we present the workflow of the experiments to determine the dynamic energy consumption
by the given application kernel, using HCLWattsUp:

1. Using HCLWattsUp API, we obtain the base power of the server (when the given application is not
running).

2. Using HCLWattsUp API, we obtain the execution time of the application.
3. Using HCLWattsUp API, we obtain the total energy consumption of the server, during the

execution of the given application.
4. Finally, we calculate the dynamic energy consumption by subtracting the base power from total

energy consumed during the execution of the given application.

Important to note here, the execution time of the application kernel is the same for dynamic
energy calculations by all tools. So, any difference between the energy readings using these tools comes
solely from their power readings. The cost in terms of number of measurements to determine a single
data point of an application dynamic energy profile using sensors is higher than using HCLWattsUp
API. Because we need at least five (Base power with RAPL, Total Energy with RAPL, Base power with
NVML/Intel SMC, Total Energy with NVML/Intel SMC, and Execution Time) measurements to obtain the
data point of the given application dynamic energy profile using RAPL and GPU/Xeon Phi internal
sensors. However, we just need three measurements to obtain it using HCLWattsUp.

Appendix H. Comparison of Measurements by GPU Sensors with HCLWattsUp on HCLServer02

On Nvidia P100 GPU on HCLServer02, we build the dynamic energy profile of 2D FFT as a
function of problem size M × N ranging from 21, 504× 25, 600 to 25, 600× 25, 600 with a constant
step size of 64, using sensors and HCLWattsUp. Figure A5b illustrates the dynamic energy profiles of
2D FFT using sensors and HCLWattsUp. We find that sensors follow the trend of HCLWattsUp for
57.14% of the data points. Consider, for example, the data points 22, 016× 25, 600, 22, 080× 25, 600
and 23, 360× 25, 600 where HCLWattsUp suggests an increase of 33.53%, 15.4% and 18.49% whereas
sensors suggest an increase of 2.32%, 3.21% and 6.54% respectively. The maximum and average errors
are 175.97% and 73.34%. We can reduce them using calibration to 51.24% and 16.95% respectively.

RAPL and GPU sensors follow the same trend for 88.89% of the data points. It reflects that the
difference with HCLWattsUp comes from both together. But, the combined profile follows the GPU
sensors trend and diverges with HCLWattsUp for 51.11% of the data points. Hence, the difference
between (RAPL and GPU) sensors and HCLWattsUp is mainly from GPU sensors because they are
driving the combined profile. Consider, for example, the data point 25, 280× 25, 600. RAPL suggests
an increase of 6.42% in dynamic energy consumption with respect to the previous data point. However,
GPU sensors suggest a decrease of 38.12% for it and we find a decrease of 2.91% in combined profile
of sensors.

We also observe that RAPL reports more dynamic energy than GPU sensors. It means that for
this application configuration, data transfer between CPU host-core, DRAM and GPU consumes more
dynamic energy than the computation on P100 GPU.

Energies 2019, 12, 2204 38 of 42

(a) CUDA DGEMM (b) CUDA FFT
Figure A5. Dynamic energy consumption profiles of Nvidia P100 PCIe GPU on HCLServer02.

We execute DGEMM on HCLServer02 with workload sizes ranging from 18,176 × 22,528 to
22,528 × 22,528 with a constant step size of 128. Figure A5a illustrates the dynamic energy profiles of
DGEMM using HCLWattsUp and sensors (RAPL and GPU sensors) Like K40c GPU on HCLServer01,
the combined energy profile of DGEMM with (RAPL and NVML) sensors exhibit a linear profile
whereas HCLWattsUp exhibit differently. We find that combined sensors do not follow the application
behavior exhibited by HCLWattsUp for 64.71% of the data points. Consider, for example, the data
points (M×N): 218,560× 22,528, 18,944× 22,528 and 22,400× 22,528 where HCLWattsUp demonstrate
a decrease of 4.14%, 3.8% and 5.32% whereas sensors exhibit an increase of 1.23%, 1.06% and 0.59%
respectively. The maximum and average errors are 84.84% and 40.06%. They can be reduced using
calibration to 26.07% and 11.62% respectively.

