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Abstract: In this paper a genetic algorithm (GA) approach to design of multi-layer perceptron
(MLP) for combined cycle power plant power output estimation is presented. Dataset used in this
research is a part of publicly available UCI Machine Learning Repository and it consists of 9568
data points (power plant operating regimes) that is divided on training dataset that consists of 7500
data points and testing dataset containing 2068 data points. Presented research was performed with
aim of increasing regression performances of MLP in comparison to ones available in the literature
by utilizing heuristic algorithm. The GA described in this paper is performed by using mutation
and crossover procedures. These procedures are utilized for design of 20 different chromosomes
in 50 different generations. MLP configurations that are designed with GA implementation are
validated by using Bland - Altman (B-A) analysis. By utilizing GA, MLP with five hidden layers of
80,25,65,75 and 80 nodes, respectively, is designed. For aforementioned MLP, k - fold cross-validation
is performed in order to examine its generalization performances. The Root Mean Square Error
(RMSE) value achieved with aforementioned MLP is 4.305, that is significantly lower in comparison
with MLP presented in available literature, but still higher than several complex algorithms such as
KStar and tree based algorithms.

Keywords: bland-altman analysis; combined cycle power plant; genetic algorithm; machine learning;
multi-layer perceptron

1. Introduction

A Combined Cycle Power Plant (CCPP) is a power system composed of at least one gas turbine
cycle, at least one steam turbine cycle and connection between these cycles – Heat Recovery Steam
Generator (HRSG) [1]. Today, engineers and researchers intensively investigate operation and made
improvements of such power plants (for CCPPs which are currently in operation), while a new CCPPs
are built in many countries worldwide. When CCPPs are compared with other power plants, it can be
noticed that the CCPPs are achieving significantly higher efficiencies (usually higher than 60%) [2],
with lower specific emmisions [3], and quick start capability (gas turbine cycle) while requiering
lower operation and maintenance cost [4]. Due to high complexity of CCPPs, in its investigation and
analysis during operation, it is common to use various dynamic numerical simulations for predicting
the changes in measured, as well as for calculating non-measured, operating parameters [5].

A literature review offers many analyses of current operating CCPPs. Exergo-economic and
environmental analyses of solar integrated CCPP which operates in Poland is presented in [6].
Integration of the solar system into CCPP operation only slightly increases power plant capital cost,
but at the same time significantly decreases CO2 emission and therefore CO2 penalties. The investment
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return rate is only marginally affected after inclusion of the solar system into CCPP operation. In [7]
another exergo-economic analysis of CCPP and investigated three possible scenarios for power plant
operation is performed. It is concluded that the optimum size and configuration of the CCPP differ
for each observed scenario. Third exergo-economic analysis can be found in [8] where two different
CCPP configurations from the same manufacturer were analyzed. Analysis enables selection of better
configuration and after selection, the authors performed its optimization and present possibilities of
further improvements.

In energy and exergy analyses of CCPPs and its components, several researchers obtained the
same conclusions about elements which have the highest losses from both (energy and exergy) aspect.
The highest energy losses in CCPP of any kind can be found in steam condenser [9,10], while the highest
exergy losses occur in gas turbine combustion chambers [9–11]. These conclusions are confirmed
by several researchers and for CCPPs of different size, power output and configuration, so it can be
concluded that they are valid in general.

Exergy analysis of any power plant or of any control volume which operate in a power plant is
dependable on the ambient pressure and temperature (unlike energy analysis for which the parameters
of the ambient are irrelevant) [12,13]. The change in the ambient pressure is usually small and it does
not have a major influence on the exergy analysis of power plant or control volume [14], but the change
in the ambient temperature can have a major influence on the exergy efficiency and exergy losses of
any power plant or control volume. In [15] the ambient temperature change influence on the selected
CCPP overall exergy efficiency is investigated. The authors concluded that an increase in the ambient
temperature reduces overall CCPP exergy efficiency (increase in the ambient temperature from 8 ◦C to
23 ◦C reduces overall exergy efficiency of the analyzed CCPP from 43.3% to 42.7%).

Techniques and recommendations for improving of CCPPs or for improving some components
from such power plants can be found in several researches. In [16] an analysis of the modern CCPP
in which gas turbine uses steam cooling is presented. Proposed cooling technique increases CCPP
overall efficiency, while simultaneously, such technique reduces plant flexibility and increases power
plant start-up time. In [17] various gas turbine improvements in a modern CCPP are analyzed and is
concluded that industry - known solutions such as sequential combustion can significantly increase
overall plant efficiency.

The authors in [18,19] investigate the benefits of steam injection into the combustion chambers
of gas turbine which is a constituent component of CCPP. The main conclusions are that such
improvement increases power output of CCPP, decreases plant NOx emission (due to decreasing
of the maximum combustion temperature) and provide acceptable economic performance.

In [20] a new operating strategy for improving part-load performance of analyzed CCPP is
presented. Proposed strategy resulted with an increase in CCPP overall efficiency up to 1.2% at
partial loads. The possibility of a wind farm integration into an offshore CCPP is investigated
in [21]. The authors found many difficulties in such integration because many, possibly conflicting
requirements have to be satisfied simultaneously.

Analysis of the water amount reduction in CCPP cooling systems was performed in [22]. Three
different cooling systems were analyzed—wet, dry, and hybrid (the wet system uses water, and the
dry system uses air circulated by a fan, while the hybrid system is an alternative which combines wet
and dry techniques). The hybrid cooling system has the highest investment costs, but it also provides
many benefits in comparison to other observed cooling systems.

In recent research papers, it can be noticed that the authors prefer two improvements of CCPPs
which today bring the largest benefits into such power plants operation. The first is integration
of solar systems and the second is integration of CO2 post-combustion capture systems into CCPP
operation. A computational analysis of small solar field integration in CCPP operation is presented
in [23]. When compared to base CCPP, small solar field integration increases plant overall efficiency
for about 2.58% in the morning and afternoon periods and for about 3.16% in the midday periods.
Another mathematical model of a typical solar integrated CCPP is developed in [24] and applied on Al
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- Abdaliya’s solar integrated CCPP in Kuwait. Mathematical model results show that the observed
solar integrated CCPP can reach an overall efficiency of more than 66%.

A post-combustion CO2 capture system which use activated carbon and its comparison with
commercial systems applied in CCPPs operation is investigated in [25]. After performing comparisons,
it was concluded that a system which uses activated carbon can be a good alternative for CO2 capture
and such a system can be more efficient and cost beneficial in comparison with other commercial
systems. Another alternative to commercial systems for CO2 capture in CCPPs, named the Moving
Bed Temperature Swing Adsorption (MBTSA) system, was presented and analyzed in [26]. As well as
for activated carbon system, for MBTSA system is also concluded to represent a newer, more proper
alternative for CO2 capture in CCPPs, and it brings several advantages in comparison with other CO2

capture systems.
Post-combustion CO2 capture system along with methanation system and its implementation

into CCPP operation in India was analyzed in [27]. Captured CO2 in this combination is used in
methanation system to produce methane – produced methane is used as a fuel in a gas turbine.
In comparison with base CCPP, implementation of these two systems resulted with a significant
increase in plant power output.

Unlike other research papers which investigated CCPPs and its components, in [28] a comparison
analysis of different machine learning (ML) techniques for prediction of CCPP full load electrical
power output is presented. This article, as well as the resulting dataset, was used as a starting point for
research performed in this paper. The dataset presented in [28] was published online as part of the
UCI Machine Learning Repository. Overview of the methods presented in aforementioned article and
achieved RMSE is given in Table 1.

Table 1. Overview of methods and achieved RMSE.

Category Method RMSE

Functions Simple Linear regression 5.425
Linear Regression 4.561
Least Median Square 4.968
Multilayer Perceptron 5.341
Radial Basis Funcion Neural Network 7.501
Pace Regression 4.561
Support Vector Poly Kernel Regression 4.563

When presented results are compared, it can be observed that Artificial Neural Networks (ANNs)
have significantly higher RMSE compared to other methods, even when compared to simple regression
functions. This feature is also noticeable when using an MLP.

