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Abstract: The lack of endurance is an important reason restricting further development of unmanned
aerial vehicles (UAVs). Accurately estimating the state of charge (SOC) of the Li-Po battery can
maximize the battery energy utilization and improve the endurance of UAVs. In this paper, the
main current methods for estimating the SOC of vehicles were explored and discussed to unveil
their advantages and disadvantages. In addition, the extended Kalman filter algorithm based on
an equivalent circuit model was used to estimate SOC of power-type Li-Po batteries at different
temperatures. The result showed that the closed-loop control method can effectively improve the
battery life of small-sized electric UAVs.

Keywords: unmanned aerial vehicle; power-type Li-Po battery; state of charge; extended Kalman
filter algorithm

1. Introduction

Small-sized unmanned aerial vehicles (UAVs) are widely used in various fields (including personal,
commercial, and military fields) due to a series of advantages, i.e., small volume, light weight, flexibility,
and low cost. A majority of small-sized UAVs apply an electric propulsion system and show a high
practical application value due to having various characteristics, including simplicity in operation,
high reliability, and ease of maintenance, storage, and transportation [1]. However, the energy density
(about 185 W·h/kg) of a battery is far lower than that (about 10 kW·h/kg) of fuel oil. As a result, the
battery life of electric UAVs is short [2]. Electric UAVs keep their mass unchanged during the entire
mission period, which is different from oil engines, and the discharge voltage of the batteries constantly
declines [3]. The discharge time of a battery is related to various factors, including discharge rate,
power, and voltage [4]. Therefore, the accurate estimation of the state of the batteries is crucial for
improving the utilization rate and increasing the battery life of electric UAVs.

Compared with lead-acid or nickel-metal batteries, lithium (Li) ion batteries show the following
advantages, such as high specific energy, long cycle life, low self-discharge rate, no memory effect,
and no pollution [5]. At present, Li-ion batteries are one of the most primary energy storage systems
for small-sized UAVs with an electric propulsion system. However, Li-Po batteries still exhibit many
shortcomings in practical applications. For example, Li-ion batteries with non-ideal security are prone
to be affected by temperature (changing discharge rate), the service life of batteries is reduced due
to deep discharges (lower than its nominal value) and according to the number of charge–discharge
cycles, and then their performances are attenuated after aging. Single batteries show inconsistency
after forming battery packs [6]. To solve these problems, it is necessary to favorably manage current
battery packs. This is in addition to making improvements and development in these aspects, i.e.,
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battery materials and manufacturing processes. Therefore, battery management systems (BMS) are
emerging as a topic of research. BMS can effectively manage and control battery packs, ensure the
safety and reliability of batteries during use, and prolong the practical service life of batteries while
delivering their optimal performance [7].

Among the numerous functions of BMS, the estimation of the battery state is fundamental and
crucial. The common battery states involve the state of charge (SOC), state of power (SOP), state of
health (SOH), and state of energy (SOE). SOC reflects the remaining capacity of batteries, which can
generally be defined as the ratio of the remaining charge to the capacity (charge of a battery at full state
of charge). SOC is an important internal state influencing the performance of batteries. The open-circuit
voltage (OCV), internal resistance, output power, remaining capacity, etc., are all closely related to
SOC of the battery. Therefore, attaining accurate SOC is the basis for BMS to realize other related
functions [8].

2. Methods

At present, there have been numerous researches on SOC estimation, which are mainly divided
into six types.

(1) The ampere-hour (Ah) integration method is simple and easy to apply, so it is frequently used
in BMS in the early stages. However, the method generally shows low estimation accuracy in practical
application. The main reasons are summarized as follows: inaccurate initial value of the SOC will
constantly influence the estimated result; the measurement error of the current sensors and the error of
Coulombic efficiency lead to an accumulative error for the SOC; there is a large SOC estimation error
when battery capacity parameters show errors. Thus, the SOC obtained by utilizing the Ah integration
method alone exhibits a large error [9].

(2) The OCV method: owing to it requiring long-term standing, the simple OCV method is not
applicable for dynamically estimating SOC online. Instead, it is usually used to assist and correct other
methods (such as the Ah integration method). The OCV method based on models solves the problem.
However, OCV estimation is greatly influenced by measurement noises of the measured current and
voltage and model error. Therefore, there is low estimation accuracy in practical application [10,11].

