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Abstract: Shared bikes have become popular traveling tools in our daily life. The successful operation
of bike sharing systems (BSS) can greatly promote energy saving in a city. In BSS, stations becoming
empty or full is the main cause of customers failing to rent or return bikes. Some truck-based
rebalancing strategies are proposed to solve this problem. However, there are still challenges around
the relocation of bikes. The truck operating costs also need to be considered. In this paper, we propose
a customer-oriented rebalancing strategy to solve this problem. In our strategy, two algorithms
are proposed to ensure the whole system is balanced for as long as possible. The first algorithm
calculates the optimal state of each station through the one-dimensional Random Walk Process with
two absorption walls. Based on the derived optimal state of each station, the second algorithm
recommends the station that has the largest difference between its current state and its optimal state
to the customer. In addition, a simulation system of shared bikes based on the historical records
of Bay Area Bikeshare is built to evaluate the performance of our proposed rebalancing strategy.
The simulation results indicate that the proposed strategy is able to effectively decrease the imbalance
in the system and increase the system’s performance compared with the truck-based methods.

Keywords: bike sharing; energy saving; system rebalancing

1. Introduction

Energy saving is a vital task for the sustainable development of a city [1]. The government attaches
great importance to the development of bike sharing systems (BSS), since they can greatly help reduce
urban energy consumption [2,3]. We think the essential condition for the successful operation of BSS is
solving the imbalance problem.

In BSS, the imbalance problem means some stations are empty (there are no available bikes
for renting) while some stations are full (there are no empty docks for returning). A customer will
experience an unsatisfactory service when there are no available bikes or docks at a station. Improving
customer satisfaction is one of the tasks for BSS operators.

In order to deal with the imbalance problem, the operators of BSS need to relocate bikes among
stations by trucks. Some static truck-based strategies for relocating bikes have been proposed [4–6].
The repositioning time is usually at the system’s idle time (such as midnight) in these truck-based
strategies. Recently, some work has paid attention to dynamic truck-based strategies which relocate
bikes based on the advanced prediction of bikes [7–9]. However, the truck-based approaches are not
only expensive to operate but also violate the low-carbon goal of bike-share due to the amount of
pollution from the trucks.

There are also some strategies that encourage customers to participate in bike allocation.
For example, some bike-sharing systems incentivize customers to rent bikes from stations with
many available bikes and return to those with many empty docks by giving fare discounts [10–12].
Implementing the customer-oriented rebalancing strategies should consider the following tasks:
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(1) Determine the optimal number of bikes for each station; (2) Deal with the changing of bike demand
over time in a day; (3) Suggest the incentive station which cannot be too far from customer’s original
target station; and (4) Set an appropriate bonus for the customer under a limited budget. In existing
studies, the incentive strategies will be implemented only when a station’s number of bikes is not
enough. However, the station is already in a bad state when its number of bikes is not enough, which
will effect the performance of incentive measures.

In this paper, we propose a strategy which can help the system choose a suitable time and
determine a suitable station for implementing the incentive measure. Based on the proposed strategy,
a bike-sharing system can effectively lengthen its uptime. First, the proposed strategy calculates the
most suitable number of available bikes for each station. Then it determines the station which has
the largest capacity for renting. In addition, the walking distance is also considered in the strategy.
Take an instance in Figure 1—a customer intends to rent a bike at station S1. At present, S1 has eight
available bikes, which is less than the optimal state (ten available bikes). According to the idea of our
proposed strategy, a returning action is helpful for S1 to reach its optimal state rather than a renting
action. Therefore, the system should incentivize him to rent a bike at station S2. S2 is within r1 meters
away from S1. After this rebalancing, the states of S1 and S3 will not be worse. At the same time,
S2 can also reach its optimal state. For the bike-sharing system, the result reduces the probability of
the imbalance problem occurring in future. The main contributions of this work are listed as follows.

• An algorithm based on the Random Walk Process with two absorption walls (RWTAW) is proposed
to calculate the optimal state of each station at a specific time. We prove that a station in the
optimal state has the lowest possibility of being empty or full.

• An algorithm called the largest the first (TLTF) is proposed to choose the optimal station among
the candidate stations on consideration of the walking distance and the minimal influence for the
chosen station.

• Through establishing a simulation model of BSS based on historical datasets, we verify the
effectiveness of our strategy for solving the imbalance problem compared with the truck-based
static and dynamic strategies.

