
  

Energies 2019, 12, 3285; doi:10.3390/en12173285 www.mdpi.com/journal/energies 

Article 

ATR-FTIR Model Development and Verification  
for Qualitative and Quantitative Analysis in MDEA–
H2O–MEG/TEG–CO2 Blends 
Usman Shoukat, Eva Baumeister and Hanna K. Knuutila * 

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU),  
7491 Trondheim, Norway 
* Correspondence: hanna.knuutila@ntnu.no 

Received: 26 June 2019; Accepted: 20 August 2019; Published: 26 August 2019 

Abstract: A Fourier transform infrared (FTIR) spectroscopy method was developed to identify and 
quantify various components in an amine-based combined acid gas and water removal process. In 
this work, an attenuated total reflectance (ATR) probe was used. A partial least-squares (PLS) 
regression model was also developed using up to four components (methyl diethanolamine 
(MDEA)-H2O-CO2-ethylene glycol/triethylene glycol (MEG/TEG)), and it was successfully 
validated. The model was applied on thermally degraded CO2-loaded MDEA blends to predict the 
weight percentages of MDEA, H2O, CO2, and MEG or TEG to test the performance spectrum. The 
results confirmed that FTIR could be used as a simpler, quicker and reliable tool to identify and 
quantify various compounds such as MDEA, MEG/TEG, H2O and CO2 simultaneously in a 
combined acid gas and water removal process. 

Keywords: Fourier transform infrared (FTIR) spectroscopy; acid gas removal; N-
Methyldiethanolamine; monoethylene glycol; triethylene glycol 

 

1. Introduction 

Norway produced 124.16 million Sm3 oil equivalents of natural gas (NG) in 2017, which is 5.96% 
higher than in 2016 (Source: The Norwegian Petroleum Directorate 
(https://www.norskpetroleum.no/en/facts/production/)). Natural gas has impurities such as acid gases 
(hydrogen sulfide (H2S) and carbon dioxide (CO2)), water vapor, and mercury, etc. CO2 in the 
presence of water vapors can cause corrosion, and it can also reduce the heating value of natural gas. 
[1–3]. H2S is a poisonous gas and can cause instant death at concentrations over 500 parts per million 
(ppm) [4,5]. Moreover, water vapor and methane can form ice-like solids called hydrates, increasing 
the corrosion rate and/or plug gas pipelines [6]. Conventionally, acid gases and water vapor are 
removed separately from natural gas before its use; this two-step process increases the investment 
and operational costs [7,8]. Absorption by using alkanolamines is the most commonly used 
technology for natural gas sweetening and CO2 capture processes, while tertiary amines (like 
methyldiethanolamine) are known to absorb H2S selectively [9]. Ethylene glycol (MEG) and 
triethylene glycol (TEG) are used for H2O removal and hydrate control [10]. Norway natural gas 
production mostly comes from offshore facilities. Therefore, developing combined subsea selective 
acid gas (H2S/CO2) removal along with water vapor will reduce both the environmental footprint and 
the operational costs. Hutchinson, McCartney, and Chapin studied combined acid gas and water 
removal [11–14]. A blend of MEA and diethylene glycol was the first system used for combined acid 
gas removal and dehydration, but it is no longer considered competitive due to high amine 
degradation and severe corrosion at a high reboiler temperature [9]. Tertiary amine systems, like a 
blend of methyl diethanolamine (MDEA) with glycols (MEG/TEG), have lower amine degradation 
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and corrosion rates [9,15]. Therefore, MDEA blends with MEG/TEG were also recently explored for 
simultaneous acid gas and water removal [16,17]. 