In the energy sector, Artificial Neural Networks (ANNs) are widely applied for resolving many
problems and for optimization purposes. In [29] ANN-based reinforcement learning algorithm is used
to manage the optimal energy routing path in energy internet (EI) concept. In order to effectively
analyze the quality of power signals, research [30] proposes a method of signal feature capture and
fault identification based on the ANN combined with discrete wavelet transform and Parseval’s
theorem. ANN for air-temperature predictions in smart buildings was developed in [31] in order
to obtain better energy control. Short term forecasting prediction of the photovoltaic plant power
output by using ANNs can be found in [32,33]. Analysis of heating expenses in a large social housing
stock using artificial neural networks is presented in [34]. Energy supply solution for sensor nodes in
buildings based on ANNs was investigated and analyzed in [35]. ANNs can be also used for fast and
precise detection of garbage patches, oil spills or pollutions of any kind inside each energy plant or in
the entire geographical area with several energy plants by using aerial imagery [36].
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It is shown that ANNs are, in general, performing better in comparison with other regression
methods [37] and it can be considered as a more flexible method [38] that is acceptable from time
standpoint. MLP can be considered as the most used type of ANN [39] due to high performance from
the standpoint of regression [40,41] and classification [42,43]. Because of these reasons, the aim of this
research is to find a suitable solution to MLP model selection problem, that is applicable to prediction
of CCPP electrical power output. Furthermore, the aim of this research is to find MLP model that
performs with lower RMSE, in comparison to ANNs presented in [28].

There are many approaches to solving ANN model selection problem such as: grid search [44,45],
Bayesian model selection [46], etc. Another method for solving MLP model selection problem is a
heuristic approach [47–49]. This approach offers high performances in regard of regression [50,51] and
classification [52] problems. For these reasons a utilization possibility of heuristic algorithms in design
of MLP for CCPP electrical power output estimation is investigated.

During analysis and optimization of energy systems, various heuristic algorithms can be used.
However, the guidelines which will lead researchers to selection of optimal optimization algorithms
for investigated (or similar) problem cannot be found in the literature. Therefore, the best selection
procedure is to use an optimization algorithm which is used by other researchers during investigation
of similar problems, or during analysis of similar systems. In this paper, the authors selected Genetic
Algorithm (GA) for optimization of MLP neural network architecture for Combined Cycle Power Plant
(CCPP) electrical power output estimation. Similar research of energy management optimization at
building and district levels is performed in [53] where the authors used ANN and GA. However,
the authors in [53] used GA for optimization of ANN predictions, not for optimization of ANN
architecture. Literature review offers many examples of using GA in analysis and optimization of
various elements from many energy systems or its parts. In [54] as well as in [55] GA is utilized
for optimization of energy systems which uses solar energy sources. Optimal energy management
of a stand-alone hybrid energy system by using GA strategies is presented in [56], while energy
quality management for a micro-energy network integrated with renewables in a tourist area was
analyzed in [57] where the authors used GA optimization in order to obtain optimal energy distribution.
Reducing of water pumps electricity usage and pollution emissions by using sorting GA can be found
in [58]. From presented literature, it can be concluded that the various researchers often used GA in
investigation, analysis and optimization of energy systems.

In the analysis and optimization of energy systems or its parts besides GA, other optimization
algorithms can be utilized. Gravitational Search Algorithm (GSA) is one of such optimization
algorithms used in optimization of pumped storage hydro unit [59], in the forecasting of coal
demand [60] or in forecasting of monthly electricity demands [48] as well as in other energy and
engineering problems [61]. Particle Swarm Optimization (PSO) algorithm is used so far for developing
of power loss reduction method in power industry sector [62], in optimization of power supply
system [63] as well as in the analysis and optimization of smart power grids [64]. Ant Colony
Optimization (ACO) can be used in optimization of biodiesel production [65], in AC/DC distribution
network planning problem [66], etc. Cuckoo Search Algorithm (CSA) usage is found in the analysis
and optimization of magnetic levitation system [67], in route optimization of heating engineering [68]
as well as in research and application of hybrid wind-energy forecasting models [69]. Hybrid Genetic
Algorithm (HGA) is improved version of classic GA, which also can be used in resolving many
problems of energy systems. For example, HGA can be used in developing of control schemes for small
power systems with high-penetration wind farms [70] or in the thermal fatigue failure prediction of
microelectronic chips [71]. In addition to the aforementioned research papers, in the literature, several
other optimization algorithms used in energy and other practical applications can be found [72,73].

The direct performance comparison of several optimization algorithms can be found in a few
research papers. In [74] were compared performances of several optimization algorithms (PSO, ACO,
CSA, GA and HGA) while performing optimization of real-time task scheduling in multiprocessor
systems. For this problem the authors concluded that the best performance shows HGA, following by
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GA and other algorithms. In [75] the authors compared four algorithms (Simulated Annealing, GA,
HGA and Variable Search Environment Descending) while solving problem of electric power grids
distribution for optimal location and sizing. It is concluded that HGA (followed by GA) provides
solutions of the best quality, with a note that HGA uses significantly higher computational time
in comparison with other methods. Therefore, for solving the same problem, it is impossible to
conclude which algorithm is absolutely dominant. A performance comparison of several optimization
algorithms while solving residential load scheduling problem is presented in [76]. This research also
confirmed that GA in comparison to all other algorithms have advantages and disadvantages, but that
it always give satisfying results along with using a reasonable amount of computational resources.

Presented literature review shows that GA can be used for optimization of many elements and
problems in various energy systems, therefore it is also chosen for the research performed in this paper
as a reliable and fast optimization solution for which can be expected to give satisfactorily accurate
and precise results.

In this research, a GA approach to design of MLP for CCPP electrical power output estimation is
presented. GA - based MLP model selection is performed for MLP with one, two, three, four and five
hidden layers using one mutation procedure, three different crossover procedures and two different
fitness functions. For obtained results, Bland-Altman (B-A) analysis is performed and three MLP
configurations are chosen. Regression results achieved with aforementioned MLP configurations are
than compared to real data. At the end, RMSE values of MLPs designed with GA are compared to
results presented in [28].

To summarize the novelty of this paper, the idea is to investigate the implementation possibility
of heuristic algorithms, mainly GA, in order to increase regression performances of MLP for CCPP
electrical power output estimation, in comparison to results presented in Table 1. As an addition to
classification performance measures, B-A analysis is introduced alongside RMSE in order to examine
standard derivation of errors produced by regression. For chosen configurations, cross-validation
is performed in order to investigate generalization performances of aforementioned configurations.
From previous statements, the following hypotheses can be imposed:

• to investigate implementation possibility of GA in design of MLP for CCPP electrical power
output estimation,

• to compare regression performances of GA - designed MLP with results presented in available
literature and

• to determine MLP configuration with optimal performances in regard of regression errors.

Based on presented hypotheses, optimal MLP configuration will be presented and possibility of
heuristic algorithms utilization in design of MLP for CCPP electrical power output estimation will
be discussed.

2. Materials and Methods

In this section an overview of used materials and methods is provided. First, a brief description
of dataset is presented. After this part, description of used MLP and GA is given. At the end, methods
used for results comparison are described.

2.1. Dataset Description

Analyzed combined cycle power plant has two identical gas turbines with the same operating
parameters and consequentially the same produced power. Steam turbine is composed of high-pressure
and low-pressure cylinders mounted on the same shaft, with a note that the low-pressure cylinder is a
dual flow symmetrical cylinder, as shown in Figure 1.
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Figure 1. Schematic diagram of the analyzed CCPP.

Cumulative power produced from the analyzed combined cycle power plant in each operating
regime can be calculated by using two different approaches: the first is conventional approach, while
the second is approach by applying Machine Learning (ML) algorithms in order to estimate electrical
power output. The conventional approach of cumulative produced power calculation from the
analyzed plant in each operating regime requires knowledge of 20 operating parameters (operating
medium pressure, temperature and mass flow rate) in each characteristic operating point of gas turbine
and steam turbine. Such number of operating parameters in a conventional approach requires extensive
measurements in each plant operating regime. The second approach, by using ML algorithms, before its
final implementation, requires knowledge of only five operating parameters in each plant operating
regime. Those parameters are ambient air pressure, temperature and relative humidity; condenser
pressure (vacuum); and cumulative electrical power output of the CCPP. After implementation
ML - based algorithms require knowledge of only four operating parameters (ambient air pressure;
temperature; relative humidity and condenser vacuum) for the calculation of cumulative electrical
power output of the CCPP in each operating regime. Parameters used for training and testing of ML
algorithms are found in [28] and described in Table 2.