Table A5. Percentage error of dynamic energy consumption by Nvidia P100 PCIe GPU with and
without calibration and HCLWattsUp on HCLServer02.

Without Calibration

Application Min Max Avg

DGEMM 13.11% 84.84% 40.06%

FFT 17.91% 175.97% 73.34%

With Calibration

Application Min Max Avg

DGEMM 0.07% 26.07% 11.62%

FFT 0.025% 51.24% 16.95%

Appendix I. Costs of Measurement of the Three Approaches

In this section, we compare the cost in terms of number of measurements to determine a single
data point of an application dynamic energy profile with aforementioned tools. To determine the
dynamic energy consumption by a given workload size of an application, we need following three
measurements with RAPL and HCLWattsUp:

1. Base power
2. Execution time of the application
3. Total Energy consumed by the application during the execution

However, the cost of determining the dynamic energy consumption with (RAPL and on-chip
GPU/Xeon Phi) sensors is comparatively higher, because we need at least following five measurements:

Energies 2019, 12, 2204 39 of 42

1. Base power with RAPL
2. Total Energy with RAPL
3. Base power with NVML/Intel SMC
4. Total Energy with NVML/Intel SMC
5. Execution Time

We need just one measurement to predict the dynamic energy consumption with PMC based
energy predictive models but the cost of building the model is relatively higher. In order to build a
model (either platform-level or application specific), one needs to collect a huge data set containing all
the PMCs of a given application on a platform with its dynamic energy consumption. For example,
on Intel Haswell EP multicore CPU on HCLServer01 (see Table 1), collecting all the PMCs for an
application using Likwid tool takes at minimum 53 times of its execution. Furthermore, after collection
of PMCs, selecting suitable PMCs for producing accurate energy models is also a tedious job.

Appendix J. Benchmark Suite for Comparison of Dynamic Energy Consumption using
PMC-Based Energy Predictive Models and HCLWattsUp

Table A6. List of Applications.

Application Description

MKL FFT Fast Fourier Transform

MKL DGEMM Dense Matrix Multiplication

HPCG High performance conjugate gradient

NPB IS Integer Sort, Kernel for random memory access

NPB LU Lower-Upper Gauss-Seidel solver

NPB EP Embarrassingly Parallel, Kernel

NPB BT Block Tri-diagonal solver

NPB MG Multi-Grid on a sequence of meshes

NPB FT Discrete 3D fast Fourier Transform

NPB DC Data Cube

NPB UA Unstructured Adaptive mesh, dynamic memory access

NPB CG Conjugate Gradient

NPB SP Scalar Penta-diagonal solver

NPB DT Data traffic

stress CPU, disk and I/O stress

Naive MM Naive Matrix-matrix multiplication

Naive MV Naive Matrix-vector multiplication

References

1. IEA. International Energy Agency (IEA) at COP21; IEA: Paris, France, 2015.
2. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166,

doi:10.1038/d41586-018-06610-y. [CrossRef] [PubMed]
3. ATAG. Air Transport Action Group (ATAG): Facts and Figures; ATAG: Dunfermline, UK, 2018.
4. Andrae, A.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges

2015, 6, 117–157. [CrossRef]
5. Konstantakos, V.; Chatzigeorgiou, A.; Nikolaidis, S.; Laopoulos, T. Energy Consumption Estimation in

Embedded Systems. IEEE Trans. Instrum. Meas. 2008, 57, 797–804. [CrossRef]

https://doi.org/10.1038/d41586-018-06610-y
http://dx.doi.org/10.1038/d41586-018-06610-y
http://www.ncbi.nlm.nih.gov/pubmed/30209383
http://dx.doi.org/10.3390/challe6010117
http://dx.doi.org/10.1109/TIM.2007.913724

Energies 2019, 12, 2204 40 of 42

6. Rotem, E.; Naveh, A.; Ananthakrishnan, A.; Weissmann, E.; Rajwan, D. Power-Management Architecture of
the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro 2012, 32, 20–27. [CrossRef]

7. David, H.; Gorbatov, E.; Hanebutte, U.R.; Khanna, R.; Le, C. RAPL: Memory power estimation and capping.
In Proceedings of the 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design
(ISLPED), Austin, TX, USA, 18–20 August 2010; pp. 189–194.

