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Abstract: Reinforcement learning has potential in the area of intelligent transportation due to its
generality and real-time feature. The Q-learning algorithm, which is an early proposed algorithm,
has its own merits to solve the train timetable rescheduling (TTR) problem. However, it has shortage
in two aspects: Dimensional limits of action and a slow convergence rate. In this paper, a deep
deterministic policy gradient (DDPG) algorithm is applied to solve the energy-aimed train timetable
rescheduling (ETTR) problem. This algorithm belongs to reinforcement learning, which fulfills
real-time requirements of the ETTR problem, and has adaptability on random disturbances. Superior to
the Q-learning, DDPG has a continuous state space and action space. After enough training,
the learning agent based on DDPG takes proper action by adjusting the cruising speed and the
dwelling time continuously for each train in a metro network when random disturbances happen.
Although training needs an iteration for thousands of episodes, the policy decision during each testing
episode takes a very short time. Models for the metro network, based on a real case of the Shanghai
Metro Line 1, are established as a training and testing environment. To validate the energy-saving
effect and the real-time feature of the proposed algorithm, four experiments are designed and
conducted. Compared with the no action strategy, results show that the proposed algorithm has
real-time performance, and saves a significant percentage of energy under random disturbances.

Keywords: deep deterministic policy gradient; reinforcement learning; random disturbances; train
timetable rescheduling; timetable optimization

1. Introduction

Nowadays, artificial intelligence (AI) has successfully been used for understanding human speech [1,2],
competing at a high level in strategic game systems (such as Chess [3] and Go [4,5]), self-driving
vehicles [6,7], and interpreting complex data [8,9]. Reinforcement learning (RL) [10,11], which is a vital
branch of AI, has potential in the area of intelligent transportation. There are two advantages of RL: First,
due to its generality, agents can effectively study many disciplines in a complex environment such as the
metro network [12–14]; second, an agent with full exploration of the environment can give proper decisions
in real-time, which means that RL can be used in optimization problems with real-time requirements.
Until now, the train timetable rescheduling (TTR) problem [15–18] has been repeatedly discussed, however,
there is only a small amount of literature using RL as a possible solution. Šemrov et al. [19] used a
rescheduling method based on RL in a railway network in Slovenia. They illustrated that the rescheduling
effect of the proposed method were at least equivalent and often superior to the simple first-in-first-out
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(FIFO) method and the random walk method. Yin et al. [20] developed an intelligent train operation (ITO)
algorithm based on RL to calculate optimal decisions, which minimize the reward for both total time-delay
and energy-consumption. Both literatures are based on the Q-learning algorithm [21,22] belonging to
RL. However, Q-learning is limited by the dimensionality of action: The number of action increases
exponentially with the number of degrees of freedom [23].

The energy-aimed train timetable rescheduling (ETTR) problem is rarely mentioned in previous
literatures. It is different from traditional TTR problems, which focus on minimizing the total delay
time of passengers [18] or minimizing the overall delays of all trains [24,25], the ETTR problem focuses
on the energy optimization after disturbances break the pre-scheduled timetable. Gong et al. [26]
proposed an integrated energy-efficient operation methodology (EOM) to solve the ETTR problem.
The objectives are compensating dwell time disturbances in real-time and reducing the total energy in
a whole travel. EOM saves the overall energy consumption by reducing the travel time in the next
sections immediately after a delay and pulling the delayed train back to the original optimal timetable,
although temporarily more energy is consumed in the transition process.

In this paper, DDPG is applied to solve the ETTR problem. This algorithm is a model-free, off-policy
actor-critic algorithm using deep function approximators that can learn policies in high-dimensional,
continuous action spaces [23]. It is successfully applied in fields such as robotic control [27] and
traffic light timing optimization [28]. Superior to Q-learning, both state spaces and action spaces are
continuous [29], which means that the observation values such as the speed and position of trains
are continuous, and the target values such as the rescheduled travel time and dwelling time are also
continuous. EOM only reschedules the delayed train, however, DDPG reschedules all trains in the
network immediately after a disturbance happens.