Dataset used for this research consists of 9568 data points (CCPP operating regimes) that are
constructed with four-element input vector and output value. In this research, dataset is divided in two
subsets: training and testing dataset. Training dataset consists of 7500 data points and testing dataset
consists of 2068 data points. Training dataset will be used for MLP training, while testing dataset will
be used for MLP testing and fitness value determination. Such dataset division is also called fixed
partitions division [77]. Furthermore, testing dataset will be used for Bland-Altman analysis and for
RMSE calculation with aim for determination of configurations that are achieving viable estimation
results. For aforementioned configurations cross-validation will be performed with aim to examine
stability in regard of data generalization. In this research, cross-validation will be performed on already
designed configurations and not during GA - based MLP design procedure. The reason for this lies
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in the fact that performing cross-validation during GA will be time consuming due to dataset and
population sizes [78].

Table 2. Description of dataset parameters.

Type Parameter Range

Input Temperature (T) 1.81 ◦C–37.11 ◦C
Input Ambient Pressure (AP) 992.89 mbar–1033.30 mbar
Input Relative Humidity (RH) 25.56%–100.16%
Input Exhaust Vacuum (V) 25.36 cmHg–81.56 cmHg
Output Average Hourly Electrical Power Output (Pe) 420.26 MW–495.76 MW

As mentioned before, a k - fold cross-validation technique is utilized in order to examine
generalization performances of designed MLPs. First step for performing k - fold cross-validation is
division of the entire dataset into k parts [77,79]. Than, one part of the divided dataset is used for MLP
testing, while remaining parts are used for MLP training. Graphical representation of such procedure
is shown in Figure 2.

F1 F2 F3 F4 F5

Case 1

Case 2

Case 3

Case 4

Case 5

Training

Testing

1

Figure 2. Graphical representation of the cross-validation procedure (F1 - Fold 1; F2 - Fold 2; F3 - Fold 3;
F4 - Fold 4; F5 - Fold 5).

In this research, two types of k - fold cross-validation are performed and these are 5-fold and
10-fold cross-validation.

2.2. Multilayer Perceptron

MLP is a type of ANN, characterized with feed-forward architecture and according to [80] mostly
consists of three layers and these are:

• Input layer - layer which represents input data vector,
• Hidden layers - layers between input and output layer and
• Output layer - layer that represents output vector.

This MLP architecture is characterized with its simple design, that can be used for solving various
classification and regression problems [80]. Each hidden layer consists of nodes constructed with
some type of activation function, that is used for transforming summed input value of each neuron
to its output value [81]. For the case of this research, three different activation functions are utilized,
and these are:

• Rectified Linear Unit (ReLU) [82],
• Logistic Sigmoid [83] and
• Hyperbolic Tangent (Tanh) [84].
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In order of defining relation between data in input vector and data in output vector, procedure
called supervised learning is performed [85]. Supervised learning is achieved by using an algorithm
for optimization (solver). In the case of this research, six different solvers are utilized, and these are:

• Stochastic Gradient Descent (SGD) [86],
• Adaptive learning rate optimization algorithm (Adam) [87],
• Root-Mean-Square optimization algorithm (RMSProp) [88],
• Adaptive Gradient Algorithm (AdaGrad) [89] ,
• Proximal AdaGrad (PAdaGrad) [90] and
• Ada Delta (Ada∆) [91].

By using above mentioned activation functions and solvers GA-based procedure of MLP design will
be performed.

2.3. Genetic Algorithm

GA is a meta-heuristic algorithm used for optimization [92], path planing [93] and mapping [94]
tasks. It is inspired by the process of natural evolution and it is based on procedures similar to ones
in natural evolution process used for generating individual solutions with better performances [95].
These procedures are:

• Mutation,
• Crossover and
• Parents selection.

Procedures listed above will be used on chromosomes that represent MLP parameters. The following
part of the paper represents a description of the previously mentioned methods of variation and
selection, that are used in this research. A definition of fitness function and description of population
initialization are also provided.

2.3.1. Mutation

Number of mutations (N) into one chromosome is a uniformly distributed discrete random
variable, which can be described as

N ∼ U[0, M], (1)

where M represents chromosome length. Location of the mutated gene into the chromosome (G) is
also defined as a uniformly distributed (U) random variable

G ∼ U[0, M]. (2)

The new parameter (a) contained in the gene (G) is selected randomly as

SG
R←− a, (3)

where SG represents a set of parameters that are applicable to gene G. Random selection of a set SG
member which is assigned to the gene G is also uniformly distributed. A graphical representation of
mutation procedure with M = 10 and N = 3 is given in Figure 3, where shaded cells in K3 represent
mutated genes.

K1

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K3

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Figure 3. Graphical representation of the mutation procedure on the example with M = 10 and N = 3
(K1 - parent chromosome, K3 - child chromosome, G - gene).
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2.3.2. Crossover

In this research, three different crossover methods are utilized. Determination of a crossover
method is performed by using uniformly distributed random variable, defined as

c ∼ U[0, 2], (4)

where c represents a random variable. Depending on the value of the random variable, the crossover
method is defined, as shown by the random selection tree in the Figure 4a.

c

c = 0 c = 1 c = 2

Crossover
method 1

Crossover
method 2

Crossover
method 3

(a) The random selection tree of the crossover method

K1

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K2

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K4

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K5

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

(b) First crossover procedure

K1

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K2

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K4

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K5

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

(c) Second crossover procedure

K1

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K2

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K4

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

K5

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

(d) Third crossover procedure

Figure 4. Graphical representation of used random selection tree (a) and used crossover methods
(b–d) (K1 - first parent chromosome, K2 - second parent chromosome, K4 - first child chromosome, K5 -
second child chromosome, G - gene).

The first crossover method is performed with one crossover of two different chromosomes. Gene
after which a crossover is performed is defined as a uniformly distributed discrete random variable
which can be written as:

G ∼ U[0, M− 1]. (5)

The fragment of each of the parent chromosomes is chosen to form two new chromosomes. First
child chromosome (K4) is formed by combining the first fragment of the first parent chromosome
(K1) and the second fragment of the second parent chromosome (K2). Formation of the first child
chromosome can be defined as

K4 = K1{0, 1, ..., G} ∪ K2{G + 1, G + 2, ..., M}. (6)

On the other hand, second child chromosome is formed by combining the first fragment of the
second parent chromosome (K2) and the second fragment of the first parent chromosome (K1). This
formation can be represented with

K5 = K2{0, 1, ..., G} ∪ K1{G + 1, G + 2, ..., M}. (7)

Graphical representation of previously defined crossover procedure is shown in Figure 4b.
The second crossover method utilized in this research is performed by combining three different
fragments of two parent chromosomes for construction of two child chromosomes. Parent
chromosomes are divided into three fragments by using two discrete, uniformly distributed, random
variables representing genes after which chromosome division has occurred. First variable represents
gene that forms the end of the first fragment of the chromosome. That chromosome (Gl), which can be
considered as a left borderline chromosome, is defined as
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Gl ∼ U[0, M− 2], (8)

where M− 2 marks the farthest possible boundary, so defined, that by the end of the child chromosome,
two more fragments of the first and second parent chromosomes could be exchanged. Second, the right
chromosome Gr, is defined as

Gr ∼ U[Gl + 1, M− 1], (9)

where at least one gene is left to be fitted with a genetic material of the first parent chromosome. The first
child chromosome (K4) is constructed by combining first fragment of the first parent chromosome
(K1), middle fragment of the second parent chromosome (K2) and the last fragment of the first parent
chromosome (K1). This combination can be written as

K4 = K1{G0, G1, ..., Gl} ∪ K2{Gl + 1, Gl + 2, ..., Gr}
∪ K1{Gr + 1, Gr + 2, ..., M}. (10)

Formation of the second child chromosome (K5) is performed by using opposite chromosome
fragments. K5 is formed by combining the first fragment of the second parent chromosome (K2),
the middle fragment of the first parent chromosome (K1) and last fragment of the second parent
chromosome. Formation of the second child chromosome can be written as

K5 = K2{G0, G1, ..., Gl} ∪ K1{Gl + 1, Gl + 2, ..., Gr}
∪ K2{Gr + 1, Gr + 2, ..., M}. (11)

The graphical representation of the second crossover procedure is given in Figure 4c. Third
crossover procedure can be defined with discrete, uniformly distributed random variable (b) that,
in fact, represents a coin-flip random variable, which can be written as

b = U ∼ [0, 1]. (12)

According to the value of variable b, two child chromosomes are constructed. A gene of the first
child chromosome (K4i) will be equal to the gene of the first parent chromosome (K1i) if b = 0. On the
other hand, K4i will be equal to the gene of the second parent chromosome (K2i) if b = 1. The above
procedure can be defined with

K4i =

{
K1i, b = 0

K2i, b = 1
, (13)

for i = 0, 1, ..., M. Procedure for constructing the second child chromosome is performed in the
similar manner. A gene of the second child chromosome (K5i) will be equal to the gene of the second
parent chromosome (K2i) if b = 0. On the other hand, K5i will be equal to the gene of the first
parent chromosome (K1i) if b = 1. As it is in the case of constructing K4i, construction of K5i can be
defined with

K5i =

{
K2i, b = 0

K1i, b = 1
, (14)

for i = 0, 1, ..., M. The graphical representation of the described crossover procedure is given in
Figure 4d.