S1:8|10

S2:11|10 S3:10|10

S4:10|10

r1 

Figure 1. Example of renting process.
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The rest of this paper is organized as follows. Section 2 gives an outline of the development of BSS
and research on rebalancing optimization; the problem statement and the framework are presented
in Section 3; Section 4 introduces the details of the RWTAW and TLTF algorithms; we talk about the
performance of the proposed rebalancing strategy in Section 5; finally, we conclude this work and look
forward to future research in Section 6.

2. Related Work

BSS has achieved great development, with the goal of solving the “last kilometer” problem
in cities [13], since it was first built in Amsterdam in 1965. The first kind of BSS is the traditional
dock-based bike sharing system in which a customer must rent and return the bike at a dock and the
number of docks at each station is fixed, such as the CitiBike in New York and the Hubway in Boston.
The second is the dockless bike-sharing system such as the Mobike and Ofo in China. Each bike has
a unique QR code and GPS tracking model. These two technologies increase the ease of use and
management. The biggest advantage of the dockless bike-sharing system is customers can easily rent
bikes via a smartphone app and park the bikes at any valid places [14–16]. The convenience also brings
some problems, for example, operators have to rebalance the bikes. The existing studies on BSS mainly
focus on the following aspects.

2.1. System Rebalancing

In BSS, system rebalancing is the main method for solving the imbalance problem. The truck-based
rebalancing strategies and the customer-oriented rebalancing strategies are two popular approaches.
In this section, we will introduce these two approaches in detail.

2.1.1. Truck-Based Rebalancing

The truck-based rebalancing approaches have two main challenges, that is, determining the
optimal inventory for each station and designing the optimal truck route with budget constraint.
The approaches can be summarized into two categories according to the time of rebalancing. (1) Static
Repositioning. Chemla et al. [4] used a branch-and-cut algorithm based on the tabu search to
obtain the upper bounds and feasible routing solutions. However, their work only focused on
solving the repositioning with a single vehicle in part of the city area. For the static bicycle
repositioning problem under multiple vehicles, Raviv et al. [17] used the mixed integer linear
program (MILP) to minimize the routing cost and customer dissatisfaction. Schuijbroek et al. [18]
presented a rigorous cluster-first route-second heuristic to solve the inventory determining and
routing decision problems. For the dockless system, Liu et al. [19] developed an enhanced version of
chemical reaction optimization to solve the static bike repositioning problem by considering multiple
heterogeneous vehicles, multiple depots and multiple visits. Pal and Zhang [5] presented a Novel
Mixed Integer Linear Program for solving the static rebalancing problem in a free-floating bike sharing
system. They also presented a hybrid nested large neighborhood search for large-scale bike sharing
programs. (2) Dynamic Repositioning. Chiariotti et al. [20] used the Birth-Death Process to model
a station’s occupancy and proposed a dynamic rebalancing strategy. They first determined the optimal
inventory for stations and then modeled the path-planning problem as a vehicle routing problem
and adopted the greedy heuristic to dynamically redistribute bikes every hour. Contardo et al. [8]
presented a mathematical programming formulation for the dynamic repositioning problem and
obtained the lower bounds and feasible solutions by using the decomposition schemes. Li et al. [9]
proposed a spatio-temporal reinforcement learning (STRL) model for dynamic bike repositioning.
They first proposed an inter-independent inner-balance clustering algorithm to cluster stations into
groups. Then they utilized the O-Model and the I-Model to predict the demands of renting and
returning respectively. Lastly, for each cluster, the STRL obtains the optimal inner-cluster reposition
policy based on a deep neural network. Liu et al. [21] developed a multi-source optimization approach
for the rebalancing problem. They proposed an Adaptive Capacity Constrained K-centers Clustering
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(AdaCCKC) algorithm which can reduce the large-scale multiple vehicle routing problem to an inner
cluster one vehicle routing problem with guaranteed feasible solutions. Then the vehicle rebalancing
route can be optimized by a mixed integer nonlinear programming (MINLP) model.

The drawbacks of the static and dynamic truck-based strategies are the expensive truck operating
costs and the pollution of tail gas. Some researchers therefore now pay more attention to the
customer-oriented rebalancing strategies.