The remainder of the paper is organized as follows. Section 2 introduces the principles of DDPG
for a regular system. Section 3 presents three models for the metro network: Train traffic model,
train movement model, and energy consumption model. In Section 4, four experiments based on a
real-world network of the Shanghai Metro Line 1 (SML1) is presented to validate the DDPG algorithm.
The final section concludes the paper.

2. Principles of Deep Deterministic Policy Gradient

DDPG, a recently developed algorithm in reinforcement learning, is used to solve complex tasks
from an unprocessed, high-dimensional, sensory input [23]. This algorithm is comparable to the
human level in many Atari video games. However, it has not been used in the area of intelligent
transportation. This algorithm inherits its own advantage from earlier algorithms such as Q-learning
and the deep Q-network [30]. What is more, compared with Q-learning, it has continuous action space.
Compared with the deep Q-network, it has a policy network to provide deterministic action. In the
following, the principle of DDPG is introduced.

Obeying a standard reinforcement learning setup, an agent interacts with an environment in
discrete timesteps based on a Markov decision process (MDP). At each timestep t, the agent receives
state st, takes action at, and receives reward rt. At the next timestep, the environment receives the action
at and generates new state st+1 with transition dynamics p(st+1|st , at). The state space is S and the
action space is A = RN. Previous RL algorithms such as the deep Q-network define the target policy
π : S→ P(A) , which maps the state to a probability distribution over the action. The action–value
function describes an expected return after taking action at in state st and thereafter following policy π,
which is formulated according to the Bellman equation:

Qπ(st, at) = Ert,st+1∼E
[
r(st, at) + γEat+1∼π[Q

π(st+1, at+1)]
]

(1)

where the discounting factor meets γ ∈ [0, 1].
Both DDPG and Q-learning have a deterministic policy gradient. The deterministic policy gradient

is the expected gradient of the action–value function gradient, which can be estimated much more
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efficiently than the usual stochastic policy gradient [29]. Considering the target policy µ : S→ A
directly maps state to deterministic action, the action–value function is formulated as:

Qµ(st, at) = Ert,st+1∼E[r(st, at) + γQµ(st+1,µ(st+1))] (2)

where Qµ can be learned off-policy.
Q-learning [21] uses the greedy policy µ(s) = argmaxaQ(s, a) to update the action–value function,

then the training iteration of Qµ is formulated as:

Qµ(st, at)← Qµ(st, at) + α

[
r(st, at) + γmax

at+1
Qµ(st+1, at+1) −Qµ(st, at)

]
(3)

where α is the learning rate. Qµ in Q-learning is a table, which provides a limit space for possible
values of action and state, so Q-learning cannot be straightforwardly used in a continuous space.

DDPG is a member of the actor-critic algorithm, which contains four neural networks: Current
critic network Q

(
s, a

∣∣∣θQ
)
, current actor network µ(s|θµ ), target critic network Q′

(
s, a

∣∣∣θQ′
)

and target

actor network µ′
(
s
∣∣∣θµ′ ), where θQ, θµ, θQ′ and θµ

′

are the weights of each network. Q′ and µ′ are a
copy of Q and µ respectively in the structures. Both θQ′ and θµ

′

are partially updated from the current
networks at each timestep. The current critic network is updated by minimizing the loss function:

L
(
θQ

)
= Eµ′

[(
yt −Q

(
st, at

∣∣∣θQ
))2

]
(4)

where
yt = r(st, at) + γQ′

(
st+1,µ′

(
st+1

∣∣∣θµ′ )∣∣∣θQ′
)

(5)

The current actor network is updated by the gradient function:

∇θµµ ≈ Eµ′
[
∇aQ

(
s, a

∣∣∣θQ
)∣∣∣s=st,a=µ(st)∇θ

µµ
(
s
∣∣∣θµ )∣∣∣s=st

]
(6)

The gradient function is continuous, which ensures that the action of the agent is updated within
a continuous space. The specific Algorithm 1 process is described as follows:

Algorithm 1. DDPG algorithm

Randomly initialize critic network Q
(
s, a

∣∣∣θQ
)
, actor network µ(s|θµ ) with weights θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ′
← θQ,θµ

′

← θµ

Initialize replay buffer R
for episode = 1 to M do

Initialize a random process N
Receive initial state s1 from environment E
for t = 1 to T do

Select action at = µ(st|θµ ) + Nt according to the current actor network
Execute action at in the environment E , and receive reward rt and new state st+1
Store transition (st, at, rt, st+1) in buffer R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′

(
si+1,µ′

(
si+1

∣∣∣θµ′ )∣∣∣θQ′
)

Update the critic by minimizing the loss: L = 1
N
∑

i

[
yi −Q

(
si, ai

∣∣∣θQ
)]2

Update the actor policy using the sampled gradient:

∇θµµ
∣∣∣si ≈

1
N
∑

i ∇aQ
(
s, a

∣∣∣θQ
)∣∣∣∣s=si,a=µ(si)∇θµµ(s|θ

µ )
∣∣∣s=si

Update the target networks:
θQ′
← τθQ + (1− τ)θQ′ ,θµ

′

← τθµ + (1− τ)θµ
′

end for
end for
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3. Models for Metro Network

In order to describe the operational process in a metro network, three models are formulated:
A model of the train traffic, a model of the energy consumption, and a model of the train movement.

3.1. Model of Train Traffic

The model of train traffic defines the departure and arrival instant for each train in a metro
network. The departure instant of the No. m train at the starting station is defined as:

tm,1
de = (m− 1)th (7)

where th is the headway. The departure instant of the No. m train at the No. n station is defined as:

tm,n
de = tm,1

de +
n−1∑
i=1

(
tm,i
t + tm,i+1

dw

)
(8)

where tm,i
t represents the travel time of the No. m train from the No. i station to the No. i+1 station,

and tm,i+1
dw represents the dwelling time of the train at the No. i+1 station.
If a disturbance ε happens at the No. n station, the dwell time will be tm,n

dw + ε, then the departure
instant of the No. m train at the No. n station is defined as:

tm,n
de = tm,1

de +
n−1∑
i=1

(
tm,i
t + tm,i+1

dw

)
+ ε (9)

To simplify the ETTR problem, we assume that only one disturbance happens during a complete test
procedure from the first train’s departure to the last train’s arrival. The instant of the last train arriving
to the terminal station is defined as

tM,N
a = tM,1

de +
N−2∑
i=1

(
tM,i
t + tM,i+1

dw

)
+ tM,N−1

t + ε (10)

where M is the total train number and N is the total station number, tM,N
a also represents the total time

for the simulation.

3.2. Model of Energy Consumption

The train regulation directly affects the energy consumption of metro networks. Considering a
metro network with several trains driving in different strategies, traction trains consume energy while
braking trains recover energy at the same time. If trains are regulated in a proper way, a large amount
of energy can be saved. Figure 1 shows the energy flow between trains.Energies 2019, 12, x FOR PEER REVIEW 5 of 20 
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The net value of the energy consumption in each test is defined as:

E = ET − ER =

∫ tM,N
a

0
PTdt−

∫ tM,N
a

0
PRdt (11)

where ET is the traction energy, ER is the recovery energy, PT is the traction power, and PR is the
recovery power. PT is defined as

PT =

M∑
m=1

T(vm)vm

β1
(12)

where T(vm) is the traction force of the No. m train in the acceleration phase and the cruising phase,
vm is the driving speed, and β1 is the conversion efficiency from electricity to mechanical energy.

PR is the minimum value between the traction power and braking power. If the traction power is
larger than the braking power, the braking power will be fully utilized; otherwise the heating resistors
will consume the extra braking power. Accordingly, PR is defined as:

PR = min(PT, β3PB) (13)

where β3 is the recovery coefficient on the braking energy, and PB is defined in a formulation as follows:

PB =
M∑

m=1

B(vm)vmβ2 (14)

where β2 is the conversion efficiency from mechanical energy to electrical energy, and B(vm) is the
braking force of the No. m train in the braking phase.