8. Gough, C.; Steiner, I.; Saunders, W.; Energy Efficient Servers: Blueprints for Data Center Optimization; Apress:
New York, NY, USA, 2015; ISBN 978-1-4302-6638-9.

9. Intel Corporation. Intel® Xeon Phi™ Coprocessor System Software Developers Guide; Intel Corporation: Santa
Clara, CA, USA, 2014.

10. Intel Corporation. Intel® Manycore Platform Software Stack (Intel MPSS); Intel Corporation: Santa Clara, CA,
USA, 2014.

11. Advanced Micro Devices. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh
Processors; Advanced Micro Devices: Santa Clara, CA, USA, 2012.

12. Hackenberg, D.; Ilsche, T.; Schöne, R.; Molka, D.; Schmidt, M.; Nagel, W.E. Power measurement techniques
on standard compute nodes: A quantitative comparison. In Proceedings of the 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Austin, TX, USA, 21–23 April 2013;
IEEE: Piscataway, NJ, USA, 2013; pp. 194–204.

13. Nvidia. Nvidia Management Library: NVML Reference Manual; Nvidia: Santa Clara, CA, USA, 2018.
14. Burtscher, M.; Zecena, I.; Zong, Z. Measuring GPU Power with the K20 Built-in Sensor. In Proceedings of

the Workshop on General Purpose Processing Using GPUs, GPGPU-7, Salt Lake City, UT, USA, 1 March
2014; ACM: New York, NY, USA, 2014; pp. 28:28–28:36.

15. Economou, D.; Rivoire, S.; Kozyrakis, C.; Ranganathan, P. Full-system power analysis and modeling for
server environments. In International Symposium on Computer Architecture; IEEE: Piscataway, NJ, USA, 2006;
pp. 70–77.

16. McCullough, J.C.; Agarwal, Y.; Chandrashekar, J.; Kuppuswamy, S.; Snoeren, A.C.; Gupta, R.K. Evaluating
the Effectiveness of Model-based Power Characterization. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference (USENIXATC’11), USENIX Association, Oregon, Portland, 15–17
June 2011; p. 12.

17. O’brien, K.; Pietri, I.; Reddy, R.; Lastovetsky, A.; Sakellariou, R. A Survey of Power and Energy Predictive
Models in HPC Systems and Applications. Acm Comput. Surv. 2017, 50, 37:1–37:38. [CrossRef]

18. Shahid, A.; Fahad, M.; Reddy, R.; Lastovetsky, A. Additivity: A Selection Criterion for Performance Events
for Reliable Energy Predictive Modeling. Supercomput. Front. Innov. Int. J. 2017, 4, 50–65.

19. Heterogeneous Computing Laboratory. HCLWattsUp: Software API for Power and Energy Measurements Using
WattsUp Pro Meter; School of Computer Science, University College Dublin: Dublin, Ireland, 2019.

20. Hackenberg, D.; Schöne, R.; Ilsche, T.; Molka, D.; Schuchart, J.; Geyer, R. An Energy Efficiency Feature
Survey of the Intel Haswell Processor. In Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, Hyderabad, India, 25—29 May 2015; pp. 896–904.

21. Bellosa, F. The Benefits of Event: Driven Energy Accounting in Power-sensitive Systems. In Proceedings of
the 9th Workshop on ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating
System (EW 9), Kolding, Denmark, 17–20 September 2000; ACM: New York, NY, USA, 2000; pp. 37–42.

22. Isci, C.; Martonosi, M. Runtime power monitoring in high-end processors: Methodology and empirical data.
In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-36,
San Diego, CA, USA, 5 December 2003; IEEE: Washington, DC, USA, 2003; pp. 93–104.