2.1.2. Customer-Oriented Rebalancing

The customer-oriented rebalancing approach is to solve the imbalance problem by providing
customer incentives (bonus, fare discount or otherwise) without deploying trucks. For example,
Singla et al. [11] proposed a method on the basis of a crowdsourcing mechanism [22] to incentivize
customers to rent or return bikes at specific station. In their work, the dynamic pricing mechanism with
a limited budget was proposed. It utilizes the regret minimization approach to maximize rebalancing
efficiency. Chemla et al. [10] proved that the dynamic regulation problem is NP-hard (non-deterministic
polynomial-time) and presented a heuristic to circumvent it. In their work, the pricing technique
based on the linear programming was proposed. Fernandez et al. [23] designed a bike sharing system
simulator to evaluate incentive-based rebalancing strategies. Some incentive strategies have been
adopted in BSS. For instance, the work of Fricker and Gast [12] was used in the Velib+ system (in Paris).
The incentive strategy is that customers will receive additional riding time for free if they return bikes at
uphill stations. They also proved that the system can improve the operating efficiency if the customers
who enjoy the incentive strategy park their bikes at two or more stations in a bad state. According to
the current and predicted state of the system, Pfrommer et al. [24] proposed the price incentive scheme
which takes into account the model-based predictive control principles. In a free-floating bike sharing
system, Pan et al. [25] proposed a novel deep reinforcement learning framework for incentivizing
users. Their work modeled the rebalancing problem as a Markov decision process and took both
spatial and temporal features into consideration. The proposed Hierarchical Reinforcement Pricing
(HRP) algorithm shows great performance on a dataset from Mobike, a major Chinese dockless bike
sharing system. More recently, Diez et al. [26] proposed a persuasion model to recommend the optimal
station and the shortest riding route between two locations. The model combines the argumentation
theory and the characteristics of customers. In our work, the rebalancing strategy, which is based
on the Random Walk process and integrates the walking distance between stations, was designed.
The proposed strategy helps to lengthen the station’s working time by inferring the optimal station for
customers.

2.2. System Prediction

The prediction of bike demand is crucial for the bike repositioning problem. An accurate prediction
can improve the effect of repositioning. Some station-level predicting models have been proposed.
For example, Zeng et al. [27] proposed a station-centric model which takes into account the global
features such as weather, user activity and season. Kaltenbrunner et al. [28] adopted the auto-regressive
moving-average (ARMA) model to predict the number of bikes and docks for each station. Similarly,
Yoon et al. [29] used a modified autoregressive integrated moving average (ARIMA) model to predict
the available resources at each station. In their work, the spatial interaction and temporal factors are
considered. Unlike the station-level prediction, some models are proposed according to the clustering
of stations with similar patterns of usage. For example, Li et al. [30] proposed a hierarchical prediction
model to predict the check-out/in of each station cluster. They first clustered the stations by the
bipartite clustering algorithm based on the geographical locations of stations and transition patterns
and then predicted the entire traffic in the city by way of the gradient boosting regression tree (GBRT)
model. Finally, the rental proportion across clusters was predicted by a multi-similarity-based inference
model. Chen et al. [31] proposed a dynamic cluster-based framework for over-demand bike prediction.
Recently, neural networks have been adopted to predict bike demand. Liu et al. [32] proposed
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a prediction model based on artificial neural networks (ANN). The model utilizes a set of features such
as human mobility data, POI and station network structures. Lin et al. [33] proposed a novel graph
convolutional neural network to predict the hourly demand in a BSS.

2.3. System Design and Traffic Pattern Analyzing

System design, including the station layout, capacity, and price policy, is the premise of
successfully operating a bike sharing system. Dell’Olio et al. [34] calculated the potential demand
of bike usage in a city and the price the customer would like to pay. They also proposed a location
model with the help of geographical information about the stations. Chen and Sun [35] proposed
a mathematical model to formulate the layout of public bike stations with the objective of minimizing
users’ total travel time. Lin and Yang [36] designed the strategic planning of BSS with service level
considerations. They proposed an optimization model including a nonlinear integral and greedy
heuristic to help operators determine the number of stations, the network structure of bike paths
connecting the stations and the travel paths for users between each origin and destination station.
In addition to the system design and efficient operation, the traffic pattern analysis is another
important topic, such as the bike usage pattern and the transition pattern across stations in BSS [37–39].
Understanding the traffic pattern of BSS is helpful for operating the system efficiently and knowing
the mobility of a city. Furthermore, the massive real trajectories generated by users help to solve some
city problems, such as bike lanes planning [40] and illegal parking detection [41].

3. Design Overview

3.1. Problem Statement

In this paper, we focus on a bike sharing system in which the station is fixed. Generally, a BSS
has n stations. The set of stations is defined as S = {S1, S2, . . . , Sn}. The maximum capacity of station
Si is defined as Mi. mi(t) represents the available bikes at station Si at time t. We model the bike
sharing system as a fully connected graph G = {S, I}. Each node Ii,j = (Si, Sj) corresponds to the edge
between two stations Si and Sj. The edges are weighed by walking distance metric ri,j. Notations used
in this paper are shown in Table 1.

