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Abstract: Reactive volt-ampere sources planning is an effort to determine the most effective investment
plan for new reactive sources at given load buses while ensuring appropriate voltage profile and
satisfying operational constraints. Optimization of reactive volt-ampere sources planning is not only
a difficult problem in power systems, but also a large-dimension constrained optimization problem.
In this paper, an ordinal optimization-based approach containing upper and lower level is developed
to solve this problem efficiently. In the upper level, an ordinal search (OS) algorithm is utilized to
select excellent designs from a candidate-design set according to the system’s structural information
exploited from the simulations executed in the lower level. There are five stages in the ordinal search
algorithm, which gradually narrow the design space to search for a good capacitor placement pattern.
The IEEE 118-bus and IEEE 244-bus systems with four load cases are employed as the test examples.
The proposed approach is compared with two competing methods; the genetic algorithm and Tabu
search, and a commercial numerical libraries (NL) mixed integer programming tool; IMSL Numerical
Libraries. Experimental results illustrate that the proposed approach yields an outstanding design
with a higher quality and efficiency for solving reactive volt-ampere sources planning problem.

Keywords: reactive volt-ampere; sources planning; ordinal optimization; simulation optimization;
ordinal search; outage

1. Introduction

Reactive volt-ampere sources planning is an effort to determine the most effective investment plan
for new reactive sources at given load buses while ensuring appropriate voltage profile and satisfying
operational constraints [1,2]. Reactive volt-ampere source planning has been studied without paying
much consideration to the time-varying characteristic of reactive power. In general, resource and
transmission planners adopt a classical power factor band for the reactive power flow at grid interface
points and focus on future active power demand using conventional load forecasts. Optimization
of reactive volt-ampere sources planning involves optimizing the sizes of the switchable capacitors
and allocation optimization. The goal of this problem is decreasing the system real losses, improving
the voltage profile, and achieving the reactive power demand when the system expands. Common
objective functions include the cost of the installed reactive power sources and overall system’s real
losses. The switchable capacitor bank plays a crucial role in the reactive power demand, since it adjusts
the reactive power injection for maintaining the local voltage profile under different loading conditions.
Most power networks are public facilities, and their investment budgets need approval from the
Congress. However, unavoidable budget cuts occur frequently. The reactive power installation cost is
served as the objective value, and it is also regarded as an investment constraint to extract the whole
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available budget. Thus, the goal is to minimize the weighted sum of system losses for different loading
cases subject to the following four constraints: (i) switchable capacitor constraints, (ii) investment
constraints on reactive power sources of switchable capacitor banks, (iii) security constraints of all load
cases, and (iv) power flow balance equations.

The considered problem is difficult to solve because the allocation and sizes of the capacitor
placement are integer and discrete values, respectively. A variety of methods have been successfully
employed for solving this kind of problem [3–8]. In most existing methods, the exact form does not
consider the integer and discrete variables simultaneously. With the advancements in computational
technologies, optimization methods including the meta-heuristic [9], swarm intelligence [10] and
direct search method [11], which was developed for solving the recent reactive volt-ampere sources
planning problems. Although these methods are able to handle integer, discrete and continuous
variables, they are often time-consuming. Simulation optimization technique is an alternative to solve
the considered problem. Simulation optimization is frequently used for searching the optimal input
setting to optimize the output performance of a simulated system [12,13]. Zhu et al. proposed a
mixed-integer particle swarm optimization algorithm on optimal placement of battery energy storage
systems to improve power system oscillation damping, in which the New England 39-bus system
and the Nordic test system were used as test examples [14]. Abdelaziz and Moradzadeh presented a
parallelized implementation of NSGA-II using OpenCL to solve the multi-objective renewable DG
planning problem, where the IEEE 32-bus test system and two real distribution test systems were
used as test examples [15]. Roberts et al. proposed a probabilistic simulation-based multi-objective
optimization approach for dimensioning robust renewable based Hybrid Power Systems, where a
rural community of the Amazonian region of Brazil was used as a test example [16]. Ebrahimzadeh
et al. presented a multi-objective optimization procedure based on the genetic algorithm to decide
optimum design of power converter current controllers in power electronics-based systems, where a
400-MW wind farm with 100-MW aggregated strings was used as a test example [17].

We adopt the framework of simulation optimization to the reactive volt-ampere sources planning
problem by two mappings: (i) the pattern of capacitor placement is regarded as an input setting; and
(ii) the weighted sum of system losses for various load cases is regarded as the output performance.
The framework of the proposed ordinal optimization-based approach is shown in Figure 1. The
performance of a real system can be approximated as an output of the computer simulation by
solving an optimal power flow (OPF)-like problem. However, the considered problem with both
continues, and discrete variables belong to a type of NP-complete optimization problems due to the
huge design space of the discrete control variables setting. Accordingly, it is much more difficult to
solve the mixed continuous and discrete control variables optimization problems within a reasonable
computation time. In addition, solving a large-scale OPF-like problem is very time-consuming because
a lengthy simulation is used to evaluate the performance of a design. To overcome this drawback, an
ordinal optimization-based approach containing upper and lower level is proposed for solving the
reactive volt-ampere sources planning problems. An ordinal search (OS) algorithm is adopted as an
optimization technique in the upper level, and a dual-type method [18–20] is used as the simulation
tool in the lower level to solve the large-scale OPF-like problems.
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There are five stages in the proposed OS algorithm, whose basic idea is to perform ranking and
selection at each stage. A design vector contains all bus complex voltages, real and reactive power
generations, load demands and the transformer tap ratios of all load cases. A feasible design vector
must satisfy the following four constraints: switchable capacitor constraints, investment constraints on
reactive power sources of switchable capacitor banks, security constraints of all load cases, and power
flow balance equations. Efficiently ranking the designs in the candidate-design set at every stage is
based on a model constructed by the system’s structural information exploited from the simulations.
The selected excellent designs will construct the reduced candidate-design set for next stage. The OS
algorithm is adopted to solve for a superior design at the last stage. The advantage of the proposed
method is to reduce the required simulation time dramatically by concentrating on finding good
enough designs instead of insisting on picking the best design. However, obtaining a good enough
subset of designs may not be very satisfactory in some cases. The disadvantage of the proposed method
is that it does not offer an absolute guarantee of the global optimality.