3.3. Model of Train Movement

The optimal control strategy of a metro train is in a sequence of maximum acceleration, cruising,
and maximum braking [31].

In the acceleration phase, B(vm) = 0, and T(vm) meets the characteristic curves [32–34] in Figure 2,
where (p1, q1, p2) are parameters and v1 is the constant.
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In the cruising phase, B(vm) = 0, and T(vm) = r(vm) − g(xm), where g(xm) represents the gravity
relating to the gradient of track, and r(vm) meets Davis’s Equation [35]

r(vm) = λ1(vm)2 + λ2vm + λ3 (15)
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where λ1, λ2 and λ3 are parameters.
In the braking phase, T(vm) = 0, and B(vm) are shown in Figure 3, where (p3, q2, p4) are parameters

and v2 is the constant.
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3.4. Relation among Three Models

Numerical examples are based on the data of the Shanghai Metro Line 1, a network with
narrow spacing between adjacent stations [26]. Hence, trains travel in each section in a sequence of
accelerating-cruising-braking, without repeated accelerating and braking. The cruising speed vm,n

c
has a one-to-one mapping from the travel time in interstation tm,n

t . As shown in Figure 4, the area
enclosed by the red curve and axis t indicates the section spacing. If the cruising speed increases to
vm,n

c
′, the travel time will decrease to tm,n

t
′ to keep the section spacing constant, as the blue curve shows.
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4. Apply DDPG to ETTR

The ETTR problem is regarded as a complex problem for the reason of three points. First, it is a
typical non-convex optimization problem. There are many local minimum points leading to difficultly
searching the optimal schedule. Second, this problem has a high-quality real-time requirement.
Disturbances in a metro network will bring a series of chain reactions that make an offline schedule not
optimal anymore. Third, disturbances occur randomly at different stations on different trains, and the
length of the disturbances is stochastic.

In this section, DDPG, a model-free, off-policy actor-critic algorithm, is proposed to solve the ETTR
problem. The algorithm is able to solve the three points above properly. First, the proposed method
has an advantage in solving complex non-convex optimization problems. Second, it reschedules the
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timetable in real-time, which effectively avoids chain reactions and saves more energy. Third, it has
self-adaptability to make appropriate choices according to disturbances. According to the introduction
of the DDPG algorithm in Section 2, neural networks take an important role, which correct themselves
during each training episode, and provide good advices for an agent during each testing episode.
The well-trained neural networks can deduce the result in real-time during each policy decision process.

The environment and its state, agent and its action, and the reward feedback are the five
fundamental components of DDPG. In the following, the definition details are provided to solve the
specific ETTR problem.

4.1. Environment and Agent

To solve the ETTR problem, an environment is established in Section 3. A single agent is
introduced, which makes proper decisions when disturbances happen. Different from playing video
games, the agent does not need to take action at each timestep, but rather, make decisions in the
departure instant of each train. Disturbances always happen in the dwelling time, caused by a sudden
peak point of passenger flow. Hence, the agent needs to adjust the travel time and dwelling time after
the disturbances, and take advantage of the recover energy as much as possible.

4.2. State

The state selection is an important step of the DDPG algorithm, which directly affects the accuracy
of decisions made by the agent. Increasing the dimension of state spaces will increase the complexity
of the actor network, leading to a more training period. However, the more complex network structure
helps the agent to have a deeper understanding to the environment. In the ETTR problem based on
the two-train network, five quantities are chosen for the observation of the agent: The number of
the departing train and its last dwelling time, the control strategy, and the current speed/position of
the other running trains. In the three-train network, the dimension of the state space will be eight.
Normalization is needed in the state inputs.