23. Li, T.; John, L.K. Run-time Modeling and Estimation of Operating System Power Consumption.
Sigmetrics Perform. Eval. Rev. 2003, 31, 160–171. [CrossRef]

24. Lee, B.C.; Brooks, D.M. Accurate and Efficient Regression Modeling for Microarchitectural Performance and
Power Prediction. Sigarch Comput. Archit. News 2006, 34, 185–194. [CrossRef]

25. Heath, T.; Diniz, B.; Carrera, E.V.; Meira, W., Jr.; Bianchini, R. Energy Conservation in Heterogeneous Server
Clusters. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’05), Chicago, IL, USA, 15–17 June 2005; ACM: New York, NY, USA, 2005; pp. 186–195.

26. Fan, X.; Weber, W.D.; Barroso, L.A. Power Provisioning for a Warehouse-sized Computer. In Proceedings of
the 34th Annual International Symposium on Computer Architecture (ISCA ’07), San Diego, CA, USA, 9–13
June 2017; ACM: New York, NY, USA, 2007; pp. 13–23.

http://dx.doi.org/10.1109/MM.2012.12
http://dx.doi.org/10.1145/3078811
http://dx.doi.org/10.1145/885651.781048
http://dx.doi.org/10.1145/1168919.1168881

Energies 2019, 12, 2204 41 of 42

27. Singh, K.; Bhadauria, M.; McKee, S.A. Real Time Power Estimation and Thread Scheduling via Performance
Counters. Sigarch Comput. Archit. News 2009, 37, 46–55. [CrossRef]

28. Goel, B.; McKee, S.A.; Gioiosa, R.; Singh, K.; Bhadauria, M.; Cesati, M. Portable, scalable, per-core power
estimation for intelligent resource management. In Proceedings of the International Conference on Green
Computing, Chicago, IL, USA, 15–18 August 2010; pp. 135–146.

29. Basmadjian, R.; Ali, N.; Niedermeier, F.; de Meer, H.; Giuliani, G. A Methodology to Predict the
Power Consumption of Servers in Data Centres. In Proceedings of the 2nd International Conference
on Energy-Efficient Computing and Networking (e-Energy ’11), New York, NY, USA, 31 May–1 June 2011;
ACM: New York, NY, USA, 2011; pp. 1–10.

30. Bircher, W.L.; John, L.K. Complete System Power Estimation Using Processor Performance Events. IEEE
Trans. Comput. 2012, 61, 563–577. [CrossRef]

31. Dargie, W. A Stochastic Model for Estimating the Power Consumption of a Processor. IEEE Trans. Comput.
2015, 64, 1311–1322. [CrossRef]

32. Lastovetsky, A.; Reddy, R. New Model-Based Methods and Algorithms for Performance and Energy
Optimization of Data Parallel Applications on Homogeneous Multicore Clusters. IEEE Trans. Parallel
Distrib. Syst. 2017, 28, 1119–1133. [CrossRef]

33. Li, S.; Ahn, J.H.; Strong, R.D.; Brockman, J.B.; Tullsen, D.M.; Jouppi, N.P. The McPAT Framework for
Multicore and Manycore Architectures: Simultaneously Modeling Power, Area, and Timing. ACM Trans.
Archit. Code Optim. 2013, 10, 5. [CrossRef]

34. Haj-Yihia, J.; Yasin, A.; Asher, Y.B.; Mendelson, A. Fine-grain power breakdown of modern out-of-order
cores and its implications on Skylake-based systems. ACM Trans. Archit. Code Optim. (TACO) 2016, 13, 56.
[CrossRef]

35. Mair, J.; Huang, Z.; Eyers, D. Manila: Using a densely populated pmc-space for power modelling within
large-scale systems. Parallel Comput. 2019, 82, 37–56. [CrossRef]

36. Hong, S.; Kim, H. An Integrated GPU Power and Performance Model. Sigarch Comput. Archit. News 2010,
38, 280–289.

37. Nagasaka, H.; Maruyama, N.; Nukada, A.; Endo, T.; Matsuoka, S. Statistical power modeling of GPU kernels
using performance counters. In Proceedings of the International Conference on Green Computing, Chicago,
IL, USA, 15–18 August 2010; pp. 115–122.