We set the scene of rebalancing as follows. A customer will query the information about stations
on his mobile phone before his trip. After the customer selects the station at which he will rent a bike,
the bike system immediately checks the station’s state. If the number of the station’s available bikes is
less than its optimal state, the system would incentivize the customer to another station according to
the states of nearby stations and the walking distance. We hope the whole system can obtain the least
values of three metrics, that is, the unworking time, the proportion of lost customers and the times of
reposition. The detailed definitions of the three metrics are introduced in Section 5. The selection of
the recommended station at which the system incentivizes the customer to rent bikes is the main task
in this work. Formally, the problem is defined as follows:

Problem Definition: Given the station Si at which a customer will rent a bike, the bike system will
determine whether to incentivize the customer to another station Sj or not. If needed, the bike system
should output the recommendation station Sj.
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Table 1. Notations.

n Total number of stations
Ii,j The edge between station Si and Sj
Mi Capacity of station Si
mi(t) Available bikes of station Si at time t
ri,j Walking distance from Si to Sj
pi,j The probability ride from Si to Sj
Ti,j Trip duration by bike from Si to Sj
t(k) The time period in the day indexed by slice k
λi(k)/µi(k) The customer arrival rate for renting/returning at Si
OPi,k The optimal state of Si during time t(k)
OSt The optimal station for renting at time t

3.2. Framework

Figure 2 shows the framework of our bike-sharing system with the rebalancing strategy, which
consists of the following three components:

• Customer Module: This module is designed to simulate the behaviors of customers. In BSS, there
are two processes that need to be modeled. One is the customers’ arrival process for renting
at a station and the other is the arrival process for returning. Previous studies [42,43] have
demonstrated that these two processes can be described by the inhomogeneous Poisson process.
According to the definition of the Poisson process, in BSS, we need to determine the arrival rate.
λi(t) and µi(t) are defined as the arrival rates corresponding to the two processes, respectively.
The arrival rate represents the number of customers arriving at the station per unit time. Therefore,
λi(t) and µi(t) are two important parameters in the customer module. Moreover, the trip duration
is necessary for each trip. According to the analysis of historical data (as shown in Section 5),
the distribution of trip duration fits well with the lognormal distribution. Therefore, the trip
duration for a certain trip is a random number of log-normal distribution in our simulated BSS.

• Station Module: We design this module to simulate the states of stations in the BSS. Each station
in the system has three properties: geographic location, capacity and transition matrix.
The geographic location is decided by the latitude and longitude. The capacity represents the
number of docks. The transition matrix includes the probabilities that customers ride bikes from
station Si (departure station) to other stations. The geographic location and capacity are defined
in the system. The transition matrix can be obtained by the historical records.

• System Control Module: This module is the core part of rebalancing in the BSS. The optimal state
of a station is calculated by the RWTAW algorithm. The TLTF algorithm calculates the optimal
station based on the walking distance and the current states of the candidate stations. The control
module is the main contribution of this work. We will describe the details of the RWTAW and
TLTF algorithms in the next section.
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Figure 2. Framework of simulate system.

4. Methodology

4.1. The Optimal State Calculating

In the BSS, we hope the station can keep the optimal state as long as possible, thus it should have
the lowest possibility that it will be empty or full in future. Motivated by this idea, OPi,k is defined as
the optimal state of Si at time slice k. It can be calculated on the basis of the probability that station
becomes either empty state (mi(t) = 0) or full state (mi(t) = Mi). Formally, it can be defined as follows:

OPi,k = arg min
a

Pa, ∀a ∈ {1, 2, . . . , Mi − 1} (1)

where Pa is the probability that station becomes either empty or full during time t(k) and it is
calculated by:

Pa = Pa→0 + Pa→Mi (2)

where Pa→0 and Pa→Mi respectively represent the probabilities that station Si becomes empty state and
full state when the current state mi(t) = a.

Random Walk is a mathematical statistical model [44,45], which has a wide range of applications.
For example, researchers have studied the application of the Random Walk model in finance
prediction [46], high level data classification [47] and social network optimization [48,49]. A
one-dimensional random walk can be looked at as a Markov chain whose state space is given by the
integers τ (τ = 0,±1,±2, . . . ). The Random walk with two absorption states (τ1 and τ2) at both ends
is an important model. The model stops walking once it reaches either absorption state. For an initial
state τa (τ1 < τa < τ2), the probability Pτa represents walking from τa to either absorption state. Pτa

can be calculated as follows:

Pτa =

(
q
p
)τa−τ1 − (

q
p
)τ2

1− ( q
p )

τ2
(3)
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where p represents the probability of walking toward τ2 at each step, q represents the probability of
walking toward τ1 at each step.