Fourier transform infrared (FTIR) spectroscopy has previously been used as an analytical 
technique to monitor online reaction chemistry [18]. Molecules’ dipole movements due to molecular 
deformations are measurable in the mid-IR region (4000–400 cm–1), which allows many chemical 
compounds to be identified and quantified [19]. FTIR with a partial least-squares (PLS) model has 
been used as an alternative calibration technique for real-time performance monitoring. It requires 
calibration and validation datasets, which cover a full range of process gas pressures and amine 
concentrations, however, this combination does not provide accurate results outside the calibration 
and validation dataset. [19]. The FTIR and PLS combination has been used successfully to extract 
process information data from the CO2 absorption system [20] and also from the simultaneous 
absorption of the CO2 and SO2 in a pilot plant [21]. Furthermore, FTIR was used to measure both 
inorganic and organic compounds in amine-based post-combustion carbon capture (PCCC) in flue 
gas [22–24] and also in an ammonia-based CO2 capture process [25]. Also, it was used to measure the 
concentrations in the simultaneous absorption of CO2 and H2S in the aqueous methyldiethanolamine 
(MDEA) system [26]. Cuccia et al. reviewed the data available in the literature where FTIR was used 
to analyze degradation byproducts in the liquid phase for post-combustion CO2 capture processes 
[27]. Handojo et al. [28] used FTIR to identify thermal degradation byproducts in aqueous MDEA 
degradation at 120 °C with continuous CO2 absorption and verified it with GC-MS. Haghi et al. [29] 
used a PLS model with both near-infrared and ultraviolet spectroscopy to determine the 
concentration of both MEG and sodium chloride in solutions. A combined acid gas and water 
removal system solvent can consist of amine and MEG/TEG, and during the regeneration step it will 
also have absorbed water and acid gas, which need to be stripped for the regeneration of the solvent. 
To the best of the authors’ knowledge, there are no published data available on the use of FTIR to 
measure the concentrations of individual components in the MDEA–glycol–water–acid gas system. 
Therefore, in this study, we investigated the potential of FTIR spectroscopy along with the partial 
least-squares (PLS) method to predict the amount of glycols (MEG/TEG), MDEA, CO2 and H2O, 
where they are present in the system, in a simultaneous acid gas and water removal process. The 
model was successfully tested on thermally degraded CO2-loaded MDEA-MEG/TEG-H2O blends to 
confirm its performance spectrum. 

2. Materials and Methods 

2.1. Materials  

All the chemicals were bought in the highest available commercial concentration from Sigma 
Aldrich Norway, except carbon dioxide gas which was purchased from AGA Norway. These 
chemicals were used without any further purification. The full names, chemical abstracts service 
(CAS) numbers, purity, and structures of the chemicals used in this study are given in Table 1. 

Table 1. Full names, chemical abstracts service (CAS) numbers, purity, and structures of the 
chemicals. 

Chemical CAS Purity Chemical Structure 
Carbon dioxide (CO2) 124-38-9 ≥99.9%  
Ethylene glycol (MEG) 107-21-1 ≥99.5%  

N-Methyldiethanolamine (MDEA) 105-59-9 ≥99.0% 
 

Triethylene glycol (TEG) 112-27-6 ≥99.8%  

2.2. Methodology 
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In this work, two-, three- and four-component systems were studied. A description of each 
system, along with calibration solution concentration ranges, is given in Table 2. In the first step, 
solutions and calibrations for two-component systems (MDEA-H2O, MEG-H2O, and TEG-H2O) were 
made and validated for each component; in the second step, a third component was added and 
validated along with the first two components; in the third step, after adding the fourth component, 
i.e., CO2, total spectra were used to make a final calibration curve and all the individual components 
were also validated. 

Table 2. The set of calibration solutions for each system. 

System Name 

Range of the Components (wt%) 

MDEA 
(wt%) 

H2O 
(wt%) 

MEG 
(wt%) 

TEG 
(wt%) 

CO2 Loading 
(mol 

CO2/mol 
MDEA) 

Two 
component 

system 

MDEA-H2O 0–100 0–100 - - - 
MEG-H2O - 0–100 0–100 - - 
TEG-H2O - 0–100 - 0–100 - 

Three 
component 

system 

MDEA-MEG-
H2O 

0–70 0–70 30 - - 
30 0–70 0–70 - - 

0–70 30 0–70 - - 

MDEA-TEG-
H2O 

0–70 0–70 - 30 - 
30 0–70 - 0–70 - 

0–70 30 - 0–70 - 

Four 
component 

system 

MDEA-MEG-
H2O-CO2 

20 50 30 - 0–0.5 

MDEA-TEG-
H2O-CO2 

20 50 - 30 0–0.4 

2.2.1. Calibration Solution Preparation 

The calibration solution sets of each system were made to cover the complete concentration 
range of all components. All solutions were prepared in wt%/wt% using the Mettler–Toledo scale, 
model MS6002S, with an accuracy of ±0.0001 g. In the case of two-component solutions, 5 wt% steps 
were used except in the boundary regions (1–10 wt% and 90–99 wt%), where the ratio was varied in 
1 wt% steps. For the three-component systems, one component was kept constant at 30 wt%, while 
the other two were changed. In the four-component systems, only CO2 loading was varied. A 20 wt% 
MDEA solution in 50 wt% water and 30 wt% glycol (MEG or TEG) was loaded with CO2 using a 
washing flask. Then, fresh and CO2-loaded solutions were mixed to make multiple solutions for the 
calibration set and titration [15,30,31] was used to determine the exact amine and CO2 amounts in all 
solutions. In total, 371 calibration solutions for various training sets were prepared—37 each for two- 
and four-component systems and 31 each for three-component systems—to cover the whole range of 
concentration (0–100 wt%) of each component in each system. Large training sets in each system were 
used to increase the accuracy of the model in lower concentration ranges of the individual 
components (<5 wt%). 

