
energies

Article

Looking for Energy Losses of a Rotary Permanent
Magnet Magnetic Refrigerator to Optimize
Its Performances

Angelo Maiorino 1,* , Antongiulio Mauro 1, Manuel Gesù Del Duca 1 ,
Adrián Mota-Babiloni 2 and Ciro Aprea 1

1 Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II, 132, Fisciano,
84084 Salerno, Italy; amauro@unisa.it (A.M.); mdelduca@unisa.it (M.G.D.D.); aprea@unisa.it (C.A.)

2 ISTENER Research Group, Department of Mechanical Engineering and Construction, Campus de Riu Sec
s/n, Universitat Jaume I, E-12071 Castelló de la Plana, Spain; mota@uji.es

* Correspondence: amaiorino@unisa.it; Tel.: +39-(0)-89-964105

Received: 27 September 2019; Accepted: 14 November 2019; Published: 19 November 2019 ����������
�������

Abstract: In this paper, an extensive study on the energy losses of a magnetic refrigerator prototype
developed at University of Salerno, named ‘8MAG’, is carried out with the aim to improve the
performance of such a system. The design details of ‘8MAG’ evidences both mechanical and
thermal losses, which are mainly attributed to the eddy currents generation into the support of
the regenerators (magnetocaloric wheel) and the parasitic heat load of the rotary valve. The latter
component is fundamental since it imparts the direction of the heat transfer fluid distribution through
the regenerators and it serves as a drive shaft for the magnetic assembly. The energy losses concerning
eddy currents and parasitic heat load are evaluated by two uncoupled models, which are validated
by experimental data obtained with different operating conditions. Then, the achievable coefficient of
performance (COP) improvements of ‘8MAG’ are estimated, showing that reducing eddy currents
generation (by changing the material of the magnetocaloric wheel) and the parasitic heat load
(enhancing the insulation of the rotary valve) can lead to increase the COP from 2.5 to 2.8 (+12.0%)
and 3.0 (+20%), respectively, and to 3.3 (+32%), combining both improvements, with an hot source
temperature of 22 ◦C and 2 K of temperature span.

Keywords: magnetic refrigeration; magneto-caloric effect; coefficient of performance; eddy currents;
experimental; parasitic heat load; modelling

1. Introduction

Magnetic refrigeration is an emerging and environmental-friendly technology that uses a solid
refrigerant exploiting the magneto-caloric effect (MCE), which is represented by a temperature change
of the material when it is subjected to a change of an external magnetic field. Studies showed that
this technology could lead to 20–30% energy savings compared to vapor compression refrigeration
because of magnetization work recovery and lower entropy generation [1–4], as well as a reduction of
the environmental impact of the refrigeration system [5,6]. Several prototypes have been designed
and built so far, and their performances strictly depend both on the system design and operating
conditions, as well as on the employed magnetocaloric material [7]. Although magnetic refrigeration is
a promising technology to substitute vapor-compression systems, its performances are still lower than
those provided by vapor-compression systems, regarding cooling power, temperature span, efficiency,
and system design. Several apparatus, based on different constructive concepts, have been presented
and widely characterized in the literature over the years [8–20]. A comprehensive overview of these
experimental devices built so far can be found in different recent reviews [7,21].
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Energy efficiency is one of the crucial characteristics to allow this technology becoming mature for
markets, as well as to compare different system concepts. Several strategies to improve energy efficiency
have been explored, whether focusing on theoretical aspects and thermodynamic cycles [22–24] or
performing extensive studies on system energy performances [10,25–27], as well as coupling magnetic
refrigerators with systems such as Stirling motors, geothermal probes, and ejectors [28–31]. Furthermore,
different studies have been conducted on the optimal control of magnetic cooling devices to improve
their performance, using both an experimental [32] and a modelling approach [33,34].

A rotary permanent magnet magnetic refrigerator, named ‘8MAG’, was developed at University of
Salerno [35] and first experimental data were carried out [15,16] concerning cooling power, temperature
span and coefficient of performance (COP). The optimization of existing prototypes, in terms of
design and performance, is currently a common subject in the magnetic refrigeration literature [36–41],
showing COPs of the order of 5 with 5 K of temperature span and 0.5 with 25 K of temperature span.
‘8MAG’ showed a maximum COP of 2.5 with 2 K of temperature span and an hot source temperature
(TH) equal to 22 ◦C [35]. Furthermore, ‘8MAG’ showed a maximum second-law efficiency of 2.4% at
TH = 22 ◦C and a temperature span of 3.3 K. These results are comparable to the performance of the
magnetic refrigerator prototype presented by Capovilla et al. [42].

Then, in the present work, several numerical analyses have been performed to estimate parasitic
losses of ‘8MAG’ and to identify a way for improving prototype performances. In detail, eddy currents
generation and the parasitic thermal load were addressed. Identifying the possible energy losses can
help to highlight the improvements which are needed to be made to a magnetic refrigerator in different
operating conditions. Nevertheless, a detailed study is mandatory to characterize these energy losses
and analyse their effect on energy performance. Some losses can be easily identified and quantified
by a few experimental tests, such as friction losses, but others are more difficult to characterize,
with several experiments required. Hence, to reduce the experimental efforts and generalize the results,
the characterization of this kind of energy losses was performed by mathematical models, properly
defined and validated.

2. The Prototype and the Experimental Measurement System

A detailed description of the experimental apparatus (‘8MAG’) was already provided in
Aprea et al. [16]. However, it is needed to focus on some design details to identify the most relevant
energy losses. ‘8MAG’ is a rotative permanent magnet prototype equipped with two magnets disposed
at 180 degree based on a double U configuration with about 1.2 T. Eight static regenerators, located in
the air gap (43 mm) between poles of magnets and disposed in 45 degrees among them, are alternatively
magnetized and demagnetized with the rotation of the magnets assembly. The regenerators are fixed
on a frame, named magnetocaloric wheel (MCW), which is located inside the magnets gap and made
of a diamagnetic aluminium alloy.