In this paper, we describe the state changing process of each station by the one-dimensional
Random Walk process. In a bike sharing system, a station’s state has only two changing directions:
the empty state (mi(t) = 0) and the full state (mi(t) = Mi). The state of a station goes one step toward
the empty state when a renting event occurs. In the same way, the state of station goes one step toward
the full state when a returning event occurs. For a middle state mi(t) = a, if 0 < a < OPi,k, the smaller
the value of a, the larger the probability that the station will become empty; if OPi,k < a < Mi,
the larger the value of a, the larger the probability that the station will become full. We assume that the
station will stop working and wait for supplementary as long as its state becomes either empty or full.
Thus, the empty state and full state of a station correspond to two absorption walls.

Specifically, given the total changing steps e1 and e2, if the station becomes empty after e1 steps,
the probability for this case is calculated by the following formula:

Pa→0 =
e1

∑
i=0

Ci
a+2i × Pa+i

rent × Pi
return (4)

Similarly, Pa→Mi is given as:

Pa→Mi =
e2

∑
i=0

Ci
Mi−a+2i × PMi−a+i

return × Pi
rent (5)

Prent and Preturn, respectively, represent the probabilities of a renting event and a returning event
for each step at a station. The constraints of total steps e1 and e2 are:

e1 = min{Renti,k − a, Returni,k} (6)

e2 = min{a−Mi + Returni,k, Renti,k} (7)

In a bike sharing system, the process by which customers arrive at a station to rent or return
bikes can be described by the Poisson process [43]. The renting intensity of Poisson process Renti,k
corresponds to the total number of customers who rent at station Si during time t(k). The returning
intensity of Poisson process Returni,k corresponds to the total number of returning customers. Renti,k
and Returni,k can be calculated as follows:

Renti,k = λi(k)× T (8)

Returni,k = µi(k)× T (9)

where λi(k) and µi(k) correspond to the customer arrival rate for renting and returning respectively.
T is the length of time slice k. It is worth noting that we divide a day into 24 time slices. For instance,
λi(8) means the arrival rate for renting from 7:00 am to 8:00 am.

According to the Renti,k and Returni,k, the probabilities of renting (Prent) and returning (Preturn) at
each step at time slice k are defined respectively as follows:

Prent =
Renti,k

Renti,k + Returni,k
(10)

Preturn =
Returni,k

Renti,k + Returni,k
(11)

In Equations (10) and (11), we ignore the influence of customers’ arrival order for renting and
returning and only focus on the total number of customers that have arrived in this time period [20].
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The above discussions indicate that the proposed RWTAW algorithm can describe the changing
state of a station during a certain period. Algorithm 1 gives the details of calculating OPi,k.
This proposed algorithm can be computed in O(n) operations. The total runtime of the algorithm is
determined by the capacity of the station. Next, we will introduce how to choose the optimal station at
which the system incentivizes the customer to rent bikes.

Algorithm 1: RATAW
Input: λi(k), µi(k): customer arrival rate for renting and returning, Mi: capacity of station, T:

length of time slice
Output: OPi,k: optimal state

1 for station Si ∈ S do
2 for time slice k ∈ {1, 2, . . . , 24} do
3 init a = 0, P = P0, OPi,k = 0 ;
4 while a ≤ (Mi − 1) do
5 a = a + 1 ;
6 compute Pa→0 and Pa→Mi by Equation (4), Equation (5) ;
7 compute Pa by Equation (2) ;
8 if Pa < P then
9 P = Pa ;

10 OPi,k = a ;
11 end
12 end
13 end
14 end
15 Return OPi,k ;

4.2. The Optimal Station Selecting

When a customer chooses his target station Si at time t on the APP (application program) of
BSS, the system would incentivize him to rent bikes at another optimal station OSt if Si is not in its
optimal state (mi(t) < OPi,k). Two issues need to be solved before deciding the optimal station: (1) The
selected station should be as close as possible to the customer’s target station, because customer may
be unwilling to walk too far; and (2) The incentive measure should have a minimal impact on the
station’s sustainable working or can help the station be closer to its optimal state. Aiming to solve
these two issues, we proposed the TLTF algorithm to determine the optimal station OSt which satisfies:

OSt = arg max
Sj

δj,k, ∀Sj ∈ Ci (12)

where Ci is the set of candidate stations. We choose Ci based on the maximum distance r that customers
are willing to walk [11]. Specifically, we select the stations which are no more than r from Si as the
candidate stations in Ci:

Ci = {Sj | d(Si, Sj) ≤ r} (13)

In Equation (12), δi,k represents the difference between the current state of station Si and its
optimal state at time slice k, which is the key influence on OSt. Its definition is given as follows:

δi,k = mi(t)−OPi,k (14)

If δi,k > 0, the rebalancing strategy will not be triggered when a customer chooses Si for renting.
If δi,k 6 0, the system will incentivize him to rent bikes at station OSt. As defined in Equation (12),
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the station OSt is the one which has the largest difference between its current state and the optimal
state. The procedure to determine the optimal station OSt is described in Algorithm 2. The complexity
of the algorithm is O(n).