(3) Typical estimation methods based on the machine learning model include the neural network
model [12] and the support vector regression model [13]. The machine learning model shows its
superior universality, that is, it is unnecessary to consider types of batteries and the practical physical
relationship between input and output values. However, the machine learning model depends on a
large amount of data training, so it is only applicable within the original training data range. Where
the practical application environment greatly differs from the training data, it fails to guarantee model
accuracy and practical SOC estimation accuracy.

(4) Estimation methods based on an electrochemical model that concerns the electrochemical
mechanism in batteries describes the dynamic characteristics of batteries from a microscopic scale.
Compared with the equivalent circuit model that only describes external characteristics of batteries,
the electrochemical model can offer more internal information on batteries and realize a high
accuracy theoretically. Han [14] briefly introduced two commonly used electrochemical models—the
single-particle (SP) model and pseudo-two-dimensional (P2D) model. As a battery model, the
electrochemical model is more accurate theoretically compared with the equivalent circuit model.
However, due to having more model parameters that make it difficult to conduct parameter matching,
the electrochemical model is complex, less practically applied, and shows low accuracy.

(5) As a commonly used voltage model for batteries, the equivalent circuit model can describe the
external characteristics of batteries by using basic components (including capacitors and resistors) to
make up circuits based on the principle of batteries. Hu et al. [15] compared the accuracy, complexity,
and robustness of 12 commonly used equivalent circuit models, which include the combined model,
Rint model, first-order RC (resistor and capacitor) model, first-order RC model considering state delay,
second- and third-order RC models. The research results showed that the first-order RC model is
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applicable for ternary Li-ion batteries (LiNixMnyCo1-x-yO2), while the first-order RC model, which
considers a state delay, can satisfy the requirements of a lithium iron phosphate (LiFePO4) battery.
Nejad et al. [16] compared ten battery models. By taking a ternary Li-ion battery and LiFePO4 battery as
objects, the state estimation accuracies obtained by using different models were validated. The results
revealed that the RC model exhibited better dynamic characteristics. For a majority of batteries, the
second-order RC model is more applicable; the first-order RC model with a state delay is more suitable
for LiFePO4 batteries. Overall, the equivalent circuit model, which is simple and accurate, is applicable
to the practical environment.

(6) The extended Kalman filter algorithm (EKF) is a model-based closed-loop estimation method.
As it regards the battery as a power system, the KF algorithm is used to estimate SOC as an internal state
of the system. SOC estimation by using the KF algorithm can be divided into two links: priori estimation
on the SOC of the battery by applying the Ah integration method; comparison of the terminal voltage
predicted through the model with the measured terminal voltage. The difference between the two
values is used for the posterior correction of the estimated result of the SOC. According to the process
noise and observation noise of the system, the weight during posterior correction is automatically
adjusted, that is, the level of Kalman gain. The common KF algorithm is suitable for linear systems.
Cheng et al. [17] estimated the SOC of batteries by using the Rint model and the KF algorithm, and
the estimation accuracy of their result significantly increases compared with that obtained through the
Ah integration method based on OCV. However, the system of batteries is nonlinear. To apply a more
accurate nonlinear battery model, it is necessary to use the EKF algorithm. Plett [18,19] first proposed
an estimation algorithm for the SOC based on the EKF. Afterward, SOC estimation was also conducted
based on the EKF in many literatures. By taking ternary batteries and LiFePO4 batteries as research
objects, Hu et al. [20] carried out SOC estimation by employing the EKF algorithm separately based on
the first-order RC model and the first-order RC model with a state delay. They tested the robustness of
the algorithm under different loads, temperatures, and degrees of attenuation. In the EKF algorithm,
simple linearization mode is used; that is, first-order Taylor expansion is utilized to approximate
nonlinear function. The sigma-point Kalman filter (SPKF) [21] and unscented Kalman filter (UKF) [22]
improve the linearization process, and therefore, show better convergence and estimation accuracy in
terms of optimal estimation of a highly nonlinear model. Additionally, to increase the applicability of
algorithms, the corresponding adaptive Kalman filter (AKF) algorithm was also developed [23].