A rotary valve, coaxial with the magnetic assembly, imparts the direction of the heat transfer fluid
(demineralized water) distribution through the regenerators. The rotary valve consists of two main
parts: a stator (fixed to the MCW) and a rotor (connected to the drive shaft). The rotor acts as a rotary
manifold and as a shaft for the magnetic system. The stator is divided into a hot sub-valve and a cold
sub-valve and each sub-valve allows the connection between the regenerators and the rotary manifold.
Each part of the rotary valve is made in stainless steel.

The prototype is shown in Figure 1 and it was widely described in Aprea et al. [16].
Several sensors were used to measure the most important variables to characterize the energy

performance of the magnetic refrigerator prototype.
A torque meter has been used to measure mechanical torque, an encoder provides angular

speed, calibrated resistance temperature detectors (RTD) four wires have been used for temperature
measurements. Torque and temperature measurements have been carried out using a national
instruments (NI) compactDAQ system and the NI LabVIEW software. Axial mechanical power has
been measured using the torque meter and controlling the angular speed of a direct current (DC)
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brushless motor in closed loop through. The test apparatus is equipped with a 32-bit analog to digital
(A/D) converter acquisition cards with sampling rate up to 10 kHz. In Table 1, a summary of the used
instrumentation and relative accuracy are reported.

Energies 2019, 12, x FOR PEER REVIEW 3 of 22 

 

  

Figure 1. Prototype core details in cross-section (a) and 3-D view of MCW (b): (1) permanent magnet 
assembly; (2) magnets support; (3) shaft-rotary valve combination; (4) regenerators; (5) magneto 
caloric wheel (MCW); (6) cold sub-valve and (7) hot sub-valve. 

Several sensors were used to measure the most important variables to characterize the energy 
performance of the magnetic refrigerator prototype.  

A torque meter has been used to measure mechanical torque, an encoder provides angular 
speed, calibrated resistance temperature detectors (RTD) four wires have been used for temperature 
measurements. Torque and temperature measurements have been carried out using a national 
instruments (NI) compactDAQ system and the NI LabVIEW software. Axial mechanical power has 
been measured using the torque meter and controlling the angular speed of a direct current (DC) 
brushless motor in closed loop through. The test apparatus is equipped with a 32-bit analog to digital 
(A/D) converter acquisition cards with sampling rate up to 10 kHz. In Table 1, a summary of the used 
instrumentation and relative accuracy are reported. 

Table 1. Measurement instruments used for the experimental tests. 

Measurement Instrument Type Accuracy 
Temperature RTD 4 wires 0.1 K 

Torque Torque transducer 0.5% 
Angular velocity Optical encoder 0.01° s−1 

Magnetic field Hall probe 0.4% 
Water flow Electromagnetic flowmeter 0.5% 

Electrical power Electromagnetic wattmeter 0.2% 

3. Energy Losses Model 

Considering the operating mode of ‘8MAG’ and its design details, two different energy losses 
can be identified: mechanical losses and thermal losses. A core part of the entire assembly is the rotary 
valve, and therefore the overall study about energy losses can be performed focusing only on this 
component. Indeed, the rotary valve serves both as a drive shaft and as a thermal driver, distributing 
the cooling capacity and heat to be rejected. Hence, the model of energy losses, developed in 
COMSOL environment, is divided into two sub-models: the mechanical model and the thermal 
model. Both are graphically represented in Figure 2.  

Figure 1. Prototype core details in cross-section (a) and 3-D view of MCW (b): (1) permanent magnet
assembly; (2) magnets support; (3) shaft-rotary valve combination; (4) regenerators; (5) magneto caloric
wheel (MCW); (6) cold sub-valve and (7) hot sub-valve.

Table 1. Measurement instruments used for the experimental tests.

Measurement Instrument Type Accuracy

Temperature RTD 4 wires 0.1 K
Torque Torque transducer 0.5%

Angular velocity Optical encoder 0.01◦ s−1

Magnetic field Hall probe 0.4%
Water flow Electromagnetic flowmeter 0.5%

Electrical power Electromagnetic wattmeter 0.2%

3. Energy Losses Model

Considering the operating mode of ‘8MAG’ and its design details, two different energy losses can
be identified: mechanical losses and thermal losses. A core part of the entire assembly is the rotary
valve, and therefore the overall study about energy losses can be performed focusing only on this
component. Indeed, the rotary valve serves both as a drive shaft and as a thermal driver, distributing
the cooling capacity and heat to be rejected. Hence, the model of energy losses, developed in COMSOL
environment, is divided into two sub-models: the mechanical model and the thermal model. Both are
graphically represented in Figure 2.Energies 2019, 12, x FOR PEER REVIEW 4 of 22 
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3.1. Mechanical Model

The work needed to magnetize and demagnetize the regenerators depends on the rotation of the
magnetic system by the rotary valve. Hence, a resistant torque (TOgd) acts on this component, with a
magnitude dependent on the working temperatures of the regenerators (hot and cold end). In detail,
the magnitude of the resistant torque follows an oscillating trend, according to the alternative attraction
and rejection of the magnets during the AMR cycle. This oscillation reduces with the increase of the
rotational frequency due to the inertial phenomena related to the distribution of the rotating mass of
the magnets. However, other two energy losses must be considered in ‘8MAG’ related to the drive
shaft, and therefore to the rotary valve.