2.3.3. Fitness Function

Fitness function is a function that is used as a chromosome performance measure and it is used to
guide the GA towards the optimal solution [96]. In this research, two different fitness functions are
defined, and these are

• MRE and
• MSE.
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As mentioned previously, fitness function is a function that represents a chromosome performance
measure. From this statement it can be concluded that fitness value is a function of a chromosome,
defined as

Fi = f (Ki), (15)

where Ki represents a chromosome. One way to define a fitness value of a chromosome is to calculate
MRE of a sample ei which can be defined with

ei =
|Yi − Ŷi|

Yi
, (16)

where Yi represents a real value of an sample and Ŷi represents a value that is predicted with an
MLP-based regression. MRE of the entire testing dataset can be calculated with

MRE =
1
N

N

∑
i=1

|Yi − Ŷi|
Yi

, (17)

where N represents the total number of samples in the testing dataset.
As an another approach of determining fitness value of a chromosome, square error is defined

and on a sample (SEi) it can be calculated as

SEi = (Yi − Ŷi)
2, (18)

where Yi represents real output value and Ŷi represents a value predicted with MLP-based regression.
Mean square error of the entire testing dataset (MSE) can be calculated as

MSE =
1
N

N

∑
i=1

(Yi − Ŷi)
2, (19)

where N represents the total number of samples of composed testing dataset.
Both methods described above will be used to determine the fitness value of chromosomes.

2.3.4. Population Creation

Initial population P is created by combining chromosomes with randomly chosen genes, which
can be written as

P = {KI , KI I , ..., Kρ}, (20)

where ρ represents the number of population members. For each population member a fitness value is
determined by using one of methods described in Section 2.3.3. Fitness value of each chromosome
is than used to form a set that contains fitness values of all population members. This set can be
defined as

F = {FI , FI I , ..., Fρ}. (21)

By using set of chromosomes P and set of fitness values F, a new set of tuples is constructed. This
set can be defined with

S = {(KI , FI), (KI I , FI I), ..., (Kρ, Fρ)}, (22)

where each of the tuples represents one chromosome and its fitness value.
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2.3.5. Parents Selection

In order to perform selection of parents for formation of new generation,previously defined set of
tuples can be written in following form

S = {SI , SI I , ..., Sρ}, (23)

is sorted in such manner that

π2(SI) ≤ π2(SI I) ≤ ... ≤ π2(Sρ), (24)

where π2(Si) represents the second element of a tuple Si, namely Fi. By using the sorted set, parent
chromosomes are determined as

K1 = π1(SI) (25)

and

K2 = π1(SI I), (26)

where π1(Si) represents the first element of the tuple Si, namely Ki.

2.3.6. New Population Formation

After selection of parents (K1 and K2), variation procedures are performed. Parents together with
children generated by variation procedures (K3, K4 and K5) form the new population, that can be
defined as a union between four sets

P =
{K1, K2} ∪ {K31, K32, ..., K3D} ∪ {K41, K42, ..., K4C}
∪ {K51, K52, ..., K5C},

(27)

where D represents number of chromosomes produced with mutation and C represents half of the
number of performed crossover procedures. From population set, number of population members can
be defined as

ρ = 2 + D + 2C. (28)

In the case of this research GA parameters C = 6 and D = 6 are utilized, that gives 20 population
members in total. The described procedure is performed for 50 generations.

2.3.7. Chromosome Construction

For the purposes of this research six different MLP parameters are utilized in chromosome
construction. Parameters that can be described as numerical values are shown in Table 3. As a number
of MLP training epochs, an odd number between one and 100 is chosen. As a number of nodes in
each hidden layer an integer in range from 10 up to 100 is chosen. These constrains were introduced
with regard to theoretical knowledge of model complexity selection [97,98]. As a batch size, a value
in range from 200 up to 1875 samples is chosen, where the latter represents a quarter of a number of
training samples.

Table 3. Numerical parameters used for chromosome construction.

Parameter Variations Range

Number of epochs (le) 50 le ∈ [1, 100]
Number of nodes in the hidden layer (ln) 20 ln ∈ [10, 100]
Batch size (lb) 75 lb ∈ [200, 1875]
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Other two parameters used in chromosome construction are represented with sets of strings,
as shown in Table 4. The first set represents a set of activation functions used for MLP design where
activation functions are used for hidden layers and output layer design, while the second set consists
of different solver algorithms that are used for MLP training.

Table 4. String parameters used for chromosome construction.

Parameter Set

Activation function (la) la = {ReLU, Logistic Sigmoid, Tanh}
Solver (ls) ls = {SGD, Adam, RMSprop, AdaGrad, PAdaGrad, Ada∆}

Parameters used for construction of chromosome in the case of MLP with one hidden layer are
shown in Table 5. It can be noticed that set la is used for the generation of two genes G2 and G3 were
G2 represent activation function used for the design of the hidden layer and gene G3 represents the
activation function used for the design of the output layer.

Table 5. Chromosome construction parameters for the case od MLP with one hidden layer.

Gene Gene Representation Parameter

G0 Number of epochs le
G1 Number of neurons in the hidden layer ln
G2 Activation function in the hidden layer la
G3 Activation function in the output layer la
G4 Batch size lb
G5 Solver ls

The chromosome construction parameters used in the case of MLP designed with two hidden
layers are shown in Table 6. It can be seen that each of the hidden layers is defined with its own
activation function and its own number of nodes.

Table 6. Chromosome construction parameters for the case od MLP with two hidden layers.

Gene Gene Representation Parameter

G0 Number of epochs le
G1 Number of neurons in the first hidden layer ln
G2 Activation function in the first hidden layer la
G3 Number of neurons in the second hidden layer ln
G4 Activation function in the second hidden layer la
G5 Activation function in the output layer la
G6 Batch size lb
G7 Solver ls

The same pattern is repeated for the cases of MLP designed with three, four and five hidden layers.

2.4. Bland-Altman Analysis

For regression model validation, B-A analysis is used. B-A plot is a statistical tool mostly used for
comparison of medical measurement methods [99,100], but it can also be used to validate machine
learning-based regression [101,102]. For every sample contained in testing dataset, a point on B-A plot
can be determined as
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T(pi, di), (29)

where pi can be defined as a mean value between real and estimated CCPP electrical power output

pi =
Yi + Ŷi

2
(30)

and di can be defined as a difference between two samples (real and estimated)

di = Yi − Ŷi. (31)

Using described procedure, a graphical representation of all samples in testing dataset is performed.
By using aforementioned samples, method comparison metrics are introduced, and these are:

• Bias,
• Confidence interval upper bound and
• Confidence interval lower bound.

The mean value of differences or bias can be determined with

d =
1
N

N

∑
i=1

di, (32)

where N represents the number of samples in testing dataset. By using calculated bias, lower and
upper bounds of the confidence interval are determined as

LOAl = d− 1.96sd (33)

and

LOAu = d + 1.96sd, (34)

where sd represents standard deviation, calculated as

sd =

√√√√ 1
N − 1

N

∑
i=1

(di − d)2. (35)

The value 1.96 corresponds to 95% confidence interval. By using aforementioned metrics, MLP
that has the best match to the samples from the testing dataset will be determined.