On the premise of having high model accuracy, this kind of closed-loop estimation method based
on the equivalent circuit model, including the KF algorithm, exhibits high estimation accuracy for
the SOC. For example, according to the results of previous research [24], SOC estimation accuracy
can reach 2.5% when using a Luenberger observer. Zeng et al. [25] obtained the root-mean-square
error within 0.5% for the estimated result of SOC by employing the AKF algorithm. Nevertheless, it
is hard to guarantee the high estimation accuracy stated in the literature when practically applying
the algorithms for the SOC. This is mainly because the performance and environment of batteries, the
hardware of the BMS, etc., are not in an ideal state in practical applications; for example, various factors
(such as battery aging, low-temperature environment, and measurement error of sensors) all likely lead
to a reduction of actual SOC estimation accuracy. At present, only a part of the literature considers
these influencing factors in SOC estimation. For example, some studies consider changes in model
parameters and capacity after battery aging so as to synchronously estimate the SOC of the battery and
capacity/model parameters by applying combined the KF or double KFs algorithm [26]. By utilizing
recursive least squares, Xia et al. [27] realized the online identification of model parameters and applied
the identification results to an SOC estimation.

Table 1 compares several methods that are commonly used at present. The above studies are
mainly aimed at estimating the battery life of electric vehicles while research on SOC estimation of
batteries for UAVs is hardly reported. In comparison, it can be seen that the closed-loop estimation
method of the Kalman filter is relatively accurate and reliable, and the amount of calculation is moderate.
It is the current mainstream method, but to improve the accuracy of actual SOC estimation in complex
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environments, it is also necessary to consider the influence of battery aging on model parameters such
as capacity and internal resistance. In the study, the SOC estimation of Li-Po batteries of UAVs was
conducted by utilizing an extended Kalman filter (EKF) algorithm—a closed-loop estimation method
based on the equivalent circuit model.

Table 1. A comparison of advantages and disadvantages of the methods for estimating state of charge
(SOC).

Estimation Method Advantages Disadvantages

Ah integration Simple and easy to be realized
Greatly affected by initial SOC,
measurement error of current;
low accuracy

OCV Simple and accurate Inapplicable for dynamic estimation

Typical estimation methods based
on a machine learning model Universality Only applicable within the original

training data range

Method based on the
electrochemical model

Containing abundant internal
information of battery

Complex model and huge
computational burden

Equivalent circuit model Simple and applicable for
dynamic estimation

Greatly influenced by measurement
and model errors

EKF
Accurate and reliable;
insensitive to measurement
noise and initial value of SOC

Depends on model accuracy;
decreased estimation accuracy after
battery aging

3. Modeling and Parameter Identification

In this section, the power battery system was first modeled. Afterward, a hybrid pulse power
characterization (HPPC) test was conducted, and parameters were identified based on the first-order
RC model (equivalent circuit model). Finally, the principle of the EKF and its application in the
established model were introduced.

3.1. Modeling of Battery System

According to Section 2, there are many studies on SOC estimation. The closed-loop estimation
algorithm based on the equivalent circuit model with a moderate computational burden is applicable
for practical application and shows advantages of accuracy and reliability, so it is a widely used method
at present. According to numerous studies, in an ideal state, the closed-loop estimation algorithm based
on the equivalent circuit model can reach a high estimation accuracy and can satisfy requirements of
practical application. Shen [7] conducted parameter identification and verified the results based on the
first-order and second-order RC models. It revealed that the estimation accuracy of the second-order
RC model for voltage is slightly higher than that of the first-order RC model. However, the two
models can both accurately simulate the voltage characteristics of batteries and show an insignificant
difference in estimation accuracy. While taking the complexity of models into account, the first-order
RC model lacks one RC parallel structure compared with the second-order RC model. Therefore, the
first-order RC model is simpler and shows lower computation complexity. For consumptive flight
control systems, the computing power is limited, and therefore, the first-order RC model (equivalent
circuit model) was selected.

According to previous research results, for a ternary-graphite Li-ion battery, the circuit structure
of the first-order RC model is shown in Figure 1.