The rotation of the magnetic system allows to magnetize and demagnetize the regenerators placed
in the MCW. During the magnetization and demagnetization of the regenerators, also the MCW is
subjected to the magnetic field, with the same intensity and frequency of the regenerators. This fact
leads to generate eddy currents due to the electrical conductivity of aluminium. The occurrence of
eddy currents causes a further resistant torque (TOec) that leads to increase the work needed to move
the magnetic assembly. Moreover, the friction caused by the sliding of the bearings and seals of the
rotary valve represents an additional resistant torque (TOfr) on the drive shaft. Observing Figure 2,
it is possible to write the following torque balance equation at steady-state conditions (neglecting the
inertial term)

Totot
(
ω, Tgd, β

)
= Togd

(
Tgd, β

)
+ Toec(ω, β) + To f r(ω), (1)

where β is the angular position of the magnets, Tgd is the working temperature of the regenerators, and
ω is the rotational speed of the magnetic assembly, expressed in rotations per minute (rpm).

Then, the mechanical power balance, referred to a complete rotation, can be written as

.
Wtot(ω, T) =

.
Wgd(ω, T) +

.
Wec(ω) +

.
W f r(ω), (2)

where
.

Wec and
.

W f r represent the additional mechanical power required as a result of the mechanical

losses (
.

Wloss). These latter two terms are considered in this work since they are source of losses that
could be recovered. In Equation (2), the eddy currents generation in the magnetocaloric material and
the air friction were neglected.

The evaluation of the effect of eddy currents (ECL—eddy currents losses), and then, the calculation
of TOec, was performed by a mathematical model composed by three sub-model: the static magnetic
field model (SMF), the stationary eddy currents power dissipation model (SECP), and the stationary
thermal model (ST). The friction term (

.
W f r(ω)) was estimated by a semi-empirical approach, using

technical data of the bearings and seals of the rotary valve and measuring the resistant torque (To f r(ω))
to the rotary valve without the MCW and regenerators. Hence, it was possible to measure the resistant
torque related to friction effects.

3.1.1. Static Magnetic Field Model

The evaluation of the magnetic field within the air gap, and therefore the intensity of the magnetic
field to which the MCW is subjected, was carried out by a finite element method (FEM) analysis (see
Figure 3). First, the domain under investigation was defined according to the real geometry of the
magnetic assembly and the MCW. Then, a simplified geometry was designed to reduce computational
time, neglecting holes, geometrical singularity, and low-relevant complex details. The entire geometry
was included in a cylindrical volume with a diameter equal to 2.5 times of the diameter of the MCW
and a height equal to 2.5 times of the height of the magnetic assembly. Three different meshes
were tested: coarser (with 29,065 elements), normal (with 58,605 elements) and extremely fine (with
1,322,712 elements). A preliminary analysis of the standard deviation of the simulated magnetic flux
density allowed to choose the best solution, which was the normal mesh with 58,605 elements.
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The magnetic assembly was characterized considering the Halbach array configuration used in
‘8MAG’ (see Figure 4), where each segment is made of sintered NdFeB with a magnetic remanence (Br)
of 1370 mT.

Energies 2019, 12, x FOR PEER REVIEW 5 of 22 

 

resistant torque (𝑇𝑜(𝜔)) to the rotary valve without the MCW and regenerators. Hence, it was 
possible to measure the resistant torque related to friction effects. 

3.1.1. Static Magnetic Field Model 

The evaluation of the magnetic field within the air gap, and therefore the intensity of the 
magnetic field to which the MCW is subjected, was carried out by a finite element method (FEM) 
analysis (see Figure 3). First, the domain under investigation was defined according to the real 
geometry of the magnetic assembly and the MCW. Then, a simplified geometry was designed to 
reduce computational time, neglecting holes, geometrical singularity, and low-relevant complex 
details. The entire geometry was included in a cylindrical volume with a diameter equal to 2.5 times 
of the diameter of the MCW and a height equal to 2.5 times of the height of the magnetic assembly. 
Three different meshes were tested: coarser (with 29,065 elements), normal (with 58,605 elements) 
and extremely fine (with 1,322,712 elements). A preliminary analysis of the standard deviation of the 
simulated magnetic flux density allowed to choose the best solution, which was the normal mesh 
with 58,605 elements.  

   

Figure 3. Modelled geometries (a), domain of the simulations (b), and meshes of magnets and the 
MCW (c). 

The magnetic assembly was characterized considering the Halbach array configuration used in 
‘8MAG’ (see Figure 4), where each segment is made of sintered NdFeB with a magnetic remanence 
(Br) of 1370 mT. 

 
Figure 4. Configuration of the permanent magnets as Halbach array. 

  

Figure 4. Configuration of the permanent magnets as Halbach array.

The model is defined by Maxwell’s equation

∇×H = J + ∂DE
∂t ,

∇× E = −∂B
∂t ,

∇· DE = ρq,
∇·B = 0,

(3)

where H is the magnetic field intensity (in A m−1), B is the magnetic flux density (T), E is the electric
field intensity (V m−1), DE the electric flux density (C m−2), J is the electric current density (A m−2) and
ρq is the volume charge density (C m−3). The considered constitutive relations are shown in Equations
(4)–(6)

DE = ε0E + P, (4)

B = µ0(H + M), (5)

J = σE, (6)

where ε0 is the vacuum permittivity (in F m−1), P is the electric polarization (in C m−2), µ0 is the vacuum
permeability (in H m−1), M is the magnetization (in A m−1) and σ is the electrical conductivity. The
boundary conditions at the material interfaces and physical boundaries are represented by the equations

n2 × (E1 − E2) = 0, (7)

n2 × (DE1 −DE2) = ρs, (8)
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n2 × (H1 −H2) = Js, (9)

n2 × (B1 − B2) = 0. (10)

At last, considering the current continuity Equation (Equation (11)), a further interface condition
for the current density was introduced (Equation (12)).