Algorithm 2: TLTF
Input: OPi,k:optimal state for Si at time slice k, D1×n−1:matrix of distance between Si and left

n− 1 stations, r: distance
Output: OSt:optimal station the system incentivizes customer to rent a bike

1 Note that D1×n−1 = {d(Si, S1), d(Si, S2), . . . , d(Si, Sn−1)} ;
2 init Ci: set of candidate stations ;
3 foreach station Sj, j = 1, 2, . . . , i− 1, i + 1, . . . , n do
4 if d(Si, Sj) ≤ r then
5 add Sj into Ci ;
6 end
7 end
8 compute δi,k by Equation (14) ;
9 if δi,k > 0 then

10 the customer rent at station Si ;
11 else
12 compute δ for stations in Ci ;
13 determine the optimal station OSt by Equation (12) ;
14 incentivize customer to rent at station OSt ;
15 end

5. Experimental

5.1. Data Set Description

The datasets used in this paper were obtained from Bay Area, a bike sharing system in San
Francisco. We have uploaded the datasets to github (https://github.com/TwinkleBill/babs_open_
data_year_3). The datasets include 68 stations’ records from 1 September 2015 to 31 August 2016. Each
record includes the status of station and customer’s trajectory information. We give a visualization of
the stations in Figure 3 and show the statistical information of the datasets in Table 2.

(a) (b)

Figure 3. Map of the Bay Area bike sharing system. (a) Stations in Bay Area; (b) Stations in our simulation.

https://github.com/TwinkleBill/babs_open_data_year_3
https://github.com/TwinkleBill/babs_open_data_year_3
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Table 2. Details of the Dataset.

Data source Bay Area
Time span 1 September 2015 to 31 August 2016
Stations 68 (ID, name, latitude, longitude, capacity, city, installation date)
Trajectory trips 314,000
Status records 36 million (the number of available bikes and docks)

5.2. Performance Metrics for Bike-Sharing System

Here we define three metrics to evaluate the performance of the rebalancing strategies in a bike
sharing system.

• The unworking time: The sum of the duration time of the stations which keep empty or full.
The unsatisfactory service increases when a station is in its unworking time, since customers have
no available bikes or docks to use. The smaller the unworking time of the system, the smaller the
probability of failing to rent bikes or return bikes.

• The proportion of lost customers (γlost): γlost is defined as follows:

γlost =
nlost

nlost + nride
(15)

where nlost is the number of customers who fail to rent or return a bike, nride is the number of
customers who successfully ride a bike. The smaller the value of γlost, the better the performance
of the system.

• The times of reposition: The number of bikes that need to be rebalanced (the truck-based
rebalancing strategies) or the number of customers (the customer-oriented rebalancing strategies).
In terms of the truck-based rebalancing strategies, the times of relocating bikes corresponds to
the truck operating costs. For customer-oriented rebalancing strategies, the incentive cost also
increases with the increasing number of incentive customers. To simplify things, the cost of
delivering a bike is seen as the same as incentivizing a customer. Obviously, the smaller the times
of reposition, the less the costs of rebalancing.

5.3. Parameter Setting

In the simulative bike sharing system, we need to set the following parameters: (1) λi and µi,
the customer arrival rates for renting and returning at station Si respectively. (2) The distribution
parameters of trip duration Ti,j. (3) The walking distance r in the TLTF algorithm.

As discussed before, for each station in a BSS, the arrival processes of customers for renting
and returning can be described by the Poisson process [43], which indicates that the time interval
between two adjacent events should obey the exponential distribution. We analyzed the time interval
distribution of the experimental data and found that most of the stations followed the exponential
distribution. We take the historical records of the station named “San Jose Diridon Caltrain Station”
from 7:00 a.m. to 8:00 a.m. (the morning peak [50], as shown in Figure 4) as an example. Figure 5a
shows the time interval distribution of the renting process. It follows the exponential distribution

with the parameter λ =
1

11.5208
. Thus, we utilize the Poisson process with λi =

1
11.5208

to simulate
the renting process of customers at this station from 7:00 a.m. to 8:00 a.m. Similarly, as shown in
Figure 5b, the Poisson process with µi =

1
8.4724 is used to simulate the returning process. In the RWTAW

algorithm, the values of λi and µi of each station are different.
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Figure 4. The renting and returning bikes by hours. (a) Renting by hours; (b) Returning by hours.
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Figure 5. Statistical information of time interval and trip duration. (a) Rent; (b) Return; (c) Trip Duration.