The first-order RC model consists of an ideal voltage source (represented by OCV), an Ohmic
resistor R0 and a parallel link of a resistor R1 and a capacitor C1. Where, R1 and C1 refer to the internal
polarization resistor and polarization capacitor; the RC link is used to describe the concentration
polarization and electrochemical polarization characteristics of the battery. The current going through
the Ohmic resistor is recorded as I, being positive during discharge. The voltage between the two
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ends of the internal polarization resistor and the output terminal voltage is recorded as U1 and Uout,
respectively; The time constant is τ1= R1C1. The formula for defining SOC and the equation for
external characteristics of the first-order RC model can be expressed as follows:

SOCt = SOCt0 −
1

Cbat

∫ t

t0

ηIdτ, (1)

U1 = IR1 · [1− e−
t
τ1 ], (2)

Uout = OCV −U1 − IR0, (3)

where η denotes Coulombic efficiency, which generally approximates to 1; Cbat stands for the capacity
(A·h) of the battery under standard conditions; SOCt and SOCt0 , respectively, represent the value at the
time t and t0.
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3.2. HPPC Test and Parameter Identification

By using a Li-ion battery as the research object, the fundamental performance parameters of the
batteries used in the test are shown in Table 2.

Table 2. Performance parameters of Li-ion batteries used in the test.

Parameter Value

Nominal capacity 1500 mAh (standard charge/0.2C discharge, 2.75 V cut-off)
Nominal voltage 3.7 V
Charge cut-off voltage 4.2 V
Discharge cut-off voltage 2.75 V

Standard charge method
CC-CV (75 mA cut-off)
Standard charge: 0.5C
Rapid charge: 2C

Service temperature
Charge: 0 < T ≤ 10 ◦C, 0.2C
10 < T ≤ 20 ◦C, 0.5C
20 < T ≤ 45 ◦C, 1C

By utilizing an improved HPPC test method, a single battery was tested [28]. To be specific, a
charge or discharge pulse was applied in the interval of 5% or 10% of the SOC (In particular, all SOCs
in this experiment refer to relative SOC, that is, SOC = removable charge/actual battery capacity) in
the process when the SOC of battery was changed from 100% to 0%. As shown in Figure 2a, after
adjusting to a SOC point and keeping the battery standing for 1 h, discharge pulse was successively
applied for 30 s; after standing for 40 s, charge pulse was applied for 10 s; afterward, the battery was
discharged to the next SOC point, as shown in Figure 2b. To acquire characteristics of the battery at
different temperatures, the HPPC test was separately carried out at 40 ◦C, 25 ◦C, 15 ◦C, and 5 ◦C.
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The steps of the HPPC test are displayed in Figure 2. A charge or discharge pulse was applied to
the battery at the interval of 5% or 10% of the SOC. Given a charge or discharge pulse can only trigger
a small variation in the SOC, the SOC in each charge or discharge pulse can be considered as fixed.
Therefore, by utilizing experimental data on voltage and current in a charge or discharge pulse, the
model parameters at the corresponding SOC can be identified based on the optimal estimation method.

(1) During the HPPC test, the battery stood at each SOC point, and therefore, it was feasible to
directly read the voltage after standing as the OCV of the battery. Figure 4 presents the OCV–SOC
curves at different temperatures obtained based on test data. It can be seen that the OCV of the Li-ion
batteries used in the test insignificantly varied with temperature. However, it can be found that with
the reduction in temperature, the corresponding voltage of the same SOC point slightly declined.
It was worth noting that the HPPC test was ended owing to the capacity of battery being reduced to
5% of the SOC at 15 ◦C, while HPPC had ended at 10% of SOC at 5 ◦C.
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(2) According to the change in voltages of batteries before and after applying charge and discharge
pulses during the HPPC test, it was easy to calculate the direct-current (DC) internal resistance of
the batteries during charge and discharge. Figure 5 shows the DC internal resistances of the batteries
at different temperatures after discharge for 1 s. As shown in Figure 5, the internal resistance of the
batteries significantly changed with temperature: The internal resistance of the batteries obviously rose
with decreasing temperature. For the condition with a large SOC (20% < SOC < 100%), the internal
resistance insignificantly changed with SOC; at low SOC (< 20%), the internal resistance of the batteries
remarkably increased with reducing SOC.
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(3) SOC estimation was carried out by using the first-order RC model. Based on HPPC test data at
different temperatures, the model parameters at different temperatures can be identified by conducting
15-order polynomial fitting, thus finally attaining the 3D Map between model parameters SOC and
temperature. Figures 6 and 7 show the identification results of polarization internal resistance and
capacitance, respectively.
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3.3. EKF Algorithm

A dynamic nonlinear system generally can be described by using the following state space model.