∇·J = −
∂ρq

∂t
, (11)

n2·(J1 − J2) = −
∂ρs

∂t
. (12)

In Equations (8) and (12), ρs represents the surface charge density whereas, in Equation (9), Js

represents the surface current density. The SMF sub-model provides, as output, the magnetic field
intensity and the distribution of the magnetic field within the investigated domain.

3.1.2. Stationary Eddy Currents Power Dissipation Model

The results of the SMF sub-model (intensity of the magnetic field and its distribution) represent
the input of the second sub-model, that is the SECP model, which aims to evaluate eddy currents
generation inside the MCW.

To achieve this target, a Lorentz type induced current density term is included in the previous
equation set (Equations (11) and (12)). Magnetic field rotation is simulated supposing that the magnets
are rotating at a constant rotational speed ω. Different steady-state simulations were performed at
various relative magnets/wheel positions (β) simulating a complete rotation of the magnets. The effect
of magnetic field variation in the MCW, due to the presence of regenerators, has been neglected, thus
regenerators have not been included in the modelling.

The Lorentz term is related to the rotational speed of the magnets, as

v = ω(−y, x, 0). (13)

Then, the eddy currents dissipation, in terms of resistive losses, can be calculated as

qec(x, y, z) = σJ2, (14)

where σ is the electrical conductivity. The global power dissipated due to eddy currents is

Qec =

∫ ∫ ∫
V
σJ2. (15)

where V is the geometrical volume defined by the mesh. Results show both the typical vortices
formation of induced currents in the metal because of the longitudinal magnetic field gradient.
Furthermore, due to the lack of axial symmetry of the MCW geometry, eddy current dissipation
results to be a function of the relative rotation β. Figure 5 shows the magnetic flux density in the
MCW (Figure 5a–c), the induced current generated (red arrow in Figure 5b–d) and the specific power
generated in the aluminium (Figure 5b–d) for two different angles β (0◦ and 25◦).
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3.1.3. Stationary Thermal Model

After evaluating the distribution of eddy currents on the MCW, a steady-state 3D thermal
sub-model was implemented, starting from the resistive losses field as a heat generation term. It was
assumed that convective and radiative heat exchange can be described by an equivalent constant
convective coefficient term on the whole domain to simplify the computation. Indeed, the purpose
of the simulation is to validate the order of magnitude of the resistive losses previously calculated.
Even if the problem is not completely stationary due to the dynamic behaviour of the system, it was
assumed that a global heat flux invests the MCW. This global heat flux is the spatial composition of
different heat flux for various β values. Hence, different steady-state simulations were performed for
different angular positions. A single position of the magnetic assembly and a single portion of MCW
was considered to validate the model.

The heat transfer through the MCW is described by a steady-state energy balance equation, as

∇·(−k∇TMCW) = qec, (16)

where the heat source (qec) is represented by the resistive losses due to eddy currents generation.
The heat dissipated on air-exposed surfaces is equal to

− n·q = h(Tair − TMCW), (17)

where h is the equivalent heat transfer coefficient, supposed constant on the whole surface.
Since the magnets rotate, forced convection can be assumed depending on the magnets angular

speed. In the analysed rotating frequency range, h resulted to be within 20 and 30 W m−2 K−1,
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considering the following experimental correlation for the convective heat transfer coefficient (hc)
expressed in W m−2 K−1, as a function of the rotating frequency f (in Hz)

hc = 10.45− f + 10 f 0.5. (18)

In Figure 6, the surface temperature of the MCW is shown for an ambient temperature of 20 ◦C
and a rotating frequency equal to 0.72 Hz. The regenerator place mostly permeated by the magnetic
field has been taken as reference for temperature increase validation.
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The value of the power dissipated by generation of eddy currents can be assumed as

.
Wec =

.
Qec. (19)

3.1.4. Semi-Empirical Evaluation of Friction Losses

The identification of the resistant torque concerning the friction effects into the rotary valve
(To f r(ω)) was performed by a semi-empirical approach that allowed to identify the relation between
the friction resistant losses and the operating frequency ( f ), expressed by Equation (20).

TO f r(ω) = 0.7586 f + 4.7207 = 0.7586
ω
60

+ 4.7207. (20)

In Figure 7, the results of the experimental measurements of the resistant torque without the MCW
and the regenerators used to point out Equation (20) are shown.

The power dissipated due to friction effects was easily calculated as

.
W f r(ω) = 2π f TO f r(ω). (21)

However, the reduction of friction losses is not considered in this work as a possible improvement
for ‘8MAG’ since they are negligible compared to the energy losses concerning eddy currents generation.
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3.2. Thermal Model

The rotary valve is subjected to a heat exchange between its external surface and the surrounding
air due to the temperature difference. Furthermore, an axial heat exchange occurs within the valve since
the hot and cold sub-valve achieve different steady-state temperature levels during cyclic operations of
‘8MAG’. This temperature difference between the sub-valves is only related to the fluid flow through
the internal ducts of the valve.

Considering the surface of the cold sub-valve, it is possible to identify an axial conductive thermal
loss though the hot buffer of the valve (

.
Qaxial) and a convective radiative heat loss on the external

surface (
.