2.5. Root Mean Square Error

For MLP comparison with results presented in [28], RMSE values are used. The RMSE of a
testing dataset is calculated as:

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi − Ŷi)2. (36)

3. Results and Discussion

In this section MLP configurations that are results of GA - based MLP design are presented, along
with their fitness value. All presented configurations are designed by utilizing above described GA
procedure in 50 generations. For all resulting configurations, B-A statistical analysis is performed with
aim of comparing estimated results with real data. Results of B-A analysis will be used for evaluation
of regression performances of each MLP configuration designed by utilizing GA. According to results
achieved with B-A statistical analysis, some of the configurations will be chosen for further analysis,
while the others will be omitted. Performances of remaining configurations will be compared to results
achieved by similar methods that are presented in [28]. In the end, cross-validation technique will be
applied to the remaining configurations with the aim of determining the generalization performances of
each. According to obtained results, MLP configuration with optimal performances will be determined.
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3.1. Results

When GA with MRE fitness function is utilized for MLP design, configurations reported in Table 7
are obtained.

Table 7. MLP configurations as a result of the GA implementation with MRE as a fitness function.

Configuration

Gene R1 R2 R3 R4 R5

Number of epochs 87 70 99 91 13
Number of neurons in the first hidden layer 60 80 65 55 80
Activation function in the first hidden layer ReLU ReLU Sigmoid ReLU Sigmoid
Number of neurons in the second hidden layer - 100 10 55 25
Activation function in the second hidden layer - ReLU ReLU Sigmoid Tanh
Number of neurons in the third hidden layer - - 60 90 65
Activation function in the third hidden layer - - ReLU Sigmoid ReLU
Number of neurons in the fourth hidden layer - - - 85 75
Activation function in the fourth hidden layer - - - ReLU ReLU
Number of neurons in the fifth hidden layer - - - - 80
Activation function in the fifth hidden layer - - - - ReLU
Activation function in the output layer ReLU ReLU ReLU ReLU ReLU
Batch size 407 1164 453 223 39
Solver Adam Adam Adam SGD Adam
Fitness value (MRE) 0.8327% 1.0062% 0.7374% 1.4606% 0.7369%

From results presented in Table 7 it can be noticed that MLP designed with one hidden layer
(R1) achieves fitness value of 0.8327%. When B-A analysis is performed on results achieved with R1

it can be seen that this MLP is performing with negative bias of −2.6766 and confidence interval in
range d ∈ [−12.4106, 7.0574], as shown in Figure 5a. It can be noticed that points on B-A plot are
concentrated around bias line, regardless of average value.

In the case of GA usage for design of MLP with two hidden layers (R2), the configuration reported
in Table 7 is obtained. This configuration achieves fitness value of 1.0062%. When Bland-Altman
analysis is performed for R2, it can be noticed that MLP, in this case, is performing with positive bias
of 14.7462 and confidence interval in range d ∈ [3.5776, 25.9149]. It can also be noticed that MLP is
performing with significantly higher error, in comparison to the MLP designed with one hidden layer.
This feature is particularly emphasized in the case of samples with higher mean value, as shown in
Figure 5b.

In the case of MLP with three hidden layers (R3), configuration reported in Table 7 is obtained.
With this configuration, fitness value of 0.7374% is achieved. When B-A analysis is performed for
R3, it can be seen that all errors are linearly distributed with a positive slope, relative to the mean
values, as shown in Figure 5c. From this result it can be concluded that MLP is always producing
the same output value, regardless of input vector. For these reasons, this configuration must be
omitted. From presented results, it is noticed that MLP evaluation only by using error or bias value
can be misleading.

When GA is utilized for design of MLP with four hidden layers (R4), configuration reported in
Table 7 is obtained. With these MLP configuration fitness value of 1.4606% is achieved. When B-A
analysis is performed for this configuration, it can be noticed that this R4 is performing with bias of
7.4839 and confidence interval in range d ∈ [−10.3539, 25.3218]. It can also be noticed that in the case
of lower average values the predicted values are lower than real values, while in the case of higher
average values, predicted values are higher than the real values as shown in Figure 5d.

When GA is utilized for design of MLP with five hidden layers (R5), configuration reported in
Table 7 is obtained as a best solution. It can be seen that by using this configuration, fitness value of
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0.7369% is achieved. When B-A analysis is performed on results achieved with this MLP configuration,
it can be seen that it performs with bias of −1.2609. It can also be noticed that this approach have a
narrower confidence interval (d ∈ [−10.7137, 8.1917]) in comparison to other MLPs that are previously
described, as shown in Figure 5e.
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(a) B-A plot for R1
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(b) B-A plot for R2
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(c) B-A plot for R3
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(d) B-A plot for R4
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(e) B-A plot for R5

Figure 5. Bland-Altman plots for all five MLP configurations designed with GA implementation with
MRE as a fitness function.

The other approach in GA utilization for the creation of MLP which estimates CCPP electrical
power output is to utilize MSE as a fitness function. If this approach is used for the creation of MLP with
one hidden layer configuration reported in Table 8 is obtained as a best solution. With aforementioned
configuration, fitness value of 28.4081 is achieved.
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Table 8. MLP configurations as a result of the GA implementation with MSE as a fitness function.

Configuration

Gene S1 S2 S3 S4 S5

Number of epochs 99 55 53 73 55
Number of neurons in the first hidden layer 35 40 80 30 50
Activation function in the first hidden layer ReLU Tanh Sigmoid ReLU ReLU
Number of neurons in the second hidden layer - 100 15 80 15
Activation function in the second hidden layer - ReLU ReLU Sigmoid Tanh
Number of neurons in the third hidden layer - - 85 80 100
Activation function in the third hidden layer - - ReLU Tanh Tanh
Number of neurons in the fourth hidden layer - - - 80 35
Activation function in the fourth hidden layer - - - ReLU ReLU
Number of neurons in the fifth hidden layer - - - - 30
Activation function in the fifth hidden layer - - - - ReLU
Activation function in the output layer ReLU ReLU ReLU ReLU ReLU
Batch size 1278 246 430 820 1623
Solver Adam AdaGrad P AdaGrad RMSprop Adam
Fitness value (MSE) 28.4081 80.7939 39.0868 216.6123 17.6511

When B-A analysis is performed for results achieved with MLP configurations reported in Table 8,
it can be seen that MLP with one hidden layer produces estimation of CCPP electrical power output
that is biased for −7.4524. This bias is a part of confidence interval in range d ∈ [−18.7772, 3.8725].
It can be noticed that lower differences are achieved for samples with higher mean value, as shown in
Figure 6a.
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Figure 6. Bland-Altman plots for all five MLP configurations designed with GA implementation with
MSE as a fitness function.

When the results of GA utilization for design of MLP with three hidden layers and MSE as
a fitness function are observed, it can be noticed that the best fitness value of 39.0868 is achieved
with MLP configuration S3 reported in Table 8. When B-A analysis is performed on the results
estimated with MLP designed by using parameters presented in Table 8, a biased performance can
be noticed. This MLP is performing with bias value of 2.6622 that is a part of the confidence interval
d ∈ [−10.0570, 15.3814]. It can also be noticed that results achieved with MLP are lower than real data
for lower average values and higher for higher average values, as shown in Figure 6b.

Other configurations presented in Table 8 (S2,S4 and S5) are producing the same output value
regardless of input vector, as it is in the case of configuration R3 and its B-A plot shown in Figure 5c.
Configuration S2 is performing with bias value of 454.92 with its confidence interval in range
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d ∈ [421, 488.85]. Regression performances of configuration S4 are similar to performances of S2. This
configuration is performing with bias value of 454.92 and confidence interval in range d ∈ [421, 488.85].
In the case of configuration S5, a bias value of 1.1 is achieved, together with its confidence interval
in range d ∈ [−35.03, 32.82]. From presented results, it can be noticed that, in the case of first two
configurations, the conclusion in regard of regression performances can be drawn only by observing
bias value. That is not a case with configuration S5, where a low bias value can lead to false conclusions.
For these reasons, a standard deviation of errors must be taken into account. It can be noticed that
all three configurations have high standard deviations of errors (sd = 17.3). For these reasons,
aforementioned configurations are omitted and their plots are not displayed.

When all presented results are summarized, it can be noticed that in terms of absolute value,
the lowest bias value is achieved in the case of MLP with five hidden layers that is trained by using
GA with MRE as a fitness function (R5). When MLP with one hidden layer is trained by using the
same GA approach (R1), the absolute bias value is noticeably higher. When confidence intervals for
aforementioned configurations are compared, it can be seen that, by using configuration R5, absolute
value of confidence interval bounds are slightly lower than in case of configuration R1. If R5 is
compared to other viable configurations (R2, R4, S1, S3), it can be noticed that in absolute value
configuration R5 achieves lower bias value and lover confidence interval bounds, as shown in Figure 7.