xk+1 = f (xk, uk)+wk, (4)

yk = g(xk, uk) + vk, (5)

where, Formulae (4) and (5) separately refer to the state and output equations of the system;xk, uk and
yk denote the state vector in system at the time k, input and output vectors of system, respectively; wk
represents random process noise or disturbance, which reflects some unmeasured inputs influencing
the state of system, and vk stands for sensor noise, reflecting the measurement error of system output.
The KF algorithm, as an optimal estimation algorithm, makes the optimal estimation on the internal
state of the system in the sense of minimum variance by using the state equation according to observed
input and output data of the system. The common KF algorithm is only applicable for a linear system;
however, a battery belongs to a nonlinear system. Therefore, the SOC estimation was conducted by
applying the EKF algorithm. Plett [18,19] made a detailed introduction and analysis very early on the
EKF algorithm and its application in the estimation of the battery state. The initialization process and
iterative estimating equation of the KF algorithm are displayed in Table 3.
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Table 3. The iterative equation used for the EKF algorithm.

Definition:

Âk =
∂ f (xk ,uk)
∂xk

∣∣∣∣
xk=x̂+k

Ĉk =
∂g(xk,uk)
∂xk

∣∣∣∣
xk=x̂−k

Initialization:
Under k = 0, it is supposed that,

x̂+0 = E[x0] Σ+
x̃,0

= E
[(

x0 − x̂+0
)(

x0 − x̂+0
)T

]
Iterative Calculation:
Under k = 1, 2 · · ·
Update of state vector: x̂−k = f

(
x̂+k−1, uk−1

)
Update of time of error covariance matrix: Σ−

x̃,k
= Âk−1Σ+

x̃,k−1
ÂT

k−1 + Σw

Calculating Kalman gain: Lk = Σ−
x̃,k

ĈT
k

[
ĈkΣ−

x̃,k
ĈT

k + Σv

]−1

Updating measurement of state vector: x̂+k = x̂−k + Lk
[
yk − g

(
x̂−k , uk

)]
Updating measurement of error covariance matrix: Σ+

x̃,k
=

(
I − LkĈk

)
Σ−

x̃,k

Where, Âk and Ĉk separately refer to the first-order Taylor expansion coefficients of state and
output equations, called coefficient matrixes; Lk denotes Kalman gain, and Σw and Σv separately
stand for covariance matrixes of input and output measurement noises wk and vk; Σx,k represents the
covariance matrix of error of state estimation, showing the uncertainty of state estimation. For discrete
KF algorithm, state vector and its covariance matrix are subjected to two updates in each iterative step.
The first update of time is priori estimation based on state equation, in which the estimated results are
expressed as x̂−k and Σ−

x̃,k
, respectively; the second update of measurement is posterior correction based

on measured values and the corrected states are represented as x̂+k and Σ+
x̃,k

, respectively.
For SOC estimation of batteries, SOC is an internal state which needs to be estimated. Generally,

it is thought that current is input and terminal voltage is output of the system. Therefore, based on
Equation (1) to (3), the state Equation (6) about SOC and the output Equation (7) of the system are
attained, where, wk and vk denote input and output noises, respectively.

[
SOC(k + 1)

u1(k + 1)

]
=

 1 0

0 e
−T

R1C1

[ SOC(k)
u1(k)

]
+

 η T
Cbat

R1

(
1− e

−T
R1C1

) i(k) + wk, (6)

Uout(k) = U(SOC(k)) − u1(k) − i(k)R0 + υk (7)

where:

wk is the input noise matrix, caused by the error of the model;
vk is the measure noise matrix, caused by battery voltage measurement error;
T is the sampling period;
wk and vk are irrelevant.

According to the state space model for general systems and the calculation formula for coefficient
matrix in Table 3, the state vector xk, system output yk and input uk as well as corresponding coefficient
matrixes Âk and Ĉk for SOC estimation by using EKF algorithm are shown as follows:

xk =
[
SOCk, u1,k

]T
, (8)

yk = Uout,k, (9)

Uk = Ik, (10)
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Âk =

 1 0
0 exp

(
−T/R1,kC1,k

) ∣∣∣∣∣∣
SOC= ˆSOC+

k

, (11)

Ĉk =

[
dOCV
dSOC

∣∣∣∣∣
SOC= ˆSOC−k

,−1
]
. (12)

As a result, the models and corresponding equations for estimating the SOC of power-type Li
batteries are established.