2.2.2. FTIR Analysis 

An ABB FTLA2000 Series Laboratory FTIR Spectrometer with PIKE MIRacleTM diamond 
attenuated total reflection (ATR) crystal cell in combination with the Protea Analyzer software (PAS) 
was used to collect spectra of each solution in the spectral region of 700–4000 cm−1 with 4-cm−1 
increments and 4 co-added scans. Continuous purging with clean and dry compressed air with a CO2 
concentration <1 ppm and dewpoint of −73 °C was used to minimize the influence of CO2 and H2O 
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on the system. All the spectra were collected at room temperature and millipore distilled water 
spectra were used as a background. 

2.2.3. Multivariate Analysis  

GRAMS IQ™ Spectroscopy software from Thermo Fisher Scientific was used to make calibration 
curves. The partial least square (PLS) regression model was used to minimize the overlapping 
interference of spectral information. It can be described as follows: 𝑋 =  𝑇𝑃் + 𝐸 (1) 𝑌 =  𝑈𝑄் + 𝐹 (2) 

where X is the predictor matrix and Y is the response matrix; T and U are projection matrixes, and P 
and Q are loading matrixes of X and Y, respectively, while E and F are independent and identically 
distributed residuals [32]. Regression is only applied to informative regions in the fingerprint area to 
construct a better model and to minimize the effect of absorbance overlapping [33]. A similar method 
was used in all systems, i.e., in the two-, three- and four-component systems. 

Spectral data were randomly divided into a training set, which was used for internal validation 
(cross-validation) and a validation set used to verify the model for external validation before applying 
the model to measure unknown concentrations. The preprocessing of data was performed by making 
it mean-centered by subtracting the mean absorbance and concentration from its original value. This increased 
the accuracy of the calibration curve by removing the common information from the spectra and improved 
the smaller spectral differences [34,35]. The number of factors (loading vectors) was based on the 
standard error of cross-validation (SECV), which corresponds to the predictive error obtained at the 
cross-prediction stage, root mean square error (RMSE), and maximum possible correlation coefficient 
(R2) for each component to generate calibration curves. Outliers in the calibration dataset were 
detected by calculating residuals with a 95% confidence level during the development of the model 
[29,36,37]. Equation (3) was used to measure RMSE, Equation (4) was used for SECV and standard 
error (SE) and Equation (6) was used to calculate the validation number (VN) of each component in 
a system. The standard error of the PLS model was calculated for each component in a system after 
incorporating bias and the validation number was estimated to find the model accuracy, where, if the 
VN <2, the model does not work accurately and if VN = 2–5, the model does work, but it works best 
for VN >5. 

𝑅𝑀𝑆𝐸 =  ඨ∑ (𝑥௜ − 𝑦௜)ଶ௜ୀ௡௜ୀଵ 𝑛  (3) 

𝑆𝐸 =  ඨ∑ (𝑥௜ − 𝑦௜ − 𝑏𝑖𝑎𝑠)ଶ௜ୀ௡௜ୀଵ 𝑛 − 1  (4) 

𝑏𝑖𝑎𝑠 = ∑ (𝑥௜ − 𝑦௜)௜ୀ௡௜ୀଵ 𝑛  (5) 

𝑉𝑁 = 0.25 × (𝑥௠௔௫ − 𝑥௠௜௫)𝑆𝐸  (6) 

In the equations, xi is the actual value and yi is its respective predicted value by the PLS model 
of sample i, and n is the number of samples. IQ Predict™ was used to measure the unknown 
concentrations of individual components in solution by using spectra of the solution and calibration 
files generated from GRAMS IQ™. 