The first contribution of this research is to develop a simulation model for reactive volt-ampere
sources planning problems, which is mapping to an optimal power flow (OPF)-like problem. The
second contribution is to propose an ordinal optimization-based approach for solving the OPF-like
problem, in order to determine an outstanding design in a short computational time. The third
contribution is to employ the proposed approach for three network configurations with one outage,
two outages and three outages in heavily load cases.

The organization of this paper is as follows. Section 2 introduces the considered problem and
describes the mathematical formulation of the reactive volt-ampere sources planning with multiple load
cases. Section 3 presents the OS five stages approach. In Section 4, the IEEE 118-bus and IEEE 244-bus
systems are used as the examples to test the proposed ordinal optimization-based approach. We
also compare the computational performance and the design quality with two competing algorithms,
genetic algorithm (GA) and Tabu search (TS), and a commercial numerical libraries (NL) mixed integer
programming routine, IMSL Numerical Libraries. Finally, Section 5 draws a brief conclusion.

2. Mathematical Formulation

The reactive volt-ampere sources planning problem belongs to a class of constrained multi-objective
optimization problems. Objective functions utilized in this problem are usually due to the overall
system’s real losses, the cost of the installed reactive power sources, or both [21,22]. In most countries,
the power network is a public facility whose investment budget needs approval from the Congress.
Most of the time, the overall investment budget is within a certain limit. Supposing that the cost of
reactive volt-ampere sources placements is minimized; the installation cost will exceed the investment
budget. Therefore, the sum of weighted system losses of various loading profiles is treated as an
objective function. Meanwhile, the installation cost is treated as an investment constraint so as to
exploit the entire available budget. Hence, the reactive volt-ampere sources planning problem can be
formulated as follows.

min
N∑

i=1
αiPLi

subject to g(xi, δT
J CJ,i) = 0, i = 1, . . . , N,

h(xi) ≤ 0, i = 1, . . . , N,
0 ≤ δwCw,i ≤ δwCw, w ∈ J, i = 1, . . . , N,∑

w∈J
δw(qow + qwCw) ≤M

(1)

where N is amount of load cases; xi denotes the design vector, which can be variable vector of all
bus complex voltages, real and reactive power generations, load demands and the transformer tap
ratios of the ith load case and are of the continuous variables; αi and PLi represent the weighting
factor and overall system losses of the ith load case, respectively; g(xi, δT

J CJ,i) = 0 represents the flow
balance equations of the ith load case; h(xi) ≤ 0 is the security constraints on real and reactive power
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generations, voltage magnitude, and real power line flow; J denotes the set of candidate buses to install
switchable capacitors banks; Cw is the switchable capacitor banks installing at bus w, CJ = (Cw, w ∈ J),
C Ĵ = (Cw, w ∈ Ĵ); Cw,i is the part of bus w’s in load case i, CJ,i = (Cw,i, w ∈ J), C Ĵ,i = (Cw,i, w ∈ Ĵ);
δJ = (δw, w ∈ J), if bus w is installed, then δw = 1, else, δw = 0; qw is the cost per MVAR capacitance;
qow is the installation cost at bus w; and M is the overall investment budget. The considered problem
is difficult to solve because CJ,i and CJ belong to discrete variables while δJ = (δw, w ∈ J) belong to
integer variables.

3. Simulation Optimization

The key idea of the proposed OS algorithm is based on the ordinal optimization (OO) theory [23,24].
OO is not intended to replace the other optimization approaches. Instead, it is utilized to assist other
optimization approaches. OO theory uses the term “order” rather than “value” to resolve the computing
complexity, and provides a high probability guarantee to an outstanding design. In OO theory, a good
enough or outstanding solution is defined as a solution that is among the top 3.5% of all solutions
with a high probability of 0.95 [23]. This does not mean that a good enough solution is within 3.5%
of the optimal cost. For many problems, a fairly large number of solutions perform close to the true
optimum. In these cases, the qualitative difference among good enough polices is small and more than
offset by the expense of trying to find the best solution. OO theory has been used extensively and
successfully in some hard optimization problems, including network-type production line [25], flow
line system [26], assemble-to-order systems [27] and pull-type production system [28].