4. Experimental Verification and Discussion

According to the iterative formulae in Table 3, the state vectors, including SOC, are subjected to
iterative estimation, and the estimation process is shown in Figure 8. It can be easily seen that SOC
estimation using the EKF algorithm is essentially the preliminary estimation of the SOC value according
to current integration, followed by a closed-loop correction of the estimated SOC taking voltage as
feedback signals based on the battery model. The feedback coefficient is exactly the Kalman gain,
which is automatically determined according to the optimal control theory by using the EKF algorithm.Energies 2019, 12, x FOR PEER REVIEW 13 of 17 
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According to the aforementioned estimation algorithms for the SOC, the estimation model for SOC
can be established in the MATLAB/Simulink platform. To verify the accuracy of estimation algorithms
for the SOC, the tests on dynamic working conditions at four temperatures (40 ◦C, 25 ◦C, 15 ◦C, and
5 ◦C) were carried out, and SOC estimation was validated based on test data [29].

The results of offline bench testing on simulated working conditions are presented in Figure 9.
SOC estimation was carried out based on measured data, and the obtained estimated results are

shown in Figure 10. The reference value of the SOC was calculated according to the Ah integration
method. It was worth noting that the Ah integration method showed a low estimation accuracy
in practical application because it was greatly influenced by errors of initial value and capacity as
well as the accumulative error of current measurement. By contrast, in a laboratory environment,
the accuracy of the current measurement was high; experimental equipment was BTS-5V100A of
Neware. The accuracy of the current measurement was within ±0.1% [30], and Shen Ping’s research
on the current measurement error of equipment shows that when the relative error of the current
measurement is 1%, the theoretical error of the SOC error in the EKF is below 0.2% [31]; therefore, the
accuracy of the current measurement can be ignored. The initial value and capacity of the SOC were
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known. Therefore, the part of the error can be ignored. In this case, the SOC calculated by applying
the Ah integration method was accurate, which can be used as a reference value.
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The SOC errors during the offline bench testing on practical working conditions are shown in
Figure 11.
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According to the verification results on practical and simulated working conditions, it can be seen
that the maximum SOC estimation errors during high-temperature tests at 40 ◦C, 25 ◦C, 15 ◦C, and
5 ◦C were 0.215%, 0.8627%, 1.5712%, and 2.807%, respectively.

Through analysis, it can be seen that at high ambient temperatures and room temperature, the
capacities and model parameters obtained by using various estimation algorithms for the SOC were all
accurate on the condition that batteries were not aged. Therefore, there was a high estimation accuracy
of the SOC, with the error within 1%. At a low temperature, the batteries were significantly polarized
so that the accuracy of the battery model was low. Therefore, the estimation accuracy for SOC slightly
decreased, with a maximum error of about 2.8%.

5. Conclusions

At present, research on SOC estimation of power-type Li batteries, the power source of small-sized
UAVs, is hardly reported. In the current study, the currently widely used methods for SOC estimation
of Li batteries for vehicles were explored and compared to analyze their advantages and disadvantages.
Afterward, by using the EKF algorithm, a closed-loop estimation method based on the equivalent
circuit model, the SOC of power-type Li batteries was estimated.

By conducting offline bench testing at different temperatures and different working conditions, it
was found that at high ambient pressures or room temperatures, the capacities and model parameters
obtained by using estimation algorithms for the SOC based on the EKF were all accurate on the
condition that batteries were not aged. Therefore, the estimation accuracy of the SOC was high, with
the error below 1%. At a low temperature, batteries were subjected to significant polarization, so that
the battery model exhibited low accuracy. Thus, the estimation accuracy of the SOC slightly reduced,
with the maximum error of about 2.8%. EKF can still estimate the SOC of batteries relatively accurately.
Therefore, EKF can be practically applied to estimate the SOC of power-type Li batteries of small-sized
UAVs, thus improving the battery life of UAVs.

However, compared with offline bench experiments, the application of SOC estimation practically
with EKF is difficult and it is not possible to guarantee high estimation accuracy due to battery aging, a
wide range in temperature, initial value uncertainty, and inaccurate voltage and current measurement.
Therefore, subsequent work should focus on analyzing the possible sources of error and the exact
impacts on the SOC estimate to minimize errors.
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