Qsur f ). Hence, the parasitic heat loss can be evaluated with the equation

.
Qc,loss =

.
Qsur f +

.
Qaxial. (22)

A FEM analysis, based on a 3D steady-state thermal model, was performed to evaluate the intrinsic
thermal load of the rotary valve. A 3D geometrical model of the rotary valve was developed whereas
the internal water ducts were modelled as 1D channel thermally coupled to the geometry of the valve
(see Figure 8).
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As made for the mechanical model, the domain was first defined considering the real geometry
of the rotary valve. Then, the geometry was simplified to reduce computational time, neglecting
geometrical singularities and complex details of low relevance. The entire geometry was included
in a cylindrical volume with a diameter equal to 2.5 times of the diameter of the rotary valve and a
height equal to 2.5 times of the height of the entire valve. Three different mesh were testes: coarser
(12,045 elements), normal (23,615 elements), and extremely fine (922,712 elements). Analysing the
standard deviation of

.
Qc,loss, the normal mesh was chosen as the best.

The following equations were solved for the 1D water flux

∇·(Aρuw) = 0, (23)

∇p + fD
ρ

2Dh
uw|uw| = 0, (24)

where u is the average surface velocity, ρ is the water density, p is the water pressure, Dh is the equivalent
diameter, fD is the Darcy friction coefficient, calculated with Churchill equation. In Equation (25),
the energy balance equation is also shown as

ρAcpuw·∇Tw = ∇·Ak∇Tw + fD
ρA
2Dh
|uw|uw

2 +
.

Qwall, (25)

where cp is the specific heat at constant pressure, Tw is the water temperature and k is the thermal

conductivity.
.

Qwall represents heat through pipe surface, which is equal to

.
Qwall = hintZ (Text − Tw), (26)

where Z is the perimeter of the duct, hint is the internal heat exchange coefficient, Text is the external
temperature of the pipe, which corresponds to the temperature of the solid (Ts).

The temperature field inside the valve is governed by the equation

∇·(−k∇Ts) = 0, (27)

where Ts is the solid temperature. The boundary conditions are represented by Equations (28) and (29)

− n·(−k∇Ts) = hair
(
Tair − Tsur f

)
, (28)

− n·(−k∇Ts) = 0, (29)

where hair is the convective heat transfer coefficient, Tair is the temperature of the air surrounding
the rotary valve and Tsur f is the valve surface temperature. End parts of the valve are assumed
to be adiabatic. Solving the equations reported above, the thermal model allows to carry out the
two components of

.
Qc,loss, that are

.
Qsur f and

.
Qaxial, and therefore to quantify the parasitic thermal

losses in the rotary valve. The latter information is very useful since can help to understand which
improvements can be made on the prototype to increase its overall performance.

4. Model Validation

The models introduced in Section 3 were validated by experimental tests for different working
conditions, in terms of hot source temperature (TH), operating frequency ( f ) and volumetric flow rate
(

.
V). Only experimental tests at zero load were considered for model validation.



Energies 2019, 12, 4388 11 of 21

4.1. Mechanical Model Validation

To evaluate the performance of the mechanical model, it was required to validate only the
sub-models used to calculate

.
Wec (SMF, SECP, and ST) since

.
W f r was estimated by a semi-empirical

method (see Section 3.1.4).
The validation of the SMF sub-model was performed by carrying out some experimental

measurements of the magnetic field by fixing a magnetometer on a radial axis and rotating step-by-step
the magnets for different angular position β. The experimental results were then compared with
the simulation in terms of the z component of the magnetic flux density Bz. A good agreement was
found between experiments and simulation, highlighting that the model can reproduce magnetic field
distribution, peaks, and valleys. Locally comparing measured and simulated data, a narrow absolute
error emerged (−0.09 T), whereas the maximum relative error is of about 15%. The comparison between
experiments and simulation of some representative points is shown in Table 2.

Table 2. Absolute and relative errors of the SMF model for some representative points.

X (cm) y (cm) Bz_sim (T) Bz_exp (T) Absolute Error (T) Relative Error (%)

0 100 0.297 0.350 −0.053 −15.1
0 −180 −1.270 −1.180 −0.090 7.5
0 −200 −1.069 −1.085 0.020 −1.5
−100 −180 −0.827 −0.800 −0.030 3.4
−150 0 0.085 0.075 0.010 12.8

The calculated error values are acceptable considering the accuracy of the used instrumentation.
The SECP sub-model was validated measuring at different operating frequencies the resistant

torque to the drive shaft with the MCW and removing all regenerators to exclude the term TOgd from
Equation (1). Hence, the measured torque is composed only by the friction term (TO f r) and the eddy
currents component (TOec). On the other hand, the related measured mechanical power represents
the mechanical power losses

.
Wloss. The experimental data of resistant torque (indicated as TOloss) and

mechanical power (
.

Wloss) were used to make a comparison with the simulation data obtained by the
SECP model. Since the SECP model does not consider friction effects, the simulation results, in terms
of TOec, were increased with the friction losses contribution calculated with the semi-empirical model
(see Equations (20) and (21)).

Hence, the comparison between the simulated and experimental resistant torque is shown in
Figure 9, as well as the mechanical power loss. There is a good agreement between the measurements
and the simulation results, with an average relative deviation of about 8.0% in the mechanical power
(comparing the grey full line and grey symbols). This value is considered acceptable for the aim of
this study. The greatest deviation in the mechanical power can be observed at f = 0.75 Hz. On the
other hand, the simulated torque data (black full line) follow the trend of the experimental ones (black
symbols) showing larger deviations for lower frequencies.

The ST model was validated comparing simulated data with experimental temperature
measurements performed at different operating frequencies without regenerators and water flowing
through the system. Six thermo-resistances, properly insulated, were placed on different representative
positions on the metal surface of the MCW (see Figure 10).

Then, the surface temperature distribution of the MCW was obtained by the ST model and the
simulated temperatures at the same position of Figure 10 were extracted. The comparison between the
experimental and simulated temperature is shown in Figure 11.