4.3. Action

The objective of the agent is to find a proper travel time and dwelling time for the departing train.
In Section 3.4, the relation between the travel time and the cruising speed is formulated. Hence, it
is reasonable to define the action as the cruising speed and the dwelling time of the departing train.
Both actions have upper bounds and lower bounds.

4.4. Rewards

Disturbances happen randomly at different stations on different trains. The duration of each
disturbance has random values. Rewards of the agent are set to maximize the recover energy and
minimize the traction energy of the DDPG. Weight coefficients are essential, which make sure that the
recover energy and the traction energy are in the same order of magnitude. The reward function is
formulated as follows.

rt =

0 0 ≤ t < tM,N
a[(

ERDDPG − ERNo−action

)
∗ 0.9 +

(
ETNo−action − ETDDPG

)
∗ 0.1

]
/λ t = tM,N

a
(16)

where λ is a parameter. Figure 5 shows the sketch map of the DDPG in a two-train network, where the
agent is observing the state of trains in the metro network from the environment and thinking which
action should be taken for the departing train. The action works on the environment, then the trains
get into the next state. During each step, the environment provides a reward to the agent.
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where λ  is a parameter. Figure 5 shows the sketch map of the DDPG in a two-train network, where 
the agent is observing the state of trains in the metro network from the environment and thinking 
which action should be taken for the departing train. The action works on the environment, then the 
trains get into the next state. During each step, the environment provides a reward to the agent. 
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Shanghai Metro Line 1 (SML1), which is one of the oldest metro lines in China. There are a total of 28 
stations with a daily ridership of over 1,000,000 passengers [36]. According to the statistical data in 
daily peak hours, the metro network implements a tight schedule, of which the average traveling 
time during a section is only 2 min, and the uniform interval time between two trains is 164 s The 
first three experiments are based on a situation that two trains run on a segment of SML1 from 
Xujiahui to the Xinzha Road. The last experiment focuses on a three-train network in the same 
segment. Information of stations and segments are shown in Figure 6. 
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5. Experimental Validation

In order to validate DDPG in the ETTR problem, numerical experiments are conducted in the
Shanghai Metro Line 1 (SML1), which is one of the oldest metro lines in China. There are a total of 28
stations with a daily ridership of over 1,000,000 passengers [36]. According to the statistical data in
daily peak hours, the metro network implements a tight schedule, of which the average traveling time
during a section is only 2 min, and the uniform interval time between two trains is 164 s The first three
experiments are based on a situation that two trains run on a segment of SML1 from Xujiahui to the
Xinzha Road. The last experiment focuses on a three-train network in the same segment. Information
of stations and segments are shown in Figure 6.Energies 2019, 12, x FOR PEER REVIEW 9 of 20 
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Experiment 1: The objective of the first experiment is to schedule an offline optimal timetable
without any disturbance. The foundation settings are listed as follows. The headway is set as 120
s. The dwelling time consists of a fixed dwelling time and a flexible dwelling time [26]. The fixed
dwelling time is set as 20 s while the flexible dwelling time ranges from 10–15 s. The cruising speed is
vm,n

c ∈ [18, 22] m/s. In this setup, the traffic block conflicts [24] will not happen. The genetic algorithm
(GA) is used to obtain the optimal cruising speed and the flexible dwelling time at each station for each
train. The final optimal result is shown in Table 1.
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Table 1. Optimal selection by GA in the two-train network.

Segment No. Cruising speed (m/s)
Station

Dwelling time (s)

Train No.1 Train No.2 Train No.1 Train No.2

1 21.6 18.08 Hengshan Road 20 27.1
2 18.88 19.68 Changshu Road 20 29.8
3 19.72 18.4 South Shaanxi Road 20 28.1
4 22 18 South Huangpi Road 22.8 24.8
5 18 18.52 People’s square 21.1 20
6 18 18.04 Xinzha Road - -

It takes 4325 s to obtain an offline timetable using a PC with Intel i7-4720HQ CPU. This reflects
that GA is not suitable for adjusting the timetable in real-time when disturbances happen.