R1 R2 R4 R5 S1 S3
20

10

0

10

20

Bi
as

Figure 7. Bias and associated confidence interval for each MLP configuration (R1 - MLP with one
hidden layer and MRE as a fitness function, R2 - MLP with two hidden layers and MRE as a fitness
function, R4 - MLP with four hidden layers and MRE as a fitness function, R5 - MLP with five hidden
layers and MRE as a fitness function, S1 - MLP with one hidden layer and MSE as a fitness function,
S3 - MLP with three hidden layers and MSE as a fitness function).

As seen from Figure 7 it can be concluded that when using MRE as a fitness function there
are four of total five MLPs that are viable, while utilization of MSE is producing only two viable
MLP configurations. Furthermore, it can be noticed that configuration S3 have a significantly higher
deviation of error rates in comparison to configurations R1 and R5.

When real Pe data points are compared with Pe estimated by R1 for each 25 samples, it can be
noticed that estimation values responds to real value trends, but estimations values often overestimates
the real ones especially the data peaks. This comparison is presented in Figure 8a. Comparison of real
Pe data points with Pe estimated by R5 shows that overestimation rate is lower (if compared to R1).
Furthermore, R5 estimation data better follows real Pe data trends but it also overestimates lower real
Pe values, as presented in Figure 8b. Observing estimation performances of S3 follows to conclusion
that this MLP underestimates higher and overestimates lower real Pe values, as presented in Figure 8c.
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When RMSE values achieved with R1, R5 and S3 are compared to RMSE values presented
in [28], it can be noticed that MLPs developed by GA utilization presented in this paper are achieving
significantly lower RMSE values, as shown in Table 9.
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Figure 8. Comparisson between predicted Pe and real data for three MLPs with the best performance:
(a) R1, (b) R5 and (c) S3.
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Table 9. Comparison of results achieved with MLPs designed by utilizing GA and other methods
presented in the literature.

Category Method RMSE

Functions Simple Linear regression 5.425
Linear Regression 4.561
Least Median Square 4.968
Multilayer Perceptron 5.341
Radial Basis Funcion Neural Network 7.501
Pace Regression 4.561
Support Vector Poly Kernel Regression 4.563

MLPs designed with GA R1 5.07
R5 4.305
S3 4.874

Furthermore, it can be concluded that MLPs developed in this paper are achieving lower RMSE
values in comparison to all methods that are members of Functions category. If 5-fold and 10-fold cross
validation procedures are performed, it can be noticed that R5 achieves lowest RMSE, regardless of
fold numbers. It can also be noticed that, RMSE achieved with this configuration have lower standard
deviation than other two configurations, as shown in Table 10.

Table 10. Results of performed 5-fold and 10-fold cross-validation on configurations R1, R5 and S3.

Configuration Mean Minimal Maximal Standard Deviation

5-fold cross-validation
R1 5.37 5.01 5.85 0.29
R5 4.31 4.16 4.43 0.09
S3 4.64 4.53 4.93 0.15

10-fold cross-validation
R1 5.27 4.66 5.99 0.45
R5 4.52 4.11 5.13 0.39
S3 4.98 4.28 5.69 0.43

When average RMSE values presented in Table 10 are compared with RMSE values presented
in Table 9, it can be noticed that results obtained with 5-fold cross-validation are closely representing
results presented in Table 9. That property is particularly emphasized in the case of R5 configuration.
Furthermore, it can be noticed that this configuration achieves the lowest standard deviation. In other
words, it can be concluded that R5 utilization, alongside lowest RMSE, offers the most stable
performances in regard of data generalization.

3.2. Discussion

When all presented results are summarized, it can be noticed that the best regression performances
are achieved if configuration R5 is utilized. This configuration is achieved if GA with MRE as a fitness
function is implemented for design of MLP with five hidden layers. B-A analysis of aforementioned
configuration is showing that this configuration is performing with lower bias and standard deviation
of error, in comparison with other configurations. This conclusion can be drawn because this
configuration have the narrowest confidence interval of error, as it is shown with B-A plot. Furthermore,
when results achieved with R3 are compared with results presented in the literature, it can be noticed
that RMSE values achieved with this configuration exceeds RMSE values achieved in the literature.
When presented results are compared to results achieved with R1 and S3, it can be noticed that R5

performs with significantly lower RMSE value. If cross-validation technique is utilized in order to
evaluate generalization performances of R1, R5 and S3, it can be concluded that configuration R5 is,
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again, showing the highest performances. This conclusion could be drawn because of the lowest
standard deviation of RMSE values. This property is particularly emphasized in the case of 5-fold
cross-validation, which leads to the conclusion that this configuration tends towards over-fitting when
are trained with larger data sets.

By observing configuration that are omitted during B-A analysis some additional conclusions
could be drawn. It can be noticed that configurations R3, S2, S4 and S5 are showing low performances
from B-A standpoint while having lower fitness value. This property is particularly emphasized in the
case of S5 that achieves low RMSE value of 4.2, while B-A analysis shows that these results are not
viable from the standpoint of bias and its confidence interval. These results have shown that during
GA utilization for MLP design, standard deviation of errors must be taken into account alongside
standard measures such as RMSE, MSE and MRE.

4. Conclusions and Future Work

In this paper, a GA-based method for design of MLPs for CCPP electrical power output estimation
is presented. GA is performed by constructing and varying chromosomes that represent MLP
parameters. Described method offers a possibility of MLP implementation alongside other regression
methods. In comparison to results found in literature, it can be noticed that GA designed MLPs are
achieving lower RMSE values than other ANN-based methods. GA-based design has produced three
MLP architectures that are achieving viable results. From these statements following conclusions could
be drawn:

• there is a possibility of GA utilization for design of MLP for CCPP electrical power output,
• presented MLP configurations are performing with lower RMSE in comparison to regression

methods presented in literature and
• the lowest RMSE is achieved if MLP configuration with 5 hidden layers of 80,25,65,75 and

80 nodes, respectively, is utilized. Activation functions used in design of aforementioned MLP are:
Logistic Sigmoid in the first layer, Tanh in the second layer and ReLU in all other layers. The best
results are achieved if MLP is trained by using Adam solver.

Presented configuration is designed by utilizing GA with MRE as a fitness function. It can be
noticed that proposed MLP model is one of intermediate complexity, what is in correlation with
theoretical knowledge of model selection.

According to presented results, it can be concluded that there is a possibility of heuristic algorithms
utilization for design of MLP for CCPP electrical power output estimation.

If results achieved with GA-based MLP are compared to results achieved with other regression
methods (algorithms) that are presented in literature, it can be noticed that these methods are still
achieving lower RMSE values than MLP improved with GA utilization.

Therefore, the future research in observed CCPP electrical power output estimation will be based
on utilizing other heuristic algorithms for MLPs design. The final goal will be comparison of the
best obtained MLP architectures with different heuristic algorithms, its computational time as well as
accuracy and precision of performed predictions - in order to obtain a suitable heuristic algorithm for
the investigated problem.
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Networks. Naše More Znan.-Stručni časopis Za More I Pomor. 2019, 66, 112–119.

37. Merkel, G.; Povinelli, R.; Brown, R. Short-term load forecasting of natural gas with deep neural network
regression. Energies 2018, 11, 2008. [CrossRef]

38. Azizi, N.; Rezakazemi, M.; Zarei, M.M. An intelligent approach to predict gas compressibility factor using
neural network model. Neural Comput. Appl. 2019, 31, 55–64. [CrossRef]

39. Ghorbani, M.; Deo, R.C.; Yaseen, Z.M.; Kashani, M.H.; Mohammadi, B. Pan evaporation prediction
using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran.
Theor. Appl. Climatol. 2018, 133, 1119–1131. [CrossRef]

40. Li, Y.; Tang, G.; Du, J.; Zhou, N.; Zhao, Y.; Wu, T. Multilayer Perceptron Method to Estimate Real-World Fuel
Consumption Rate of Light Duty Vehicles. IEEE Access 2019, 7, 63395–63402. [CrossRef]

41. Moura, M.B.; Vidal, D.C.; Schueler, C.; de Matos, L.J.; Ferreira, T.N. Outdoor-to-Indoor Power Prediction
for 768 MHz Wireless Mobile Transmission using Multilayer Perceptron. In Proceedings of the 2018 IEEE
International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 9–13 July 2018; pp. 1–7.