3.1. Five Stages in the OS Algorithm

The five stages in the OS algorithm are stated below.
Stage (i): apply sensitivity theory for searching the effective locations to place capacitors.
The sensitivity theory is adopted to search for the effective locations among J to place capacitors

and decide δw, w ∈ J. Firstly, every candidate bus in J is installed with a settled 1-bank capacitor,
and all components of δJ in the flow balance equations are equal to 1. Note that the purpose of this
fictitious assumption is to extract the structural information of the system to assist decision about the
effective locations for placing capacitors. Thus, the investment constraint and the switchable capacitors
constraint in (1) can be ignored, and problem (1) can be simplified as follows.

min
N∑

i=1
αiPLi

subject to g(xi, Co
J) = 0, i = 1, . . . , N,

h(xi) ≤ 0, i = 1, . . . , N

(2)

where Co
J denotes the capacitance vector of 1-bank capacitor at all buses w ∈ J. Thus, problem (2) can

be solved by the lower level in Figure 1 so as to extract the structural information for the upper level,
then the OS algorithm is used to select the effective locations. In addition, the dual-type method [18] is
adopted as the simulation tool for solving (2).

Based on the sensitivity theory [29], the sensitivity of deviation for objective value of (2) caused by

the increase on the capacitance Co
w, w ∈ J is computed by

∑N
i=1

∂g(xi,Co
J )

∂Cw
λi, where λi denotes the optimal

Lagrange multiplier vector of load case i. If the value of
∑N

i=1
∂g(xi,Co

J )

∂Cw
λi is negative and large, then

increasing Co
w will decrease the overall system losses. It means that bus w has a stronger effect on

lowering the objective function. Accordingly, sensitivity of cost reduction along with each candidate
bus resulted from solving (2) will be provided to the upper level to rank the candidate buses in J.
Details of the process are stated as follows.

First, all candidate buses w ∈ J are ranked according to the sensitivity values, i.e.,
∑N

i=1
∂g(xi,Co

J )

∂Cw
λi.

The smaller the sensitivity value, the higher the order. Let b1, . . . , b|J| denote the ranked indices of
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w,∀w ∈ J, where
∣∣∣(·)∣∣∣ denotes the amount of buses in (·). Thus, the bus b1 is the highest order candidate

bus. Starting from b1, we subtract the corresponding qow and qwCo
w from the M,. This subtraction

is proceeded until all of the investment budget is exhausted. If the subtraction is terminated at the
candidate buses bl, where l ≤ |J|, then {b1, . . . , bl} construct the effective buses that allocate the switchable
capacitors. Furthermore, {b1, . . . , bl} can be partitioned into Ĵo sets of effective candidate buses.

Stage (ii): search the refined locations through simulation and obtain the optimal continuous
value of the capacitance.

In Stage (i), the sensitivity approach just roughly estimates the performance of locations for
placing capacitors. In Stage (ii), a simulation approach is used to decide the refined ones from the
candidate buses obtained in Stage (i). The value of δw, w ∈ Ĵo for the refined locations is still one, while
the remaining values are zero.

To achieve this target, the ready to place capacitors are assumed to be continuous values. Since
there are many iterative processes between the upper level and lower level, we let Ĵ := Ĵo in the
beginning. Ĵ is defined as the set of the refined candidate buses to install switchable capacitor banks
obtained from Stage (ii). We then set δw = 1, w ∈ Ĵ in the flow balance equations. After subtracting qow

candidate buses in Ĵ from M, problem (1) can be reformulated as follows:

min
N∑

i=1
αiPLi

subject to g(xi, CĴ,i) = 0, i = 1, . . . , N,
h(xi) ≤ 0, i = 1, . . . , N,
0 ≤ Cw,i ≤ Cw, w ∈ Ĵ, i = 1, . . . , N,∑
w∈ Ĵ

qwCw ≤Mr

(3)

where CĴ,i and CĴ are assumed to be continuous, and Mr = M−
∑

w∈ Ĵ qow.
Since problem (3) belongs to the simulation level, the dual-type method [18–20] is utilized for

solving it. Once this issue has been resolved, the obtained optimal continuous values of CĴ are used
to update Ĵ and Mr in the upper level. A small value of one-bank optimal continuous capacitance
represents that it is ineffective to locate this capacitor. If there is any optimal continuous Cw, w ∈ J,
which is less than the capacitance of one bank, this set of buses, say W’s, from Ĵ will be discarded.
Therefore, we can compute Ĵ := Ĵ/W in (3) in the upper level. We can also calculate the value of Mr

in (3) by Mr = M−
∑

w∈ Ĵ qow using the updated Ĵ. This iterative process is repeated until the optimal
value of capacitance in each bus is greater than or equal to 1-bank. The last Ĵ represents the refined
buses determined by Stage (ii). The value of δw, w ∈ Ĵ ⊂ Ĵo, is still one, while the remaining values are
zero. The obtained optimal continuous design of C Ĵ and C Ĵ,i, for (3) with the most updated Ĵ and Mr,

are denoted by C
c
Ĵ and Cc

Ĵ,i
, i = 1, . . . , N, respectively, and the corresponding optimal xi, i = 1, . . . , N

are denoted as xc
i , i = 1, . . . , N. We denote xc

i and λc
i as the optimal xi and vector of optimal Lagrange

multiplier for the flow balance equations of the ith load case in the continuous version of optimal
capacitance value determination problem (3), respectively.