Experiment 2: DDPG is used to adjust the cruising speed and flexible dwelling time, when a
disturbance happens at train No.1 on the Changshu Road Station. In this experiment, disturbances are
discretely sampled, uniformly selected from a discrete point set ε ∈ {11, 12, 13, 14, 15}. The neuronal
structure of the actor network is set as 5× 400× 300× 2, and the neuronal structure of the critic network
is set as 7× 400× 300× 1. In essence, DDPG samples history data from a process that the agent interacts
with the environment, and this data is used to update both the actor network and the critic network.
The training process is offline, so the total training episode will not affect the real-time performance.
The total training episode cannot be too small to search stable rewards, and it cannot be too large
that the actor network and the critic network are overfitted. According to the training performance,
the total episode is set as 3000. Table 2 lists the set of the other parameters in DDPG.

Table 2. The set of parameters in experiment 2.

Parameters Values

Memory_capacity 500
Batch_size 10

τ 0.005
γ 0.1
λ 20

Here, Memory_capacity represents the size of the buffer R, Batch_size represents the size of
the minibatch N, τ represents the update rates from the current network to the target network,
γ represents the discount factor, and λ is the reward parameter. Figure 7 shows the total energy
consumption for each episode, more specifically, the training episodes of DDPG under discretely
sampling random disturbances.

As shown in Figure 7, the beginning episodes (between zero and 50) are the exploration process,
where the agent has a rapid progress but has not found a proper solution. A similar process happens
on the episode 1200 and 1800. During 1200 to 1300 and 1550 to 1750, the agent sinks into the local
extremum and energy consumption stays stable. In these situations, the agent can escape from local
extremum and search new solutions. After the 2000-episode training, the agent stays stable under
different disturbances. Figure 8 shows the rewards during optimization.

In Figure 8, the reward curve presents an uptrend with the episode increasing, but it is not beyond
zero in the final episode. According to the reward function, the reason is obvious that the relative
traction energy and the relative feedback energy are cancelled out. In another word, the final reward is
not beyond zero, because DDPG saves the traction energy, while wastes the feedback energy. Figure 9
shows the energy accumulation for one episode under an 11 s delay.
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Comparison on the traction energy consumption and the energy feedback shows that the
agent of DDPG adopts a series of action, which reduces the traction energy but ignore gains in the
energy feedback.

The training episodes above only show the trend of the agent searching solutions, but do not
validate that it saves energy. Hence, test episodes are implemented. Table 3 shows the testing results
under different disturbances, with the trained neural networks in Figure 7.

Table 3 shows that, under the larger delay, about 2% energy can be saved, but under the smaller
delay, the agent can hardly save energy. On the basis of discretely sampling random disturbances,
there are not enough samples supporting the learning of the agent, leading to an unremarkable
percentage of energy saving. The experiment reflects that discretely sampling random disturbances
cannot train out optimal DDPG networks. Experiment 3 gives a proper solution to promote the learning
efficiency of the agent.
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Table 3. Energy consumption statistics during the training process under discretely sampling random
disturbances in the two-train network.

Delay (s) No action (kWh) DDPG (kWh) Percent of Saving Energy

11 325.25 324.90 0.11%
12 328.31 325.68 0.80%
13 330.71 324.41 1.91%
14 331.81 324.97 2.06%
15 332.80 325.45 2.21%

Experiment 3: DDPG is used to adjust the cruising speed and flexible dwelling time, when a
disturbance happens at Train No.1 on the Changshu Road Station. The disturbance is in the continuous
section ε ∈ [10, 15]. The maximum training episode is set as 3800. The structure of the actor network
and the critic network are set the same as they are in Experiment 2. Other parameters in DDPG are set
as Table 4.

Table 4. The set of parameters in experiment 3.

Parameters Values

Memory_capacity 1000
Batch_size 50

τ 0.005
γ 0.1
λ 100

Figure 10 shows the total energy consumption in each training episode under continuously
sampling random disturbances by DDPG.
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Compared with Figure 7, the convergence speed of the scatters in Figure 10 is slower, and the
final performance of energy saving is better. Both the actor network and the critic networks are well
trained and the agent is not hovering around the local extremum.