38. Song, S.; Su, C.; Rountree, B.; Cameron, K.W. A Simplified and Accurate Model of Power-Performance
Efficiency on Emergent GPU Architectures. In Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing, Boston, MA, USA, 20–24 May 2013; pp. 673–686.

39. Shao, Y.S.; Brooks, D. Energy characterization and instruction-level energy model of Intel’s Xeon Phi
processor. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED),
Beijing, China, 4–6 September 2013; pp. 389–394.

40. Al-Khatib, Z.; Abdi, S. Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors
in FPGA. In Applied Reconfigurable Computing; Sano, K., Soudris, D., Hübner, M., Diniz, P.C., Eds.; Springer
International Publishing: Berlin, Germany, 2015; pp. 65–76.

41. Asanovic, K.; Bodik, R.; Catanzaro, B.C.; Gebis, J.J.; Husbands, P.; Keutzer, K.; Patterson, D.A.; Plishker,
W.L.; Shalf, J.; Williams, S.W.; Yelick, K.A. The Landscape of Parallel Computing Research: A View from Berkeley;
Technical Report UCB/EECS-2006-183; University of California: Berkeley, CA, USA, 2006.

42. IntelPCM. Intel® Performance Counter Monitor—A Better Way to Measure CPU Utilization; 2017.
Available online: https://software.intel.com/en-us/articles/intel-performance-counter-monitor (accessed
on 10 June 2019).

43. PAPI. Performance Application Programming Interface 5.4.1; 2015. Available online: https://icl.utk.edu/
papi/overview/index.html (accessed on 10 June 2019).

44. Manumachu, R.R.; Lastovetsky, A. Bi-Objective Optimization of Data-Parallel Applications on Homogeneous
Multicore Clusters for Performance and Energy. IEEE Trans. Comput. 2018, 67, 160–177. [CrossRef]

45. Reddy Manumachu, R.; Lastovetsky, A.L. Design of self-adaptable data parallel applications on multicore
clusters automatically optimized for performance and energy through load distribution. Concurr. Comput.
Pract. Exp. 2019, 31, e4958. [CrossRef]

46. Khaleghzadeh, H.; Zhong, Z.; Reddy, R.; Lastovetsky, A. Out-of-core implementation for accelerator kernels
on heterogeneous clouds. J. Supercomput. 2018, 74, 551–568. [CrossRef]

http://dx.doi.org/10.1145/1577129.1577137
http://dx.doi.org/10.1109/TC.2011.47
http://dx.doi.org/10.1109/TC.2014.2315629
http://dx.doi.org/10.1109/TPDS.2016.2608824
http://dx.doi.org/10.1145/2445572.2445577
http://dx.doi.org/10.1145/3018112
http://dx.doi.org/10.1016/j.parco.2018.05.002
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://icl.utk.edu/papi/overview/index.html
https://icl.utk.edu/papi/overview/index.html
http://dx.doi.org/10.1109/TC.2017.2742513
http://dx.doi.org/10.1002/cpe.4958
http://dx.doi.org/10.1007/s11227-017-2141-4

Energies 2019, 12, 2204 42 of 42

47. Treibig, J.; Hager, G.; Wellein, G. LIKWID: A Lightweight Performance-Oriented Tool Suite for x86 Multicore
Environments. In Proceedings of the 2010 39th International Conference on Parallel Processing Workshops,
San Diego, CA, USA, 13–16 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 207–216.

48. Perf Wiki. perf: Linux Profiling with Performance Counters; Wikipedia, the Free Encyclopedia, 2017. Available
online: https://perf.wiki.kernel.org/index.php/Main_Page (accessed on 10 June 2019).