The resulting value of the mean absolute percentage error (MAPE) is 4.0% with a maximum
relative error of +7.8%, occurred for T3 (yellow line). These error values are considered acceptable for
the aim of this work since are very close to the error range of the used instrumentation. The validation
of the ST model demonstrates the capability of the mechanical model of providing a good estimation
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of the eddy current losses of ‘8MAG’, which can be used to evaluate its achievable performance after
their reduction.
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4.2. Thermal Model Validation

To validate the thermal model, sub-valves outlet water temperatures (cold sub-valve (TRV,C,out)
and hot sub-valve (TRV,H,out)) and their surface temperatures (cold sub-valve (TRV,C) and hot sub-valve
(TRV,H)) have been measured and compared to model results for different operating conditions. An
example of simulation results is reported in Figure 12 where the temperature distribution and heat flux
are shown.
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Figure 12. An example of simulation results for a rotating frequency of 17 Hz (that corresponds to 1000
rpm) and for a hot source temperature TH of 22 ◦C.

In Figure 13, the comparison between the experimental and simulation results for the four
temperatures mentioned above is reported. The value of the MAPE between simulation and
experimental results is also shown for each temperature.
Energies 2019, 12, x FOR PEER REVIEW 13 of 22 

 

  

  

Figure 13. Comparison of experimental measurements and model results of (a,b) surface 
temperatures of both sub-valves ( 𝑇ோ, , 𝑇ோ,ு ) and (c,d) outlet water temperatures 
(𝑇ோ,,௨௧, 𝑇ோ,ு,௨௧) for TH = 22 °C and different operating frequency. 

The values of the relative error range and the maximum absolute error for each temperature are 
shown in Table 3. A maximum relative error of +11.4% occurs regarding 𝑇ோ,ு,௨௧. This large error 
could be related to the adiabatic surface hypothesis of the end parts of the rotary valve. However, 
these error values are considered acceptable considering the aim of this study.  

Table 3. Absolute and relative error of the thermal model. 

 𝑻𝑹𝑽,𝑪 𝑻𝑹𝑽,𝑯 𝑻𝑹𝑽,𝑪,𝒐𝒖𝒕 𝑻𝑹𝑽,𝑯,𝒐𝒖𝒕 
Relative error range (%) 1.7–4.4 0.2–4.2 0.1–1.6 0.4–11.4 
Absolute max error (°C) 0.7 0.9 0.3 2.5 

 
In Figure 14, an example of result from the thermal model is shown. In detail, the parasitic 

thermal load 𝑄ሶ,௦௦  is evaluated as a function of the operating frequency ( 𝑓 ) and hot source 
temperature (Tୌ). It is worth to notice that the parasitic thermal load presents a paraboloid shape 
with a maximum of about 61 W at an operating frequency of 0.8 Hz and Tୌ equal to 23 °C. 

Figure 13. Comparison of experimental measurements and model results of (a,b) surface temperatures
of both sub-valves (TRV,C, TRV,H) and (c,d) outlet water temperatures (TRV,C,out, TRV,H,out) for TH =

22 ◦C and different operating frequency.

The values of the relative error range and the maximum absolute error for each temperature are
shown in Table 3. A maximum relative error of +11.4% occurs regarding TRV,H,out. This large error
could be related to the adiabatic surface hypothesis of the end parts of the rotary valve. However,
these error values are considered acceptable considering the aim of this study.
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Table 3. Absolute and relative error of the thermal model.

TRV,C TRV,H TRV,C,out TRV,H,out

Relative error range (%) 1.7–4.4 0.2–4.2 0.1–1.6 0.4–11.4
Absolute max error (◦C) 0.7 0.9 0.3 2.5

In Figure 14, an example of result from the thermal model is shown. In detail, the parasitic thermal
load

.
Qc,loss is evaluated as a function of the operating frequency ( f ) and hot source temperature (TH).

It is worth to notice that the parasitic thermal load presents a paraboloid shape with a maximum of
about 61 W at an operating frequency of 0.8 Hz and TH equal to 23 ◦C.

Energies 2019, 12, x FOR PEER REVIEW 14 of 22 

 

 
Figure 14. Parasitic thermal load of the rotary valve simulated by the thermal model with different 
operating frequencies and hot source temperatures. 

5. Results and Discussion 

The models developed in this work can help to quantify the main energy losses of ‘8MAG’, and 
therefore to evaluate the performance which the prototype can achieve reducing at the minimum 
these losses. Before evaluating the achievable performance, a comprehensive energy characterization 
of ‘8MAG’ was performed. In detail, cooling power, absorbed power and temperature span were 
measured for several operating conditions [15]. Then, it was possible to calculate the reference 
performance of the system, that is the coefficient of performance (COP), defined as 𝐶𝑂𝑃 = ொሶௐሶ ାௐሶ ೠ. (30) 

The uncertainty of COP, measured by error propagation rules for indirect measurements, was 
estimated to ±0.28%.  

Figure 15 shows the ‘8MAG’ COP for different operating conditions, in terms of volumetric flow 
rate (𝑉ሶ ), measured in L min−1, and operating frequency (𝑓) for three different levels of cooling power 
(50 W, 100 W, and 200 W) at a hot source temperature of 22 °C. From Figure 15, it is evident that COP 
decreases with the operating frequency increasing (at a constant cooling power) since the mechanical 
power required to move the magnets increases. The same trend can be noticed also considering the 
volumetric flow rate, even if it is less marked. However, the experimental tests showed that ‘8MAG’ 
can achieve a maximum COP of about 2.5 with a cooling power equal to 200 W and a temperature 
span of 2 K. These results represent the baseline of the ‘8MAG’ performance and they are used as a 
comparison to evaluate the possible improvements which could be achieved reducing the mechanical 
and thermal losses calculated by the models described in Section 3, regarding eddy currents and 
intrinsic thermal load of the rotary valve.  