Figure 11 shows the rewards in the training episodes by DDPG. During the 3000 to 3800 episodes,
the reward significantly increases, and finally beyond zero.
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the two-train network.

In the following, testing episodes are implemented, which try to validate that the performance of
the agent is as well as it is in the final training episodes, and to validate the real-time characteristic of
the well-learned agent.

The testing episodes is set as 10, and the disturbance is also random selected in the uniform
distribution that ε ∈ [10, 15]. Table 5 shows the total energy consumption for each testing episode and
the average time spent for each policy decision.
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Table 5. Energy consumption and average spending time during the testing process under continuously
sampling random disturbances in the two-train network.

Delay (s) No Action (kWh) DDPG (kWh) Percent of Saving
Energy

Average Spending
Time (ms)

12.09 328.49 317.75 3.27% 1.27
13.60 331.36 329.07 0.69% 1.68
10.00 321.24 306.10 3.74% 1.60
10.76 324.43 313.77 4.71% 1.60
11.51 330.59 324.57 2.62% 1.60
12.21 327.05 317.34 2.97% 1.59
10.73 324.15 306.61 5.41% 1.79
14.12 331.90 330.08 0.55% 1.60
14.80 332.59 331.55 0.31% 1.99
12.69 330.02 316.94 3.96% 1.99

Compared with Table 3, the DDPG training under random continuous disturbances can save more
energy, because the random continuous disturbances provide enough different samples, which promotes
the agent to understand the environment. The energy saving percent in the testing episode, which keeps
stable in different cases of delay, has a similar distribution with that in the training episode. It indicates
that the agent is well learned in the training episodes, and overfitting is not happening in the actor
network and the critic network. Compared to GA, DDPG has a natural advantage in terms of the
average time spent in each policy decision process. Figure 12 shows the energy accumulation for one
testing episode under a 10.76 s delay.Energies 2019, 12, x FOR PEER REVIEW 14 of 20 
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As shown in Figure 12, the DDPG agent also chooses to reduce the average speed to save the
traction energy. Different from experiment 2, the energy feedback increases from 305 s. This makes the
DDPG in this experiment save more energy than before. Although the reward function increases the
weight of the energy feedback, reducing the traction energy seems to be bring a higher return for the
agent in the two-train network.

For the reason of unremarkable energy feedback in the two-train network, it is essential to take a
three-train network for validation.

Experiment 4: DDPG is used to adjust the cruising speed and flexible dwelling time, when a
disturbance happens at Train No.1 on the Changshu Road Station. The disturbance is in the continuous
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section ε ∈ [10, 15]. The maximum training episode is set as 1800. The structure of the actor network
and the critic network are set the same as they are in experiment 3. Memory_capacity is set as 500 and λ
is set as 20, and other parameters in DDPG are set the same as in Table 4. The only difference between
experiment 4 and 3 is the number of the running trains. The headway of each train is set as 120 s.

First, an offline optimal timetable is built by GA under no disturbance situation. Table 6 shows
the selected cruising speed and dwelling time.

Table 6. Optimal timetable by GA in the three-train network.

Segment
No.

Cruising Speed (m/s)
Station

Dwelling Time (s)

Train No.1 Train No.2 Train No.3 Train No.1 Train No.2 Train No.3

1 19.12 18.04 18 Hengshan Road 20.1 29.6 24.5
2 18.8 18 18.2 Changshu Road 21 28.2 20.2
3 20.16 18 19.48 South Shaanxi Road 22.7 20 26.3

4 20.36 18.04 18 South Huangpi
Road 20 23.7 29.1

5 18.04 18 18 People’s square 24.2 23.4 26.8
6 19.48 18.12 18 Xinzha Road - - -

Figure 13 shows the total energy consumption in each training episode under continuously
sampling random disturbances by DDPG.Energies 2019, 12, x FOR PEER REVIEW 15 of 20 
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Figure 13. Energy consumption during the training process under continuously sampling random
disturbances in the three-train network.