Stage (iii): choose the s excellent discrete capacitors placement patterns using a rough model of (1).
Although the values of optimal C

c
Ĵ and Cc

Ĵ,i
resulted from Stage (ii) are continuous, their adjacent

discrete values may be viewed as good discrete designs. However, there are totally 2| Ĵ| combinations of

the adjacent discrete patterns for placing switchable capacitors. Let C
d
Ĵ (l) represent the lth discrete

pattern vector, l = 1, . . . , 2| Ĵ|, where C
d
Ĵ (l) = (C

d
w(l), w ∈ Ĵ), so that C

d
w(l) =

⌈
C

c
w

⌉
or

⌊
C

c
w

⌋
, w ∈ Ĵ.

However, merely the discrete patterns C
d
Ĵ (l) satisfying the investment constraint are feasible. Assuming

there are K(≤ 2| Ĵ|) feasible patterns satisfying the investment constraint, these K patterns are denoted

as C
d
Ĵ (l j), l j = 1, . . . , K. What needs to be further clarified is the part of C

d
w(l j) utilized in load case i,
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which will influence the value of αiPLi . To assess the performance of a discrete pattern C
d
Ĵ (l j), we have

to consider all the possible selections of switchable capacitors Cd
Ĵ,i

, i = 1, . . . , N corresponding to that
pattern and determine the one that can achieve the optimal objective value, which will be taken as the

performance of the given C
d
Ĵ (l). However, choosing the best Cd

Ĵ,i
, i = 1, . . . , N is another combinatorial

problem. Thus, we will determine an exceptional choice instead of the best as addressed in [20]. First,

we evaluate the exceptional selections of Cd
Ĵ,i

, i = 1, . . . , N for a given C
d
Ĵ . Next, we calculate the minimal

deviation concerning the objective value caused by the deviations of C
d
Ĵ and Cd

Ĵ,i
, i = 1, . . . , N from the

optimal continuous values of C
c
Ĵ and Cc

Ĵ,i
, i = 1, . . . , N for (3). The detail processes are stated as follows.

(1) Evaluate the exceptional selections within Cd
Ĵ,i

, i = 1, . . . , N for a given C
d
Ĵ (l j)

Firstly, the discrete values for closest left and right side of Cc
w,i are denoted as

⌊
Cc

w,i

⌋
and

⌈
Cc

w,i

⌉
,

respectively. Consider a discrete capacitor placement pattern, C
d
Ĵ (l j), load case i has at most 2| Ĵ|

exceptional selections of the adjacent discrete values of Cc
Ĵ,i

. We let Gi(l j) represent the number of

acceptable exceptional selections of Cd
Ĵ,i

for load case i such that Gi(l j) ≤ 2| Ĵ|. Then, the total amount of

exceptional selections of Cd
Ĵ,i

, i = 1, . . . , N is G1(l j) × · · · ×GN(l j). We let Cd
Ĵ,i
(m), i = 1, . . . , N represent

the mth choice of Cd
Ĵ,i

, i = 1, . . . , N, where 1 ≤ m ≤ G1(l j) × · · · × GN(l j). We define ∆C(l j, m) =

(∆CĴ,1(m), . . . , ∆C Ĵ,N(m)) as the deviation of the mth discrete capacitor (Cd
Ĵ,1
(m), . . . , Cd

Ĵ,N
(m)) from

the optimal continuous (Cc
Ĵ,1

, . . . , Cc
Ĵ,N

), where ∆CĴ,i(m) = Cd
Ĵ,i
(m) − Cc

Ĵ,i
, i = 1, . . . , N. Details of the

minimal deviations concerning the objective values of (3) caused by the total deviation ∆C(l j, m) for a

given C
d
Ĵ (l j) are stated below.

(2) Compute the minimal deviations concerning the objective value caused by all deviations
∆C(l j, m), m = 1, . . . , G1(l j) × · · · ×GN(l j).

Consider a given C
d
Ĵ (l j), the deviation concerning the objective value caused by all deviations of

capacitance values ∆C(l j, m), denoted by
∑N

i=1αi∆PLi

∣∣∣
∆C(l j,m)

, is calculated by the sensitivity theory.

N∑
i=1

αi∆PLi |∆C(l j,m) �
N∑

i=1

λc
i
T[
∂g(xi, Cc

Ĵ,i
)

∂CĴ,i
∆C Ĵ,i(m)]. (4)

The minimization problem concerning the deviations
∑N

i=1 αi∆PLi |∆C(l j,m) caused by the ∆C(l j, m)

is formulated as follows.

min
m

N∑
i=1

αi∆PLi |∆C(l j,m). (5)

We define m(l j) = arg
{
min

m

∑N
i=1αi∆PLi

∣∣∣
∆C(l j,m)

}
and denote the minimum objective value of (5)

by
∑N

i=1αi∆PLi

∣∣∣
∆C(l j,m(l j))

.

Since no discrete pattern can achieve a better objective value than the optimal values of C
c
Ĵ and

Cc
Ĵ,i

, i = 1, . . . , N, thus
∑N

i=1αi∆PLi

∣∣∣
∆C(l j,m(l j))

≥ 0 for any deviation ∆C(l j, m(l j)). In fact, the smaller the∑N
i=1αi∆PLi

∣∣∣
∆C(l j,m(l j))

is, the better the discrete pattern (C
d
Ĵ , Cd

Ĵ,i
(m(l j)), i = 1, . . . , N) will be. Thus, by

the aid of
∑N

i=1αi∆PLi

∣∣∣
∆C(l j,m(l j))

, we are ready to choose the top s patterns.