The trip duration is also an important parameter in the simulation system. As shown in
Figure 5c, the distribution of trip duration obeys the lognormal distribution (the mean is 6.2806
and the sigma is 0.7032). In our simulation system, the trip duration of each trip is generated by this
lognormal distribution.

In order to demonstrate the effectiveness of our simulated bike sharing system, the result of one
simulation of the station named “San Jose Diridon Caltrain Station” is illustrated in Figure 6. We plot
the variation of the number of bikes rented by customers. The changing pattern of the simulation is in
line with that of the empirical data. According to the results of the simulation, we have confidence that
the simulated bike sharing system with the aforementioned parameters can reproduce the results of
a real system.

In TLTF, the value of walking distance r is crucial, because it will take more incentivizing bonus
to encourage customers to rent bikes at stations further away. Furthermore, the r is also related to
the computational cost of the algorithm. In other words, a large value of r means lots of stations
will be selected as candidate stations by the algorithm when it calculates the OSt. On the other side,
the increase of r may help to select the optimal station for renting. Figure 7 shows the influence of
distance r on the performance of the system. When r increases from 600 m to 1000 m, the unworking
time and the proportion of lost customers decrease. Because the candidate stations will include
more stations with an increase of the walking distance r. For example, in the datasets, S14 is the only
candidate of S2 when r = 600 m, while the candidate stations consist of S4, S5 and S14 when r = 1000 m.
However, the result will be bad if the walking distance is too far. As we can see, the unworking time
and the proportion of lost customers increase when r = 1200 m. Although a large r increases the
number of candidate stations, it also leads to an increase in the size of the intersection of candidate
stations. These stations will be recommended by the system. In this case, they will become empty



Energies 2019, 12, 2578 13 of 18

or full soon. So the unworking time and the proportion of lost customers increase when r = 1200 m.
We also care about the relationship between the probability of a customer’s acceptance of walking
distance and people’s travel behavior [51], and count each station’s walking distance to its adjacent
stations which are not more than 1000 m away. We find that the stations uniformly distribute within
1000 m away from a center station. We think the acceptance probability of this walking distance is also
suitable for customers, because they have a wide choice for purpose station [11]. Therefore, we set
r = 1000 m.
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Figure 6. Simulation Results of station named “San Jose Diridon Caltrain Station”.
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Figure 7. System performance with different r in TLTF.

In addition, we also analyze bike usage on workdays and weekends. As shown in Figure 8,
the patterns of the system on workdays are similar, that is, two peaks respectively appear at 10:00
a.m. and 18:00 p.m. One is the morning peak, the other is the evening peak (the two peaks for whole
system are 8:00 a.m. and 18:00 p.m., as shown in Figure 4a). However, the patterns on weekends
are distinctly different. On weekends, the usage is lower than that on workdays, and is irregular.
Such a phenomenon is consistent with what we have mentioned before, that is, commuting time is
an important factor which leads to the stable traffic pattern on workdays. Therefore, in this work,
we only simulate the operation of the bike sharing system on workdays. The parameters of the system
are the same on each workday.

Note that in the dataset of Bay Area, stations are distributed into four districts (as shown in Figure 3a).
There are no trajectories between any two different districts. The reason is that customers generally do
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not choose bikes for long-distance travel. Therefore, stations in our simulation system are all in “San Jose”
which has 15 stations (as shown in Figure 3b). The probability of choosing the returning station for the
customer satisfies the uniform distribution. Experiments indicate that such an assumption does not
influence the time interval distribution of a customer’s arrival process for returning to a station, which
still fits well with the exponential distribution.
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Figure 8. Bike usage on workdays and weekends. (a) Monday; (b) Tuesday; (c) Wednesday; (d)
Thursday; (e) Friday; (f) Saturday; (g) Sunday.

5.4. Results

In order to validate the proposed strategy, we compared it with three scenarios: the system with
no rebalancing, the static rebalancing strategy and the dynamic rebalancing strategy. Note that our
target is to verify the effectiveness of the rebalancing strategy, so we do not take too much care on the
truck routing problem and the price strategy of incentive in this paper.

• No Rebalancing (NR): We operate the system without any intervention, even if there appears full
or empty stations.