42. Mahmud, M.N.; Ibrahim, M.N.; Osman, M.K.; Hussain, Z. A robust transmission line fault classification
scheme using class-dependent feature and 2-Tier multilayer perceptron network. Electr. Eng. 2018,
100, 607–623. [CrossRef]

43. Muthusamy, T.A.; Ramanathan, N. An Expert System Based on Least Mean Square and Neural Network for
Classification of Power System Disturbances Int. J. Futur. Revolut. Comput. Sci. Commun. 2018, 4, 308–313.

44. Sameen, M.; Pradhan, B. Severity prediction of traffic accidents with recurrent neural networks. Appl. Sci.
2017, 7, 476. [CrossRef]

45. Kim, M.; Choi, W.; Jeon, Y.; Liu, L. A Hybrid Neural Network Model for Power Demand Forecasting.
Energies 2019, 12, 931. [CrossRef]

46. Bertrand, H.; Ardon, R.; Perrot, M.; Bloch, I. Hyperparameter optimization of deep neural networks:
Combining hyperband with Bayesian model selection. In Proceedings of the Conférence sur l’Apprentissage
Automatique, Grenoble, France, 28–30 June 2017.

http://dx.doi.org/10.1016/j.renene.2018.07.076
http://dx.doi.org/10.1016/j.apenergy.2019.04.006
http://dx.doi.org/10.1016/j.ijggc.2019.03.021
http://dx.doi.org/10.1016/j.jclepro.2019.05.217
http://dx.doi.org/10.1016/j.ijepes.2014.02.027
http://dx.doi.org/10.3390/app9030520
http://dx.doi.org/10.3390/app9112228
http://dx.doi.org/10.3390/electronics8090979
http://dx.doi.org/10.3390/en8021138
http://dx.doi.org/10.3390/en12142782
http://dx.doi.org/10.3390/en10122086
http://dx.doi.org/10.3390/en12010101
http://dx.doi.org/10.3390/en11082008
http://dx.doi.org/10.1007/s00521-017-2979-7
http://dx.doi.org/10.1007/s00704-017-2244-0
http://dx.doi.org/10.1109/ACCESS.2019.2914378
http://dx.doi.org/10.1007/s00202-017-0531-5
http://dx.doi.org/10.3390/app7060476
http://dx.doi.org/10.3390/en12050931


Energies 2019, 12, 4352 24 of 26

47. Lima, A.A.; de Barros, F.K.; Yoshizumi, V.H.; Spatti, D.H.; Dajer, M.E. Optimized Artificial Neural Network
for Biosignals Classification Using Genetic Algorithm. J. Control. Autom. Electr. Syst. 2019, 30, 371–379.
[CrossRef]

48. Chen, J.F.; Lo, S.K.; Do, Q. Forecasting monthly electricity demands: An application of neural networks
trained by heuristic algorithms. Information 2017, 8, 31. [CrossRef]

49. Itano, F.; de Sousa, M.A.d.A.; Del-Moral-Hernandez, E. Extending MLP ANN hyper-parameters
Optimization by using Genetic Algorithm. In Proceedings of the 2018 IEEE International Joint Conference
on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 9–13 July 2018; pp. 1–8.

50. Raza, A.; Zhong, M. Hybrid artificial neural network and locally weighted regression models for lane-based
short-term urban traffic flow forecasting. Transp. Plan. Technol. 2018, 41, 901–917. [CrossRef]

51. Mishra, A.; Naik, B.; Srichandan, S.K. Missing Value Imputation Using ANN Optimized by Genetic
Algorithm. Int. J. Appl. Ind. Eng. (IJAIE) 2018, 5, 41–57. [CrossRef]

52. Lima, A.A.M.; Araujo, R.M.; dos Santos, F.A.G.; Yoshizumi, V.H.; de Barros, F.K.; Spatti, D.H.; Liboni, L.H.;
Dajer, M.E. Classification of Hand Movements from EMG Signals using Optimized MLP. In Proceedings of
the 2018 IEEE International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 9–13 July
2018; pp. 1–7.

53. Kampelis, N.; Tsekeri, E.; Kolokotsa, D.; Kalaitzakis, K.; Isidori, D.; Cristalli, C. Development of demand
response energy management optimization at building and district levels using genetic algorithm and
artificial neural network modelling power predictions. Energies 2018, 11, 3012. [CrossRef]

54. Asgher, U.; Rasheed, M.; Al-Sumaiti, A.; Rahman, A.; Ali, I.; Alzaidi, A.; Alamri, A. Smart energy
optimization using heuristic algorithm in smart grid with integration of solar energy sources. Energies 2018,
11, 3494. [CrossRef]

55. Hong, Y.Y.; Yo, P.S. Novel genetic algorithm-based energy management in a factory power system considering
uncertain photovoltaic energies. Appl. Sci. 2017, 7, 438. [CrossRef]

56. Hazem Mohammed, O.; Amirat, Y.; Benbouzid, M. Economical evaluation and optimal energy management
of a stand-alone hybrid energy system handling in genetic algorithm strategies. Electronics 2018, 7, 233.
[CrossRef]

57. Lu, H.; Yang, J.; Alanne, K. Energy Quality Management for a Micro Energy Network Integrated with
Renewables in a Tourist Area: A Chinese Case Study. Energies 2018, 11, 1007. [CrossRef]

58. Sadatiyan, A.; Miller, C. PEPSO: Reducing Electricity Usage and Associated Pollution Emissions of Water
Pumps. Water 2017, 9, 640. [CrossRef]

59. Zhou, J.; Xu, Y.; Zheng, Y.; Zhang, Y. Optimization of guide vane closing schemes of pumped storage hydro
unit using an enhanced multi-objective gravitational search algorithm. Energies 2017, 10, 911. [CrossRef]

60. Li, Y.; Li, Z. Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the
Improved Gravitational Search Algorithm. Energies 2019, 12, 2249. [CrossRef]

61. Mahanipour, A.; Nezamabadi-Pour, H. GSP: An automatic programming technique with gravitational
search algorithm. Appl. Intell. 2019, 49, 1502–1516. [CrossRef]

62. Tuzikova, V.; Tlusty, J.; Muller, Z. A novel power losses reduction method based on a particle swarm
optimization algorithm using STATCOM. Energies 2018, 11, 2851. [CrossRef]

63. Chen, J.H.; Yau, H.T.; Lu, J.H. Implementation of FPGA-based charge control for a self-sufficient solar
tracking power supply system. Appl. Sci. 2016, 6, 41. [CrossRef]

64. Su, H.Y.; Hsu, Y.L.; Chen, Y.C. PSO-based voltage control strategy for loadability enhancement in smart
power grids. Appl. Sci. 2016, 6, 449. [CrossRef]

65. Silitonga, A.S.; Mahlia, T.M.I.; Shamsuddin, A.H.; Ong, H.C.; Milano, J.; Kusumo, F.; Sebayang, A.H.;
Dharma, S.; Ibrahim, H.; Husin, H.; et al. Optimization of Cerbera manghas Biodiesel Production Using
Artificial Neural Networks Integrated with Ant Colony Optimization. Energies 2019, 12, 3811. [CrossRef]

66. Yin, D.; Mei, F.; Zheng, J. An AC/DC Distribution Network DG Planning Problem: A Genetic-Ant Colony
Hybrid Algorithm Approach. Appl. Sci. 2019, 9, 1212. [CrossRef]

67. García-Gutiérrez, G.; Arcos-Aviles, D.; Carrera, E.V.; Guinjoan, F.; Motoasca, E.; Ayala, P.; Ibarra, A. Fuzzy
Logic Controller Parameter Optimization Using Metaheuristic Cuckoo Search Algorithm for a Magnetic
Levitation System. Appl. Sci. 2019, 9, 2458. [CrossRef]

68. Zhang, Y.; Zhao, H.; Cao, Y.; Liu, Q.; Shen, Z.; Wang, J.; Hu, M. A hybrid ant colony and cuckoo search
algorithm for route optimization of Heating engineering. Energies 2018, 11, 2675. [CrossRef]

http://dx.doi.org/10.1007/s40313-019-00454-1
http://dx.doi.org/10.3390/info8010031
http://dx.doi.org/10.1080/03081060.2018.1526988
http://dx.doi.org/10.4018/IJAIE.2018070104
http://dx.doi.org/10.3390/en11113012
http://dx.doi.org/10.3390/en11123494
http://dx.doi.org/10.3390/app7050438
http://dx.doi.org/10.3390/electronics7100233
http://dx.doi.org/10.3390/en11041007
http://dx.doi.org/10.3390/w9090640
http://dx.doi.org/10.3390/en10070911
http://dx.doi.org/10.3390/en12122249
http://dx.doi.org/10.1007/s10489-018-1327-7
http://dx.doi.org/10.3390/en11102851
http://dx.doi.org/10.3390/app6020041
http://dx.doi.org/10.3390/app6120449
http://dx.doi.org/10.3390/en12203811
http://dx.doi.org/10.3390/app9061212
http://dx.doi.org/10.3390/app9122458
http://dx.doi.org/10.3390/en11102675