(3) Choosing the top s patterns.

The K feasible patterns C
d
Ĵ (l j), j = 1, . . . , K are ranked based on the

∑N
i=1αi∆PLi

∣∣∣
∆C(l j,m(l j))

from the

smallest to the largest. The former s (C
d
Ĵ (l j)) patterns are selected as the excellent discrete capacitor
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placement patterns, which are denoted as C
d
Ĵ (lr), lr = 1, . . . , s. The corresponding switchable capacitors

for load case i, are denoted as Cd
Ĵ,i
(m(lr)).

Stage (iv): determine the top k from the s patterns using a quadratic approximation model of (1).
Suppose each candidate bus may install 1 to p banks, the original candidate-design set will

consist of p|J| patterns. Provided that p = 3 and |J|=20, then p|J| ≈ 3× 109. This means the size of the
candidate-design set has reduced from 3× 109 to s(= 35) up to present stage. However, evaluating
these s patterns using an accurate model of (1) is still time-consuming. According to [20], a quadratic
approximation model of (1) is used to assess these s patterns, and the top k, say 3, patterns would

contain the superior design. Because the s discrete patterns, C
d
Ĵ (lr), lr = 1, . . . , s, and the corresponding

Cd
Ĵ,1
(m(lr)), . . . , Cd

Ĵ,N
(m(lr)), lr = 1, . . . , s, resulted from Stage (iii) have satisfied the investment and

switchable capacitors constraints, the following quadratic approximation model of (1) is adopted to
assess the s patterns.

min
N∑

i=1
αi[∆xT

i
∂2PLi
∂x2

i
|xi=xc

i
∆xi+

∂PLi
∂xi
|xi=xc

i
∆xi]

subject to g(xi, Cd
Ĵ,i
(m(lr))) +

∂g
∂xi
|xi=xc

i
∆xi = 0, i = 1, . . . , N,

h(xi) +
∂h
∂xi
|xi=xc

i
∆xi ≤ 0, i = 1, . . . , N

(6)

where the switchable capacitors and ready to place capacitors for all load cases in (1) are settled

at C
d
Ĵ (lr) and (Cd

Ĵ,1
(m(lr)), . . . , Cd

Ĵ,N
(m(lr))), and the quadratic approximation is assessed at xc =

(xc
1, . . . , xc

N). The dual-type method proposed in [18–20] is used for solving (6), since the quadratic
approximation model in (6) is a quadratic programming problem. Let ∆x∗(lr) represent the optimal

design of (6), then x̂(lr) = xc + ∆x∗(lr) is an approximate design of (1) under the given C
d
Ĵ (lr) and the

corresponding (Cd
Ĵ,1
(m(lr)), . . . , Cd

Ĵ,N
(m(lr))). Furthermore,

∑N
i=1 αiPLi(x̂(lr))denotes the corresponding

approximate objective value. The top k (C
d
Ĵ (lr)) patterns with smaller approximate objective values∑N

i=1 αiPLi(x̂(lr)), lr = 1, . . . , s are selected for next stage.
Stage (v): employ the accurate model to assess the k patterns resulted from Stage (iv) and determine

the superior design of (1).

The top k capacitors placement patterns selected in Stage (iv) are denoted as C
d
Ĵ (ln), ln = 1, . . . , k,

whose switchable capacitors for load case i are denoted as Cd
Ĵ,i
(m(ln)). Because the top k discrete

patterns C
d
Ĵ (ln) and the corresponding (Cd

Ĵ,1
(m(ln)), . . . , Cd

Ĵ,N
(m(ln))) have satisfied the investment and

switchable capacitors constraints, the following accurate model of (1) is adopted to assess the k patterns.

min
N∑

i=1
αiPLi

subject to g(xi, Cd
Ĵ,i
(m(ln)) = 0, i = 1, . . . , N,

h(xi) ≤ 0, i = 1, . . . , N.

(7)

The dual-type method is employed for solving the OPF of multiple load cases shown in (7).

Let min
∑N

i=1 αiP∗Li
(ln) represent the optimal objective value of (7) for C

d
Ĵ (ln) and

(Cd
Ĵ,1
(m(ln)), . . . , Cd

Ĵ,N
(m(ln))). Let l∗n = arg{min

ln

∑N
i=1 αiP∗Li

(ln)}, thus C
d
Ĵ (l∗n) is the superior capacitor

placement pattern, and Cd
Ĵ,i
(m(l∗n)) is the superior part of discrete switchable capacitors for load case i.
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3.2. Flow Diagram of the Ordinal Search (OS) Algorithm

The flow diagram of the OS algorithm is displayed in Figure 2. In the lower level, the simulation
tool utilized to solve (2) in Stage (i), solving (3) in Stage (ii), solving (6) in Stage (iv) and solving (7) in
Stage (v) is the dual-type method [18].
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4. Experiment Results

4.1. Test Examples and Results

The IEEE 118-bus and IEEE 244-bus systems with four load cases are employed as the test examples.
The size of a bank was 14.4 MVAR. The upper limit of capacitor banks for capacitors was 3, which
can be coded using two bits. The cost of installation and switchable capacitor bank were $1000 and
$900 USD, respectively. There are five cases of investment budget, which are M = $40,000, $50,000,
$60,000, $70,000 and $80,000 USD. The weighting factor αi was equal to 1 for load cases i = 1, . . . , 4. The
values of s and k in Stages (iii) and (iv) were set to be 35 and 3, respectively. The simulation experiment
was coded in C++ in Microsoft Visual Studio 2013 and implemented on an Intel Core i7, 4.6 GHz CPU,
8 GB RAM desktop computer.