• Static Rebalancing (SR): The static rebalancing strategy is that we bring the stations to their optimal
state once a day, at 3:00 a.m., as in Reference [7].

• Dynamic Rebalancing (DR): The dynamic rebalancing strategy proposed in Reference [20]
calculates the optimal state for stations first, and then makes each station be in its optimal
state at the beginning of every i hours. In our experiments, we simulate three DR strategies, that is,
i = 1, 4, 8.

Figure 9 shows the system’s performance with different rebalancing strategies. The system with
no rebalancing gets the worst performance on the unworking time and the proportion of lost customers.
Compared with the NR strategy, the SR strategy decreases by nearly 40% and 39% on these two metrics,
respectively. With the decrease of the scheduling time interval, the effectiveness of the dynamic strategy
improves (in DRi, i = 1, 4, 8). As shown in Figure 9, among the three DR strategies, the one which has
the shortest scheduling time interval (i = 1) has the least unworking time and the smallest proportion
of lost customers. However, its times of reposition is the largest. According to the simulation results,
the proposed rebalancing strategy can obtain the smallest proportion of lost customers with the proper
times of reposition. At the same time, the unworking time is also within our acceptance.
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Figure 9. Comparison of system performance.

In BSS, the traffic pattern changes rapidly. The rapid response of the system is important for
offering customers a better service. Thus, the rebalancing algorithm should be in real-time. For static
strategies, they are implemented at the system’s idle time, which means there is no user in the system
during this period. So we do not have to pay attention to the real-time performance of static strategies.
Table 3 shows the runtime of our strategy and the DR strategy [20] to calculate a station’s optimal state
at a specific hour. There are four stations. The capacity of each station is 11, 15, 19 and 27 respectively.
As we can see, the increase of the station’s capacity increases the computing time. The time cost of the
DR strategy is greater than ours. The results show that our strategy is real-time and efficient.

Table 3. Comparison of runtime of calculating the optimal state.

StationID (Capacity) DR Ours

Runtime (s) Optimal State Runtime (s) Optimal State

2(27) 13.352 8 0.026 6
5(19) 9.765 5 0.008 5
6(15) 10.533 8 0.014 9
4(11) 7.224 8 0.012 7

6. Conclusions

In this paper, we designed a customer-oriented rebalancing strategy for bike sharing systems.
On the basis of the one-dimension Random Walk process with two absorption walls, we infer the
probability that a station becomes empty or full, which is useful to both system operators and customers.
The proposed strategy includes two algorithms called RWTAW and TLTF respectively. The RWTAW
calculates the optimal state of the station. The TLTF determines the optimal station at which the
system encourages customers to rent. Compared with the truck-based static and dynamic rebalancing
methods, our strategy has the best performance on decreasing the imbalance of the system while
keeping the rebalancing cost as low as possible. In future work, we will explore how to predict the
number of bikes for each station to improve customer satisfaction.

Author Contributions: conceptualization, P.Y. and F.H.; methodology, P.Y.; software, P.Y.; validation, P.Y., F.H.
and J.P.; formal analysis, P.Y.; investigation, F.H.; resources, J.P.; data curation, P.Y.; writing–original draft
preparation, P.Y. and F.H.; writing–review and editing, P.Y., F.H. and J.P.; visualization, P.Y.; supervision, P.Y.;
project administration, J.P.; funding acquisition, J.P.



Energies 2019, 12, 2578 16 of 18

Funding: This research was funded by the National Key Research and Development Project with Grant No.
2017YFB0202403, Sichuan Key Research and Development Program (2017GZDZX0003-02, 2019KJT0015-2018GZ0098),
and the Sichuan University-Zigong Science and Technology Fund (2018CDZG-15).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, B.; Zhu, J. Impact of energy saving and emission reduction policy on urban sustainable development:
Empirical evidence from China. Appl. Energy 2019, 239, 12–22. [CrossRef]

2. Fishman, E.; Washington, S.; Haworth, N. Bike share’s impact on car use: Evidence from the United States,
Great Britain, and Australia. Transport. Res. Part D-Transport. Environ. 2014, 31, 13–20. [CrossRef]

3. Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis. Appl. Energy 2018,
220, 296–301. [CrossRef]

4. Chemla, D.; Meunier, F.; Calvo, R.W. Bike sharing systems: Solving the static rebalancing problem.
Discret. Optim. 2013, 10, 120–146. [CrossRef]

5. Pal, A.; Zhang, Y. Free-floating bike sharing: Solving real-life large-scale static rebalancing problems.
Transp. Res. Part C-Emerg. Technol. 2017, 80, 92–116. [CrossRef]
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