2.2.4. Thermal Degradation 

Thermally degraded solutions were used to test the performance range of the model. Solutions 
of 30 wt% MDEA in MEG/TEG and 20 wt% MDEA in 60 wt% MEG/TEG and 20 wt% H2O were 
prepared gravimetrically and loaded with CO2 by using a washing flask. Approximately 9 g of each 
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solution, along with its duplex, was filled in stainless steel cylinders with both ends closed with 
Swagelok® end caps. The cylinders were stored in a thermostat chamber at 135 °C in the upright 
position and samples were taken after week 1, 3, 5 and 7. MDEA and CO2 chemical weight (%) were 
also quantified by using titration [15,30,31] while ion chromatography (IC) was also used to measure 
the concentration of amine. Complete experimental details on amine thermal degradation are 
presented in our previous works [15,38]. The IC analyses of amine samples confirmed that the 
titration quantified the MDEA within ±3 wt%. Therefore, both the MDEA and CO2 concentrations 
measured by titration were used to calculate actual weight percentages of MDEA and CO2 as 
discussed in the section below. 

3. Results and Discussion 

3.1. Model Development 

Identifying and quantifying the correct individual component in each system is critical. All the 
spectra of each component MDEA, MEG, H2O, and CO2 are shown in Figure 1, and the spectra of 
each component MDEA, TEG, H2O and CO2 are shown in Figure 2. In both figures, water spectra as 
a background was used for spectra collection and subtracting this from sample spectra caused major 
negative peaks (~1650 cm−1 and >3000 cm−1). Other small negative peaks in the fingerprint regions 
could be due to impurities in the system. 

 

Figure 1. All spectra from the calibration solutions for the MDEA-H2O, MEG-H2O, MDEA-MEG-H2O, 
and MDEA-MEG-H2O-CO2 systems. 

 
Figure 2. All spectra from the calibration solutions for the MDEA-H2O, TEG-H2O, MDEA-TEG-H2O, 
and MDEA-TEG-H2O-CO2 systems. 

The infrared (IR) spectrophotometer generated a spectrum that consisted of two main regions: 
(a) the fingerprint region (800–1800 cm−1), where absorption bands can be assigned to individual 
functional groups [35,39], and (b) the region between 2500 and 4000 cm−1, which usually comes from 
hydrogen stretching vibrations between hydrogen and other atoms (N–H, C–H and O–H)—this 
region does not provide useful information [19,39]. Also, diamond absorption happens within the 
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1950–2250 cm−1 region [19,39,40]. It is only the information from the fingerprint region that is used in 
all systems for model development. 

The MEG, TEG and MDEA peaks overlap each other in most of the fingerprint region (800–1200 
cm−1). MEG twin peaks can be found at approximately 850–900 cm−1 and 980–1120 cm−1, TEG twin 
peaks at approximately 980–1160 cm−1 and 880–960 cm−1 and MDEA peaks at approximately 1000–
1100 cm−1 and 870–900 cm−1 due to C–N stretching. CO2 is present in the solutions as carbonate 
(maximum at 1385 ± 5 cm−1) and bicarbonate (maximum at 1360 ± 3 cm−1) at approximately 1300–1400 
cm−1, and this region is attributed to the asymmetric and symmetric C–O stretching [19,41–43]. 

3.1.1. Two-Component Systems 

Figure 3 shows the predicted (wt%) as a function of the actual (wt%) of two components, MDEA-
H2O, MEG-H2O, and TEG-H2O, respectively. Each system used 37 samples of the training set and 
predicted the concentration after cross-validation. A summary of the results is given in Table 3, 
showing low standard errors <0.01 wt%, and the number of factors remains constant at three for all 
systems. One outlier was found in each glycol–H2O system. Seventeen samples were used to cross-
validate the dataset. The data variance was completely reproducible with R2 >0.999. In Figure 4, the 
residuals of the predicted values for two-component systems are shown. The average residual was 
<0.1% in glycol–H2O systems and <0.5% in MDEA–H2O systems, which shows good data fit.  

Table 3. Summary of results for two-component systems. 

Component Factors 

Standard 
Error of 
Cross-

Validation 
(SECV) 
(wt%) 

Root 
Mean 

Square 
Error 

(RMSE) 
(wt%) 

Maximum 
Possible 

Correlation 
Coefficient 

(R2) 

Bias 
(wt%) 

Standard 
Error 
(SE) 

(wt%) 

Validation 
Number 

(VN) 