Tables 1 and 2 show the simulation results of the superior capacitor placement patterns for five
investment cases. Column 2 presents the actual amount of investment (installation costs). Columns 3
and 4 display the system losses and the consumed CPU time, respectively. Column 5 displays the
number of candidate buses in Ĵ resulted from Stage (ii) of the proposed approach. Figures 3 and 4
display the objective value corresponding to the investment budget for five investment cases. The
more the investment budget, the lower the real power loss. The reactive volt-ampere sources installing
to the system not only compensate the reactive power, but also reduce the power losses. Test results of
reactive volt-ampere locations and size on the IEEE 118-bus [30] and 244-bus systems [31] are shown in
Tables 3 and 4, respectively.
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Table 1. Results of the proposed approach on the IEEE 118-bus system.

Budget M
($)

Actual Investment
($)

Objective Values O1
(MW)

CPU Time
(seconds) |Ĵ|

40,000 37,100 66.1228 1.65 11
50,000 48,200 58.8867 1.68 14
60,000 59,300 52.9694 1.78 17
70,000 64,900 49.5524 1.79 19
80,000 76,000 48.1205 1.82 22

Table 2. Results of the proposed approach on the IEEE 244-bus system.

Budget M
($)

Actual Investment
($)

Objective Values O1
(MW)

CPU Time
(seconds) |Ĵ|

40,000 39,800 138.3324 7.56 11
50,000 48,100 124.7231 7.74 13
60,000 59,200 114.9530 8.22 16
70,000 69,500 109.0737 8.30 20
80,000 79,600 107.1801 8.45 22
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Table 3. Reactive volt-ampere locations and installed banks of the IEEE 118-Bus system.

Budget M ($) 40,000 50,000 60,000 70,000 80,000
Location

no.
Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

1 11 3 11 3 11 3 11 3 11 3
2 19 2 19 2 19 3 19 3 19 3
3 23 2 23 3 23 3 23 3 23 3
4 27 3 27 3 27 3 27 3 27 3
5 37 3 37 3 37 3 37 3 37 3
6 56 3 56 3 56 3 56 3 56 3
7 62 2 62 2 62 2 62 2 62 3
8 77 3 77 3 77 3 77 3 77 3
9 92 3 92 3 92 3 92 3 92 3

10 96 2 96 3 96 3 96 3 96 3
11 106 3 106 3 106 3 106 3 106 3
12 – – 5 2 5 2 5 2 5 3
13 – – 64 2 64 3 64 3 64 3
14 – – 88 3 88 3 88 3 88 3
15 – – – – 70 2 70 2 70 3
16 – – – – 68 3 68 3 68 3
17 – – – – 105 2 105 2 105 2
18 – – – – – – 12 2 12 2
19 – – – – – – 51 2 51 2
20 – – – – – – – – 48 2
21 – – – – – – – – 75 2
22 – – – – – – – – 110 2

Table 4. Reactive volt-ampere locations and installed banks of the IEEE 244-Bus system.

Budget M ($) 40,000 50,000 60,000 70,000 80,000
Location

no.
Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

Bus
no.

Installed
Banks

1 30 3 30 3 30 3 30 3 30 3
2 51 3 51 3 51 3 51 3 51 3
3 61 3 61 3 61 3 61 3 61 3
4 77 3 77 3 77 3 77 3 77 3
5 91 3 91 3 91 3 91 3 91 3
6 92 3 92 3 92 3 92 3 92 3
7 111 3 111 3 111 3 111 3 111 3
8 166 2 166 3 166 3 166 3 166 3
9 216 3 216 3 216 3 216 3 216 3

10 225 3 225 3 225 3 225 3 225 3
11 227 3 227 3 227 3 227 3 227 3
12 – – 79 3 79 3 79 3 79 3
13 – – 236 2 236 3 236 3 236 3
14 – – – – 1 3 1 3 1 3
15 – – – – 102 3 102 3 102 3
16 – – – – 106 3 106 3 106 3
17 – – – – – – 189 2 189 3
18 – – – – – – 224 1 224 3
19 – – – – – – 53 2 53 3
20 – – – – – – 173 2 173 3
21 – – – – – – – – 130 2
22 – – – – – – – – 209 2

Test results further demonstrate that the proposed approach gradually narrows the design space
to search for a good capacitor placement pattern. In addition, the random selection is used to select the
candidate location on the same test system, whose results are also shown in Tables 5 and 6. Test result
without capacitors are also shown in Tables 5 and 6. Column 4 shows the power loss reduced rates,
and it reveals that the proposed approach yields a good capacitor placement pattern.



Energies 2019, 12, 2746 11 of 16

Table 5. Results for each candidate matter of M = 80,000 case on the IEEE 118-bus system.

Methods Objective Values O1
(MW)

Actual Investment
($) Power Loss Reduced Rate

Without capacitors 113.7812 0 –
Random selection 72.8300 76,000 35.99%

Proposed approach 48.1205 76,000 57.71%

Table 6. Results for each candidate matter of M = 80,000 case on the IEEE 244-bus system.