Figure 14. Parasitic thermal load of the rotary valve simulated by the thermal model with different
operating frequencies and hot source temperatures.

5. Results and Discussion

The models developed in this work can help to quantify the main energy losses of ‘8MAG’, and
therefore to evaluate the performance which the prototype can achieve reducing at the minimum
these losses. Before evaluating the achievable performance, a comprehensive energy characterization
of ‘8MAG’ was performed. In detail, cooling power, absorbed power and temperature span were
measured for several operating conditions [15]. Then, it was possible to calculate the reference
performance of the system, that is the coefficient of performance (COP), defined as

COPre f =

.
Qc

.
Wtot +

.
Wpump

. (30)

The uncertainty of COP, measured by error propagation rules for indirect measurements,
was estimated to ±0.28%.

Figure 15 shows the ‘8MAG’ COP for different operating conditions, in terms of volumetric flow
rate (

.
V), measured in L min−1, and operating frequency ( f ) for three different levels of cooling power

(50 W, 100 W, and 200 W) at a hot source temperature of 22 ◦C. From Figure 15, it is evident that COP
decreases with the operating frequency increasing (at a constant cooling power) since the mechanical
power required to move the magnets increases. The same trend can be noticed also considering the
volumetric flow rate, even if it is less marked. However, the experimental tests showed that ‘8MAG’
can achieve a maximum COP of about 2.5 with a cooling power equal to 200 W and a temperature
span of 2 K. These results represent the baseline of the ‘8MAG’ performance and they are used as a
comparison to evaluate the possible improvements which could be achieved reducing the mechanical
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and thermal losses calculated by the models described in Section 3, regarding eddy currents and
intrinsic thermal load of the rotary valve.
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5.1. COP Improvement by Reducing Eddy Currents

The mechanical model allowed evaluating energy losses related to eddy currents generation in
the MCW. These energy losses could be reduced by substituting the material of the MCW (or removing
it). Hence, the new COP (COPec) can be calculated as

COPec =

.
Qc( .

Wtot −
.

Wec
)
+

.
Wpump

, (31)

where
.

Wec represents the mechanical power recovered by reducing eddy currents. In Figure 16,
the COP improvement obtained with this solution is shown, both in absolute (∆COP) and relative (%
∆COP) terms. It was calculated according to Equations (32) and (33).

∆COP = COPec −COPre f , (32)

%∆COP =
COPec −COPre f

COPre f
. (33)
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It is evident that the COP improvement strongly depends on the cooling power (
.

Qc), the operating
frequency ( f ) and the volumetric flow rate (

.
V). As expected, the reduction of eddy currents leads to

improve the ‘8MAG’ performance for each operating condition. In detail, the improvement is more
pronounced for higher cooling power, with a maximum COP increase of about 0.60, whereas it is about
0.18 with a cooling power of 50 W. Furthermore, it is worth to notice that the COP increase is more
evident at higher operating frequencies, as one can see from the relative variation of COP (bottom
plots in Figure 16).

5.2. COP Improvement by Reducing Parasitic Thermal Load

Using the thermal model, it was possible to evaluate the parasitic thermal load of the rotary
valve, which is related to its non-adiabatic characteristic. Considering an ideal adiabatic rotary valve,
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and therefore trying to improve the insulation of this component, these thermal losses could be reduced
and a new COP (COPQc,loss ) can be found as

COPQc,loss =

.
Qc +

.
Qc,loss

.
Wtot +

.
Wpump

. (34)

In Figure 17, the comparison between the actual COP of ‘8MAG’ and the theoretical COP obtainable
reducing the parasitic thermal load of the rotary valve is shown for different operating conditions.
The data reported in Figure 17 are calculated according to Equations (32) and (33), substituting COPec

with COPQc,loss . It can be noticed that reducing the intrinsic thermal load of the rotary valve (improving
its insulation) can improve the ‘8MAG’ COP of about 0.40. It is worth to consider that the improvement
does not change so much by varying the cooling power, in contrast with the improvement observed by
reducing eddy currents losses. Furthermore, in this case, the beneficial effect increases with decreasing
the operating frequency of the device.
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5.3. Overall Achievable COP Improvement

To complete the analysis, the effect of introducing both the previous improvements (reduction of
eddy currents generation in the MCW by substitution of the material and refinement of the rotary valve
insulation) is investigated. Hence, another COP value (COPec+Qc,loss ) is calculated (see Equation (35)).

COPec+Qc,loss =

.
Qc +

.
Qc,loss( .

Wtot −
.

Wec
)
+ Wpump

. (35)

As performed in the previous sub-sections, the comparison between this new COP and the
reference COP of the prototype is shown in Figure 16, according to Equations (32) and (33).

Figure 18 shows the best obtainable COP of ‘8MAG’ which can be achieved if both the energy
losses investigated in this study are reduced. Hence, it represents the maximum improvements of the
performance of ‘8MAG’ for different operating conditions. In detail, a maximum increase of about 1.1
is highlighted with a cooling power of 200 W at relatively high frequencies (higher than 0.3 Hz) and
low volumetric flow rate (lower than 6 L min−1). Good improvements can be achieved also for lower
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cooling power, with maximum increases of the COP value of 0.65 and 0.8, with cooling power of 50 W
and 100 W, respectively.
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In Table 4, an overview of the results is shown, regarding the average, maximum, and minimum
COP values in four different configurations, for three values of heat source temperature and cooling
power. The average COP reported in Table 4 was calculated performing an average among all the COP
values calculated at different operating frequencies and volumetric flow rates at the same heat source
temperature and cooling power.