MDEA 3 0.0122 0.0122 0.999 0.0002 0.0109 22.96 
H2O 3 0.0122 0.0122 0.999 0.0089 0.0109 22.96 
MEG 3 0.0120 0.0027 1 0.0007 0.0026 93.85 
H2O 3 0.0120 0.0027 1 −0.0009 0.0026 93.85 
TEG 3 0.0073 0.0098 0.999 0.0022 0.0136 18.36 
H2O 3 0.0073 0.0098 0.999 0.0068 0.0136 18.36 
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Figure 3. Actual vs. predicted values of two-component systems; the MDEA-H2O system (a), MEG-
H2O system (b), and TEG-H2O system (c). 
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Figure 4. Weight residual of two-component systems; the MDEA-H2O system (a), MEG-H2O system 
(b), and TEG-H2O system (c). 
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error of all the two-component systems was 0.011% points while, for the three-component systems, 
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Table 4. Summary of results for three-component systems. 
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H2O 4 0.0166 0.0165 0.997 0.0011 0.0166 15.09 

 

  

Figure 5. Actual vs. predicted values of three-component systems; the MDEA-MEG-H2O system (a) 
and MDEA-TEG-H2O system (b). 

 

Figure 6. Weight residual of three-component systems; the MDEA-MEG-H2O system (a) and MDEA-
TEG-H2O system (b). 
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numbers were >5, except for CO2 in the MDEA-TEG-H2O-CO2 system, suggesting that the model 
works with reasonable accuracy for all components. The addition of a fourth component (CO2) 
affected the standard errors of the other components and a relatively smaller difference was observed 
between three- and four-component systems than between two- and three-component systems 
because the absolute wt% of the fourth component (CO2) always remained at <0.4 in all four-
component system samples, while the absolute wt% of the third component was ≥1 in all three-
component system samples. 

Table 5. Summary of results for four-component systems. 

Component Factors SECV (wt%) RMSE (wt%) R2 Bias (wt%) SE (wt%) VN 
MDEA 5 0.0259 0.0259 0.991 0.0031 0.0259 9.64 
MEG 5 0.0162 0.0162 0.996 0.001 0.0154 16.26 
H2O 5 0.0128 0.0129 0.998 0.0012 0.0129 19.16 
CO2 5 0.001 0.0012 0.982 0.000004 0.0012 7.38 

MDEA 4 0.0167 0.0167 0.996 0.0012 0.0167 14.95 
TEG 4 0.0154 0.0154 0.997 0.001 0.0154 16.23 
H2O 4 0.0201 0.0201 0.994 0.0022 0.0201 12.41 
CO2 4 0.002 0.0019 0.936 0.0002 0.0020 4.04 

 

 

Figure 7. Actual vs. predicted values of four-component systems; the MDEA-MEG-H2O-CO2 system 
(a) and MDEA-TEG-H2O-CO2 system (b). 
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Figure 8. Weight residual of four-component systems; the MDEA-MEG-H2O-CO2 system (a) and 
MDEA-TEG-H2O-CO2 system (b). 

Figure 8 shows the weight residuals of four component models. Similar to the three-component 
systems, residuals were random with more variation in boundary regions, mainly due to the addition 
of CO2. The four-component system models were able to predict the actual concentrations with >95% 
accuracy except for boundary regions (1–10 wt% and 90–99 wt%). A similar precision was obtained 
by Geers et al. [21] for three-component systems; attaining the same precision for four-component 
systems confirms the accuracy of the model. A periodical pattern can be observed in the results of 
weight residuals as a function of actual wt% because the total sum of wt% remained 100 for each 
sample in all systems. Therefore, when one component’s wt% increased from 0–100, the other 
component’s wt% decreased from 100–0, causing this periodical pattern. The pattern visibility 
decreased with the increase in the number of components in a system. 

3.2. Model Assessment 

Both four-component models were assessed with left-out sample spectra from the calibration 
curves. Figures 9 and 10 show model validation and residual weight results, respectively. The 
maximum weight residual was 3.35% for the MDEA-MEG-H2O-CO2 system, and the overall RMSE 
was 0.0158 wt%. For the MDEA-TEG-H2O-CO2 system, the maximum weight residual was 4.7% and 
the RMSE was 0.0238 wt%. Both models identified and quantified individual components with good 
accuracy and the assessment results were in agreement with the model development results. 

  

Figure 9. Validation with left-out spectra; the MDEA-MEG-H2O-CO2 system (a) and MDEA-TEG-
H2O-CO2 system (b). 
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Figure 10. Weight residual of left-out spectra; the MDEA-MEG-H2O-CO2 system (a) and MDEA-TEG-
H2O-CO2 system (b). 