Methods Objective Values O1
(MW)

Actual Investment
($) Power Loss Reduced Rate

Without capacitors 227.0201 0 –
Random selection 150.6278 79,600 33.65%

Porposed approach 107.1801 79,600 52.79%

4.2. Comparison with the Competing Methods

To demonstrate the computing efficiency of the proposed method, two heuristic methods, GA
and TS methods were utilized to solve the IEEE 118-bus system under the same five investment cases.

In the GA, a binary coding scheme was used to express the feasible capacitors placement patterns
and the related switchable capacitors used in all load cases. The population size was 30. Roulette wheel
selection was employed to select parents from mating pool for crossover. A two-point crossover with a
crossover rate 0.7 was utilized, and the generated offspring will replace the parents in the mating pool.
A mutation with rate 0.02 was performed on each resulted individual in the mating pool [32]. The
fitness of each individual was evaluated by the dual-type method for solving the continuous OPF of
multiple load cases. The points marked by “∆” in Figure 5 represent the progression of the best-so-far
objective values versus the consumed CPU time for the GA applied to the investment case 1. The point
marked by “∗” represents the objective value and the consumed CPU times resulted from the proposed
approach. GA consumed about 150 times of the CPU time consumed by the proposed approach, whose
corresponding best-so-far objective value was 21% more than our approach. In Figure 5, the points
marked by “�” represent the progression of the best-so-far objective value versus the consumed CPU
time for the TS. When the TS consumed about 150 times of the CPU time consumed by the proposed
approach, its best-so-far objective value is still 32% more than our approach.
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The remainder of the four investment cases were also tested using both methods with the dual-type
method. They were terminated when they consumed around 150 times of the CPU time consumed by
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the proposed approach. Experiment results are shown in Tables 7 and 8, respectively. The percentages
of objective value reduction are shown in columns 4 of Tables 7 and 8. Accordingly, the computational
efficiency and objective reduction are significance of the proposed method with respect to the two
heuristic methods, GA and TS, which were utilized to solve the IEEE 118-bus system under the same
five investment cases.

Finally, with an existing benchmark commercial NL mixed integer programming tool, we compared
the International Mathematics and Statistics Library (IMSL) Numerical Libraries [33]. The IMSL C
Numerical Library 2016.1 was utilized to solve the same investment cases on the seven IEEE systems,
which are the IEEE 6-bus, 9-bus, 11-bus, 30-bus, 57-bus, 118-bus and 244-bus systems. Test results
are shown in Table 9. No result is obtained with the IMSL for the IEEE 118-bus and 244-bus system
because of the large memory requirement. The proposed approach is 84.21 times faster than IMSL for
the IEEE 57-bus system and experiences an exponential growth of speed-up ratio when the system size
is increased.

Table 7. Results on the IEEE 118-bus system using the GA.

Budget M
($)

Actual Investment
($)

Objective Value OG
(MW)

Object. Value red.
OG − OI

OI
× 100%

CPU Time
(Sec.)

40,000 25,200 80.0159 21.01% 232.73
50,000 28,200 80.1924 36.18% 209.50
60,000 31,000 78.3342 47.89% 258.92
70,000 34,600 75.4880 52.34% 250.65
80,000 33,800 77.9135 61.91% 255.84

Table 8. Results on the IEEE 118-bus system using the TS.

Budget M
($)

Actual Investment
($)

Objective Value OT
(MW)

Object. Value red.
OT − OI

OI
× 100%

CPU Time
(Sec.)

40,000 18600 87.4152 32.20% 209.00
50,000 11200 96.6673 64.16% 206.06
60,000 9400 99.7849 88.38% 237.86
70,000 7500 101.2972 104.42% 202.18
80,000 7500 100.0942 109.69% 239.31

Table 9. Comparisons of the proposed approach with the IMSL numerical libraries for various
IEEE systems.

IEEE
Systems

Budget M
($) |Ĵ|

Final Obj. Value (MW) CPU Time (Sec.) Speed-up
Ratio (II/I)Our App. IMSL Our App. (I) IMSL (II)

6-bus 5000 2 41.95 41.95 0.04 0.13 3.25
9-bus 7000 2 33.65 33.65 0.11 0.39 3.54

11-bus 7000 2 27.32 27.32 0.12 1.13 9.41
30-bus 11,000 3 22.97 22.97 0.24 8.21 34.21
57-bus 20,000 6 37.04 37.04 0.28 23.58 84.21

118-bus 40,000 11 66.12 - 0.83 - -
244-bus 40,000 11 138.33 - 3.78 - -

4.3. Multiplicity of Configurations

To test the performance due to outages, the proposed ordinal optimization-based approach was
applied for different network configurations of the IEEE 118-bus system. Firstly, we calculated the
power flows of all transmission lines in heavily load cases and selected the top four lines (Lines 14-15,
23-32, 62-66 and 101-102) with large power flows, as indicated in Table 10. Secondly, we applied the
proposed approach for three network configurations with one outage, two outages and three outages
in heavily load cases. The obtained objective values for three different network configurations are
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shown in Tables 10–12. Column 2 of Tables 10–12 show the objective values without outage. Columns
3 to 6 in Tables 10–12 show the objective values of four cases with one outage, two outages and three
outages, respectively. Test results show that the objective values of new network configurations slightly
increase for all cases. Actually, the proposed ordinal optimization-based approach for solving (1) can
work properly for different network configurations, except for the incremental objective values.

Table 10. Results for one outage on the IEEE 118-bus system.