Energies 2019, 12, 4352 25 of 26

69. Hou, R.; Yang, Y.; Yuan, Q.; Chen, Y. Research and Application of Hybrid Wind-Energy Forecasting Models
Based on Cuckoo Search Optimization. Energies 2019, 12, 3675. [CrossRef]

70. Lotfy, M.; Senjyu, T.; Farahat, M.; Abdel-Gawad, A.; Lei, L.; Datta, M. Hybrid genetic algorithm fuzzy-based
control schemes for small power system with high-penetration wind farms. Appl. Sci. 2018, 8, 373. [CrossRef]

71. Han, Z.; Huang, X. GA-BP in Thermal Fatigue Failure Prediction of Microelectronic Chips. Electronics 2019,
8, 542. [CrossRef]

72. Roman, R.C.; Precup, R.E.; David, R.C. Second order intelligent proportional-integral fuzzy control of twin
rotor aerodynamic systems. Procedia Comput. Sci. 2018, 139, 372–380. [CrossRef]

73. Song, C.; Wang, M.; Qin, X.; Wang, P.; Liu, B. The Optimization Algorithm of the Forced Current Cathodic
Protection Base on Simulated Annealing. Algorithms 2019, 12, 83. [CrossRef]

74. Mahmood, A.; Khan, S.; Albalooshi, F.; Awwad, N. Energy-aware real-time task scheduling in multiprocessor
systems using a hybrid genetic algorithm. Electronics 2017, 6, 40. [CrossRef]

75. Ali, A.; Padmanaban, S.; Twala, B.; Marwala, T. Electric Power Grids Distribution Generation System for
Optimal Location and Sizing—A Case Study Investigation by Various Optimization Algorithms. Energies
2017, 10, 960.

76. Iqbal, Z.; Javaid, N.; Mohsin, S.; Akber, S.; Afzal, M.; Ishmanov, F. Performance analysis of hybridization of
heuristic techniques for residential load scheduling. Energies 2018, 11, 2861. [CrossRef]

77. A Ramezan, C.; A Warner, T.; E Maxwell, A. Evaluation of sampling and cross-validation tuning strategies
for regional-scale machine learning classification. Remote Sens. 2019, 11, 185. [CrossRef]

78. Kharrat, A.; Halima, M.B.; Ayed, M.B. MRI brain tumor classification using support vector machines and
meta-heuristic method. In Proceedings of the 2015 IEEE 15th International Conference on Intelligent Systems
Design and Applications (ISDA), Marrakesh, Morocco, 14–16 December 2015; pp. 446–451.

79. Zhu, R.; Guo, W.; Gong, X. Short-Term Photovoltaic Power Output Prediction Based on k-Fold
Cross-Validation and an Ensemble Model. Energies 2019, 12, 1220. [CrossRef]

80. Ghanou, Y.; Bencheikh, G. Architecture optimization and training for the multilayer perceptron using ant
system. Int. J. Comput. Sci. 2016, 43, 10.

81. Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures
of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122.

82. Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D.D.; Chen, M. Medical image classification with convolutional
neural network. In Proceedings of the 2014 IEEE 13th International Conference on Control Automation
Robotics & Vision (ICARCV), Marina Bay Sands, Singapore, 10–12 December 2014; pp. 844–848.

83. Xu, B.; Huang, R.; Li, M. Revise saturated activation functions. arXiv 2016, arXiv:1602.05980.
84. Yang, X.; Chen, Y.; Liang, H. Square Root Based Activation Function in Neural Networks. In Proceedings

of the 2018 IEEE International Conference on Audio, Language and Image Processing (ICALIP), Shanghai,
China, 16–17 July 2018; pp. 84–89.

85. Pal, S.K.; Mitra, S. Multilayer perceptron, fuzzy sets, and classification. IEEE Trans. Neural Networks 1992,
3, 683–697. [CrossRef]

86. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010,
Paris, France, 22–27 August 2010; pp. 177–186.

87. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
88. Hinton, G.; Srivastava, N.; Swersky, K. Lecture 6d-a separate, adaptive learning rate for each connection. In

Slides of Lecture Neural Networks for Machine Learning; The Department of Computer Science at the University
of Toronto: Toronto, ON, Canada, 2012.

89. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.
J. Mach. Learn. Res. 2011, 12, 2121–2159.

90. Khan, M.E.; Babanezhad, R.; Lin, W.; Schmidt, M.; Sugiyama, M. Convergence of proximal-gradient
stochastic variational inference under non-decreasing step-size sequence. arXiv 2015, arXiv:1511.00146.

91. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
92. Javaid, N.; Javaid, S.; Abdul, W.; Ahmed, I.; Almogren, A.; Alamri, A.; Niaz, I. A hybrid genetic wind

driven heuristic optimization algorithm for demand side management in smart grid. Energies 2017, 10, 319.
[CrossRef]

93. Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An Improved Genetic Algorithm for Path-Planning of Unmanned
Surface Vehicle. Sensors 2019, 19, 2640. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/en12193675
http://dx.doi.org/10.3390/app8030373
http://dx.doi.org/10.3390/electronics8050542
http://dx.doi.org/10.1016/j.procs.2018.10.277
http://dx.doi.org/10.3390/a12040083
http://dx.doi.org/10.3390/electronics6020040
http://dx.doi.org/10.3390/en11102861
http://dx.doi.org/10.3390/rs11020185
http://dx.doi.org/10.3390/en12071220
http://dx.doi.org/10.1109/72.159058
http://dx.doi.org/10.3390/en10030319
http://dx.doi.org/10.3390/s19112640
http://www.ncbi.nlm.nih.gov/pubmed/31212651


Energies 2019, 12, 4352 26 of 26

94. Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Selecting optimal conditioning factors in shallow translational
landslide susceptibility mapping using genetic algorithm. Eng. Geol. 2015, 192, 101–112. [CrossRef]

95. Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem.
Int. J. Prod. Econ. 2016, 174, 93–110. [CrossRef]

96. Kozeny, V. Genetic algorithms for credit scoring: Alternative fitness function performance comparison.
Expert Syst. Appl. 2015, 42, 2998–3004. [CrossRef]

97. Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J. The elements of statistical learning: Data mining, inference
and prediction. Math. Intell. 2005, 27, 83–85.

98. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
99. Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica Biochem. Medica 2015, 25, 141–151.

[CrossRef]
100. Olofsen, E.; Dahan, A.; Borsboom, G.; Drummond, G. Improvements in the application and reporting of

advanced Bland - Altman methods of comparison. J. Clin. Monit. Comput. 2015, 29, 127–139. [CrossRef]
101. Danza, L.; Belussi, L.; Meroni, I.; Mililli, M.; Salamone, F. Hourly calculation method of air source heat pump

behavior. Buildings 2016, 6, 16. [CrossRef]
102. Priya, R.; de Souza, B.F.; Rossi, A.L.; de Carvalho, A.C. Predicting execution time of machine learning tasks

using metalearning. In Proceedings of the 2011 IEEE World Congress on Information and Communication
Technologies, Mumbai, India, 12–14 December 2011; pp. 1193–1198.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enggeo.2015.04.004
http://dx.doi.org/10.1016/j.ijpe.2016.01.016
http://dx.doi.org/10.1016/j.eswa.2014.11.028
http://dx.doi.org/10.11613/BM.2015.015
http://dx.doi.org/10.1007/s10877-014-9577-3
http://dx.doi.org/10.3390/buildings6020016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Dataset Description
	Multilayer Perceptron
	Genetic Algorithm
	Mutation
	Crossover
	Fitness Function
	Population Creation
	Parents Selection
	New Population Formation
	Chromosome Construction

	Bland-Altman Analysis
	Root Mean Square Error

	Results and Discussion
	Results
	Discussion

	Conclusions and Future Work
	References