According to Figures 13 and 14, during training, energy consumption is fluctuated in a downward
trend and rewards climb up and beyond zero. The final episode is not the minimum point, but it is a
stable point under different disturbances.

Table 7 shows the performance of the agent in the testing episodes. As shown in Table 7, the agent
saves energy ranging from 5.87% to 7.37% under different disturbances. Moreover, the time to obtain
an action is only 2.23 ms on average, which indicates that DDPG still has a real-time feature in
the three-train network. Compared with the two-train network, DDPG saves more energy in the
three-train network.
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Figure 15 shows the speed curves under a 13.60 s delay in the three-train network, in which
Figure 15a shows the speed of trains in the no action strategy and Figure 15b shows the speed of
trains in the DDPG strategy. DDPG raises the cruising speed of train No.2 in the first two interstation,
and adjusts the dwelling time to synchronize acceleration and braking, which maximizes the feedback
energy. DDPG also reduces the cruising speed in other interstations of train No.2 and the cruising
speed of other trains to reduce the traction energy.
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Table 7. Energy consumption and average spending time during the testing process under continuously
sampling random disturbances in the three-train network.

Delay (s) No Action (kWh) DDPG (kWh) Percent of Saving
Energy

Average Spending
Time (ms)

12.09 452.77 422.26 6.74% 2.85
13.60 456.16 422.56 7.37% 2.42
10.00 448.04 421.75 5.87% 2.05
11.51 451.59 422.06 6.54% 2.37
10.73 449.94 421.85 6.24% 2.11
10.46 449.44 421.81 6.15% 2.37
10.93 450.34 421.90 6.32% 2.06
11.72 452.02 422.13 6.61% 1.93
11.98 452.55 422.22 6.70% 2.11
12.69 454.07 422.34 6.99% 2.11

Figure 16 shows the traction energy and the energy feedback under a 13.60 s delay, which indirectly
reflects the effects of the reward function in the three-train network.

As shown in Figure 16, the reward function weights the energy feedback and the traction energy,
which forces the agent tending to promote the energy feedback in priority. The blue solid curve shows
that DDPG cannot save more traction energy in the three-train network. However, as shown by the
dotted lines, this algorithm saves considerable energy on the energy feedback. In terms of total effects,
the provided strategy effectively saves more energy in the three-train network.
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6. Conclusions

In this paper, a deep deterministic policy gradient algorithm is applied in the energy-aimed
timetable rescheduling problem by rescheduling the timetable after disturbances happen and
maximizing the regenerative energy from the braking trains. As required by the ETTR problems,
DDPG reschedules the timetable in real-time to avoid the chain reactions and saves more energy, and
provides a proper cruising speed and dwelling time adaptively under random disturbances.

Superior to the Q-learning algorithm, the observations of DDPG such as the speed and the position
of trains are continuous, and the targets such as the cruising speed and the dwelling time are continuous
as well. This algorithm can deal with random continuous disturbances, and take continuous action,
which is unable to be achieved by the Q-learning algorithm.

GA is suitable for building an offline timetable without disturbances. However, it is not suitable
for the ETTR problem for taking too much computation time (4325 s in the above experiment) to obtain
an offline timetable for the two-train network. By comparison, DDPG has real-time features for the
neural network structure. During the testing episode under the random continuous disturbances,
it takes a very short time, ranging from 1.27 ms to 1.99 ms, to choose a pair of proper action.

The proper training mode will improve the performance of DDPG. According to the experimental
studies on the Shanghai Metro Line 1, the agent trains under discretely sampling random disturbances,
and saves energy from 0.11% to 2.21%. By comparison, the agent performs better after the training
under continuously sampling random disturbances, which saves energy from 0.31% to 5.41% in the
testing episodes. DDPG can also be used in the three-train network. It takes 2.23 ms on average to
obtain a pair of proper action, and the rate of the saving energy ranges from 5.87% to 7.37%.
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