49. Alonso, P.; Badia, R.M.; Labarta, J.; Barreda, M.; Dolz, M.F.; Mayo, R.; Quintana-Ortí, E.S.; Reyes, R. Tools for
Power-Energy Modelling and Analysis of Parallel Scientific Applications. In Proceedings of the 2012 41st
International Conference on Parallel Processing, Pittsburgh, PA, USA, 10–13 September 2012; pp. 420–429.

50. Mantovani, F.; Calore, E. Performance and power analysis of HPC workloads on heterogeneous multi-node
clusters. J. Low Power Electron. Appl. 2018, 8, 13. [CrossRef]

51. Zhou, Z.; Abawajy, J.H.; Li, F.; Hu, Z.; Chowdhury, M.U.; Alelaiwi, A.; Li, K. Fine-Grained Energy
Consumption Model of Servers Based on Task Characteristics in Cloud Data Center. IEEE Access 2018,
6, 27080–27090. [CrossRef]

52. Bedard, D.; Lim, M.Y.; Fowler, R.; Porterfield, A. PowerMon: Fine-grained and integrated power monitoring
for commodity computer systems. In Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), Concord,
NC, USA, 18–21 March 2010; pp. 479–484.

53. Ge, R.; Feng, X.; Song, S.; Chang, H.; Li, D.; Cameron, K.W. PowerPack: Energy Profiling and Analysis of
High-Performance Systems and Applications. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 658–671. [CrossRef]

54. Laros, J.H.; Pokorny, P.; DeBonis, D. PowerInsight—A commodity power measurement capability.
In Proceedings of the 2013 International Green Computing Conference Proceedings, Arlington, VA, USA,
27–29 June 2013; pp. 1–6.

55. Intel Corporation. Intelligent Platform Management Interface Spec; Intel Corporation: Santa Clara, CA, USA,
2013.

56. Intel Corporation. DCMI—Data Center Manageability Interface Specification; Intel Corporation: Santa Clara,
CA, USA, 2011.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://perf.wiki.kernel.org/index.php/Main_Page
http://dx.doi.org/10.3390/jlpea8020013
http://dx.doi.org/10.1109/ACCESS.2017.2732458
http://dx.doi.org/10.1109/TPDS.2009.76
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Terminology and Motivation
	Related Work
	On-Chip Power Sensors
	Software Based Energy Predictive Models

	Experimental Setup for Comparing On-Chip Sensors and System-Level Physical Measurements Using Power Meters
	Methodology to Determine the Component-Level Energy Consumption Using HCLWattsUp
	Comparison of Measurements Using RAPL and HCLWattsUp
	Methodology
	Experimental Results on HCLServer03
	Discussion

	Comparison of Measurements by GPU and Xeon Phi Sensors with HCLWattsUp
	Experimental Results Using GPU Sensors (NVML)
	Experimental Results Using Intel Xeon Phi Sensors (Intel MPSS)
	Discussion

	Comparison of Dynamic Energy Consumption Using PMC-Based Energy Predictive Models and HCLWattsUp
	Experimental Setup
	Accuracy of Platform-Level Linear PMC-Based Models
	Accuracy of Application-Specific PMC-Based Models

	Energy Losses From Employing an Inaccurate Measurement Tool
	Current Picture, Recommendations and Future Directions
	Conclusions
	Three Popular Approaches to Measure the Dynamic Energy Consumption
	Rationale Behind Using Dynamic Energy Consumption Instead of Total Energy Consumption
	Application Programming Interface (API) for Measurements Using External Power Meter Interfaces (HCLWattsUp)
	Methodology to Obtain a Reliable Data Point
	Comparison of RAPL and HCLWattsUp on HCLServer03
	Experimental Results of RAPL and HCLWattsUp on HCLServer01 and HCLServer02
	Methodology To Compare Measurements Using Sensors and HCLWattsUp
	Comparison of Measurements by GPU Sensors with HCLWattsUp on HCLServer02
	Costs of Measurement of the Three Approaches
	Benchmark Suite for Comparison of Dynamic Energy Consumption using PMC-Based Energy Predictive Models and HCLWattsUp
	References