Budget
M ($)

Objective Values
O1 (MW)

Case 1
Line 14-15

Case 2
Line 23-32

Case 3
Line 62-66

Case 4
Line 101-102

40,000 66.1228 67.3026 66.4918 66.2439 67.8421
50,000 58.8867 60.7235 58.9831 60.2090 60.4789
60,000 52.9694 54.5842 53.0359 55.5249 54.7753

Table 11. Results for two outages on the IEEE 118-bus system.

Budget
M ($)

Objective
Values

O1 (MW)

Case 1
Line 14-15
Line 23-32

Case 2
Line 23-32
Line 62-66

Case 3
Line 62-66

Line 101-102

Case 4
Line 101-102

Line 14-15

40,000 66.1228 66.4842 66.1123 67.8220 68.3532
50,000 58.8867 59.7301 58.9490 61.6985 62.8257
60,000 52.9694 54.5448 53.3249 54.7271 56.2231

Table 12. Results for three outages on the IEEE 118-bus system.

Budget M
($)

Objective
Values

O1 (MW)

Case 1
Line 14-15
Line 23-32
Line 62-66

Case 2
Line 23-32
Line 62-66

Line 101-102

Case 3
Line 14-15
Line 62-66

Line 101-102

Case 4
Line 14-15
Line 23-32

Line 101-102

40,000 66.1228 66.6751 68.0312 68.0976 68.5908
50,000 58.8867 60.3298 60.8323 62.6996 63.0502
60,000 52.9694 54.3795 54.3238 56.1794 55.2237

4.4. Discussion About System Losses and Actual Investment

The classical objective function is formulated as

min
{
SystemLosses + (1/ Ke) × ActualInvestment} (8)

where Ke denotes energy cost per unit ($/Kwh) and actual investment is of the installation costs.
Based on the consideration of the investment budget shown in Table 1, Figure 6 shows the

relationship between the system losses and the installation costs (actual investment) of various budget
examples of investment on the IEEE 118-bus system. From Figure 6, the system losses are dropping
by way of linearity with the increase of the installation costs. More simulations are run for various
budgets from M = $30,000 to $150,000. Test results are shown in Figure 7. When the installation costs
rise to a certain degree, system losses will not drop continually.

As Ke is large, the optimal design of the classical objective function is located in the turning point
of Figure 7, which is the objective value of system losses with the budget M = $80,000. When energy is
shortage and the price of electricity is very high, we can disregard the installation costs. Details of the
analyses and test results (~M = $90,000) are shown in Table 13, in which “∗” represents the optimal
design of classical goal function under constant Ke and different Ke corresponds to different installation
costs in the optimal designs of classical objective function. From the above discussions, this work
not only obtains the optimal budget efficiently, but also provides the decision maker integrated and
circumspect suggestion.
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Table 13. Transform the test results into the classical objective values on the IEEE 118-bus system.

Budget
M

Actual
Investment

Objective Values
(System Losses)

The Classical Objective Values
(System Losses + (1/Ke) × Actual Investment)

Ke = 10,000 Ke = 2500 Ke = 1667 Ke = 1250 Ke = 833 Ke = 625

0 0 113.7812 113.7812 113.7812 113.7812 113.7812 113.7812 * 113.7812
30,000 29,600 73.75 76.71 85.59 91.51 97.43 * 109.27 121.11
40,000 37,100 66.1228 69.8328 80.9628 88.3828 * 95.8028 110.6428 125.4828
50,000 48,200 58.8867 63.7067 78.1667 * 87.8067 97.4467 116.7267 136.0067
60,000 59,300 52.9694 58.8994 76.6894 88.5494 100.4094 124.1294 147.8494
70,000 64,900 49.5524 56.0424 * 75.5124 88.4924 101.4724 127.4324 153.3924
80,000 76,000 48.1205 * 55.7205 78.5205 93.7205 108.9205 139.3205 169.7205
90,000 76,000 48.1205 * 55.7205 78.5205 93.7205 108.9205 139.3205 169.7205

“*” represents the optimal design of classical goal function.

5. Conclusions

Reactive volt-ampere sources planning problems is difficult to solve due to involving integer
variables concerning the placement locations and discrete variables on the number of capacitors
banks to be installed. An ordinal optimization-based approach is developed to solve the sources
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planning problem in this work. The proposed approach is efficient in the algorithmic aspects and
has some special features: (i) simulation model is from very crude to accurate one within the five
ordinal search (OS) stages; (ii) each simulation model is mapping to a continuous-variable OPF; and
(iii) the system’s structural information exploited from lower level assists the upper level to determine
excellent designs from the candidate-design set. The IEEE 118-bus and IEEE 244-bus systems are
adopted as the examples to test the proposed approach. To compare the computational performance
and the design quality, the proposed approach is compared with GA, TS and IMSL Numerical Libraries.
Experiment results reveal the high computational efficiency and the solid quality of the obtained
superior design. However, the disadvantage of the proposed method is that it does not offer an absolute
guarantee of the global optimality. The ordinal optimization-based approach is not limited to the two
test examples. Indeed, it can apply to extremely complex and very large-scale network systems. In
the future works, the parallel processing technique within asynchronous computing can be used to
solve the extremely complex and very large-scale network systems. Based on the characteristics of
timesharing and partitioned processing, each area has its own load conditions and the corresponding
networks for different time period.
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