3.2. Model Application 

Amine-based acid gas removal processes consist of two steps, absorption, and stripping, where 
temperature swing is used to regenerate acid gas in stripping [9]. Thermal degradation takes place at 
the stripping stage due to high temperatures [44,45] and can cause various problems such as an 
increase in solvent viscosity, foaming, fouling, corrosion and a reduction in the absorption capacity 
of the solvent [46–51]. In the case of using an amine solution in glycol, simultaneous acid gas and 
water removal are possible [11–14], and at the stripping stage, the amine-glycol solutions will also 
contain acid gas and water. Therefore, the developed model was tested as a potential analytical 
technique by applying it on the thermally degraded blends of CO2-loaded MDEA-MEG/TEG and 
MDEA-H2O-MEG/TEG to identify and quantify MDEA, H2O, CO2, MEG/TEG. The concentrations 
quantified by titration were used to calculate the actual wt% of MDEA and CO2. MEG/TEG remained 
thermally stable at 135 °C. Therefore, the values analyzed with FTIR were compared to the initial 
amounts of MEG/TEG. The concentration of water was calculated by using the concentrations of 
MDEA, CO2 and MEG/TEG. Finally, it should be noted that MDEA is a stable amine, and over the 
seven weeks, the maximum amine loss was 5%-points in weight for CO2-loaded MDEA-MEG/TEG 
systems. In MDEA-H2O-MEG/TEG systems, the maximum amine loss was 8%-points. Also, the usage 
of large training sets during model development to cover the whole range of component 
concentrations, along with the selection of specific peaks of each component in the fingerprint region 
also helped to reduce the effect of degradation byproducts on the model. 

The FTIR-analyzed values, after all, thermal degradation experiments are compared to the 
expected values are presented in Figure 11. The results of non-aqueous CO2-loaded blends of MDEA 
in MEG or TEG are shown inside the black circles in both Figure 11 and 12. The remaining MDEA 
and MEG/TEG values are from the CO2-loaded MDEA-H2O-MEG/TEG system. The figures show that 
the developed model detected and quantified CO2-loaded MDEA–MEG/TEG blends more precisely 
as compared to the aqueous blends. The addition of water increased the number of components and 
reduced the overall accuracy as already seen earlier in the model development section. Overall, the 
RMSE for three components, in the absence of water, was <0.0265 wt%, and for four components, 
with the addition of water, the RMSE increased to 0.0557 wt%. MEG and TEG were predicted to be 
better than MDEA and H2O, because of a higher concentration on weight. The RMSE for both MEG 
and TEG in CO2-loaded MDEA-MEG/TEG blends was <0.0098 wt% and in CO2-loaded MDEA-H2O-
MEG/TEG blends, it was 0.016 wt% and 0.0401 wt%, respectively. 

The thermal degradation of MDEA was low and the change in MDEA spectra was in agreement 
with Handojo et al. [28], and the predicted values of MEG/TEG were close to the initial chemical 
values, which verified that MEG/TEG did not degrade at 135 °C. The largest deviations were seen for 
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H2O. Even though the water was not predicted as accurately as the rest, the overall results are 
acceptable. It can be seen from Figure 12 that at a higher concentration of an individual component, 
its corresponding weight residual decreased and subsequently made model predictability better, 
which is in agreement with both model development and the assessment results. The developed 
model can be used to analyze the samples containing MDEA, MEG, TEG, H2O and CO2 to measure 
each component but one should be careful when using it in the low weight-based concentration 
regions of each component (>10 wt%). 

 

Figure 11. Actual vs. predicted values of experimental data; the MDEA-MEG-H2O-CO2 system (a) 
and MDEA-TEG-H2O-CO2 system (b). 

 

Figure 12. Weight residual of experimental data; the MDEA-MEG-H2O-CO2 system (a) and MDEA-
TEG-H2O-CO2 system (b). 
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thermally degraded solutions, the model predicted the CO2-loaded MDEA-MEG blends system 52% 
better than the CO2-loaded MDEA-MEG-H2O blends system and the CO2-loaded MDEA-TEG blends 
system 65% better than the CO2-loaded MDEA-TEG-H2O blends system. 
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Abbreviations 

ATR  Attenuated total reflectance 
CO2  Carbon dioxide 
FTIR  Fourier transform infrared 
H2O  Water 
MDEA N-Methyldiethanolamine 
MEG  Ethylene glycol 
PLS  Partial least-squares 
R2  Correlation factor 
RSME Root square mean error 
SE  Standard error 
SECV Standard error of cross-validation 
TEG  Triethylene glycol 
VN  Validation number 
Wt%  Weight percent 
xi  Actual value of chemical component 
yi  Predicted value of chemical component 
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