Table 4. Average ‘8MAG’ COP for different cooling power and hot source temperatures (TH). These
values were obtained by an average among the experimental data at different volumetric flow rates
and operating frequencies. Temperature spans are in the range between 1 K and 8.5 K.

COPref COPec COPQc,loss COPec+Qc,loss

TH [◦C] Ave Max Min Ave Max Min Ave Max Min Ave Max Min

. Q
c=

50
W

16 0.35 0.68 0.15
0.45 0.75 0.29 0.61 1.08 0.25 0.79 1.19 0.46

28.6% 10.3% 93.3% 74.3% 58.8% 66.7% 125.7% 75.0% 206.7%

22 0.35 0.68 0.15
0.45 0.75 0.29 0.64 1.09 0.28 0.83 1.21 0.51

28.6% 10.3% 93.3% 82.9% 60.3% 86.7% 137.1% 77.9% 240.0%

32 0.38 0.69 0.15
0.49 0.79 0.28 0.64 1.04 0.26 0.85 1.25 0.48

28.9% 14.5% 86.7% 68.4% 50.7% 73.3% 123.7% 81.2% 220.0%

. Q
c=

10
0

W

16 0.66 1.22 0.28
0.83 1.35 0.52 0.94 1.64 0.37 1.18 1.82 0.70

25.8% 10.7% 85.7% 42.4% 34.4% 32.1% 78.8% 49.2% 150.0%

22 0.66 1.22 0.28
0.83 1.35 0.52 0.97 1.65 0.40 1.22 1.83 0.75

25.8% 10.7% 85.7% 47.0% 35.2% 42.9% 84.8% 50.0% 167.9%

32 0.75 1.35 0.37
0.95 1.51 0.64 1.02 1.66 0.56 1.33 1.87 0.99

26.7% 11.9% 73.0% 36.0% 23.0% 51.4% 77.3% 38.5% 167.6%

. Q
c=

20
0

W

16 1.52 2.53 0.89
1.81 2.80 1.21 1.83 2.96 1.11 2.18 3.28 1.51

19.1% 10.7% 36.0% 20.4% 17.0% 24.7% 43.4% 29.6% 69.7%

22 1.52 2.53 0.89
1.81 2.80 1.21 1.86 2.97 1.15 2.23 3.29 1.57

19.1% 10.7% 36.0% 22.4% 17.4% 29.2% 46.7% 30.0% 76.4%

32 1.58 1.97 1.21
1.83 2.22 1.44 1.86 2.26 1.47 2.16 2.54 1.76

15.8% 12.7% 19.0% 17.7% 14.7% 21.5% 36.7% 28.9% 45.5%
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It is worth to highlight that the maximum ‘8MAG’ COP, starting from the actual value of 2.5,
can achieve a value equal to 3.3 (+30.3%), if the energy losses evaluated in this work can be reduced.
However, only substituting the material of the MCW (to reduce eddy currents generation) can increase
the COP up to 2.8 (+10.9%) whereas a better insulation of the rotary valve can increase the COP up to
3.0 (+17.5%). On the other hand, the second-law efficiency, starting from the previous maximum value
of 2.4%, can achieve a value equal to 3.5% (+46%) at TH = 16 ◦C and a temperature span of 4.7 K, if the
energy losses evaluated in this work can be reduced.

6. Conclusions

In this study, the main energy losses of a rotary permanent magnet magnetic refrigerator, named
‘8MAG’, developed at University of Salerno, were investigated with the aim to estimate the achievable
performance of such a system. In detail, starting from the design details of the prototype, two different
kinds of losses were identified: mechanical losses, regarding eddy currents generation inside the MCW
and friction phenomena in the rotary valve, and parasitic thermal losses, related to the non-adiabatic
conditions of the rotary valve.

Mechanical and thermal losses were investigated by developing two uncoupled models:
the mechanical model, divided into three sub-models (SMF, SECP, and ST), which allowed to identify
the power dissipated by eddy currents generation, and the thermal model, which could point out the
parasitic heat load of the rotary valve. The mechanical power dissipated by friction phenomena was
estimated by a semi-empirical model, based on experimental measurements and datasheets of the
rotary valve components. The mechanical and thermal model were validated with experimental data,
showing a good agreement with a maximum relative error of +8.0% and +11.4%, respectively. These
models were developed for estimating only the main losses of the prototype to analyse the hypothetical
achievable COP, and they do not consider the effect of temperature span, or even of the heat exchange
between the MCW and regenerators, which could also affect the performance of the system.

Using the mechanical model, eddy currents losses were calculated for different operating conditions
and maximum COP improvements were estimated within the range from 0.1 (with a cooling power
of 50 W) to 0.3 (with a cooling power of 200 W). On the other hand, the reduction of parasitic heat
losses, estimated by the thermal model, could lead to a maximum COP increase of about 0.5, showing
a lower dependence on cooling power than eddy current losses. Reducing both eddy currents and
parasitic heat losses, a greater improvement can be achieved, with a maximum COP increase of 0.8,
which allows to reach a COP value of 3.3 (+32.0% against the reference value of 2.5). This increment
allows ‘8MAG’ to get closer to other magnetic refrigerator prototypes presented in the literature, in
terms of performance. In detail, the improved ‘8MAG’ performance are closer to the best performance
showed so far by a magnetic refrigerator prototype (COP of 5 with a temperature span of 5 K), with a
difference of 1.7 against 2.5 of ‘8MAG’ without improvements.

The potential COP improvements showed in this study can be achieved on the real device by
two actions: changing the aluminium of the MCW with another material with a lower electrical
conductivity to reduce eddy currents generation and enhancing the insulation of the rotary valve
to reduce parasitic heat losses. Future works could deal with experimental tests with the upgraded
system, to test the actual performance improvement, and the analysis of other kinds of energy losses.
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