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Abstract: The paper introduces the artificial intelligence (AI) approach as a general method for the
design and optimization study of heat exchangers. Genetic Algorithms (GA) and Artificial Neural
Networks (ANN) are applied in the paper. An AGENN model, combining Genetic Algorithms
with Artificial Neural Networks, was developed and validated against the desired data on a large
falling film evaporator. A broad range of operating conditions and geometric configurations are
considered in the study. Four kinds of tubes are deliberated, including plain and enhanced tubes.
Different tube pass arrangements, i.e., top-to-bottom, bottom-to-top, and side-by-side, are discussed.
Finally, the effects of liquid refrigerant mass flow rate, as well as the number of flooded tubes on the
performance of the evaporator, are analyzed. The total heat transfer rate of the evaporator, predicted
by the model, is in good agreement with the desired data; the maximum error is lower than ±3%.
The highest heat transfer rate of the evaporator is 1140.01 kW and corresponds to Turbo EHP tubes,
and bottom-to-top tubes pass arrangements, which guarantee the best thermal energy conversion.
The presented approach can be referred to as a complementary technique in heat exchanger design
procedures, besides the common rating and sizing tasks. It is an effective and alternative method for
the existing approaches, considering the complexity of analytical and numerical techniques as well as
the high costs of experiments.

Keywords: adsorption heat pump; poligeneration; cooling capacity; low-grade thermal energy;
Genetic Algorithms; Neural Networks

1. Introduction

Heat exchangers are devices where the conversion of thermal energy between two or more fluids at
different temperatures takes place. According to Lienhard et al., heat exchangers can be classified using
the following main criteria: recuperators/regenerators, transfer processes (direct or indirect contact),
the geometry of construction (plates, tubes, extended surfaces), heat transfer mechanisms (single or
two-phase), and flow arrangements (parallel, counter or cross flows) [1–6]. A broad spectrum of
different heat exchanger configurations in various applications, as well as their design and operational
criteria, can be found in the literature. Recuperators allow recovering (recuperate) some of the heat
from one stream by another, through a separating wall or the interface between the streams. In
regenerators (storage-type heat exchangers), the thermal energy of the hot fluid is stored in a flow
passage (matrix) occupied first by the flowing hot fluid and then extracted by the cold fluid during its
flow through the same passage at the later time.

In direct-contact-type heat exchangers, heat is transferred through the interface between hot and
cold fluids, whereas in indirect-contact-type ones (transmural heat exchangers) the streams are two
immiscible liquids with a wall between them [2].
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Construction features of the direct-transfer-type heat exchangers are the base of their classification,
according to the geometry of construction criterion. Considerable flexibility in heat exchangers design
can be observed for tubular ones where tube diameter, the number of tubes, the tube length, the pitch of
the tubes, and the tube arrangement can be easily modified. Tubular heat exchangers can be classified
into double-pipe, shell-and-tube and spiral-tube-type heat exchangers as heat transfer coefficients in a
spiral tube are higher than those in a straight one. Plate heat exchangers are built of thin plates (plain,
wavy, or corrugated) forming flow channels and can be categorized into: gasketed plate (consists of a
series of thin plates with corrugation or wavy surfaces that separate the fluids), spiral plate (formed by
rolling two long, parallel plates into a spiral), and lamella (Ramen) type of heat exchanger (a set of
parallel, thin plate channels or lamellae (flat tubes or rectangular channels) placed longitudinally in a
shell) [2].

Extended surface heat exchangers contain fins or appendages on primary heat transfer surfaces to
increase the heat transfer area (usually on the gas side).

According to the heat transfer mechanisms criterion, there can be distinguished: 1. single-phase
convection on both sides, 2. single-phase convection on one side and two-phase convection on other
side, 3. two-phase convection on both sides.

Finally, according to the flow arrangements criterion, the following fluid-flow path through the
heat exchanger can exist: parallel flow, counter-flow, and cross-flow. For a given flow and temperature,
a counter-flow heat exchanger requires a minimum area, a parallel-flow heat exchanger requires
maximum area, and a cross-flow heat exchanger needs an area in between [2].

The design procedure of a heat exchanger is a complex and rather challenging venture. This
is especially topical in the case of adsorption cooling technology, considered as an essential method
for the efficient consumption of low-grade thermal energy [7–10]. Since sorption units are merely
thermodynamic systems, a good design of heat exchangers used in adsorption chillers is crucial for
improving their performance [11,12].

The whole construction process of a heat exchanger requires structural and economic considerations
preceded by the thermal analysis with sizing (design problem) and rating (performance analysis)
calculations, as rating and sizing are the common tasks in heat exchanger design [13]. The sizing
(design) problem constitutes in the determination of the surface area and heat exchanger dimensions,
including the selection of an appropriate heat exchanger type and size [2,3]. The inputs in sizing
task are usually: inlet and outlet temperatures, flow rates, surface geometries, and pressure drops
limitations as well as thermophysical properties of streams and materials [1].

On the other hand, the rating problem (performance analysis or simulation problem) is used
for a specific heat exchanger which already exists or for the heat exchanger configuration, selected
via approximate sizing. This approach requires the performance calculations of the heat exchanger.
It concentrates on the prediction of the total heat transfer rate, fluid outlet temperatures of a heat
exchanger for specific fluid mass flow rates, inlet temperatures, pressure drops, heat transfer areas,
and the flow passage dimensions. The inputs in this approach are usually: the dimensions and
surface geometry of the heat exchanger, fluid mass flow rates, inlet temperatures, and pressure drop
limitations [2].

The total heat transfer rate Q through a heat exchanger is the quality of primary interest during the
heat transfer analysis [2–5]. Two critical relationships constitute the entire thermal design procedure [3],
i.e., enthalpy rate Equations (1) for each fluid j:

Q =
.

mj∆hj (1)

or:
Q =

.
mjhfs
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when a phase-change process occurs (condensers, evaporators, boilers), and heat transfer rate
Equation (2):

Q = UA∆Tm (2)

where
.

mj is the mass flow rate of a stream j, ∆hj is the enthalpy change for an open nonadiabatic system
with a single bulk flow stream j entering and leaving the system under isobaric conditions, kJ/kg, hfs is
enthalpy of vaporization of the fluid, kJ/kg, U is the overall heat transfer coefficient, W/m2 K, A is the
heat transfer area, m2, and ∆Tm is the true (or effective) mean temperature difference, K.

The overall heat transfer coefficient U can be expressed as follows [2,4]:

1
UA

=
1

Ainnαinn
+

Rfoinn

Ainn
+ Rwall +

Rfoot

Aot
+

1
Aotαot

(3)

∆Tm = ∆Tlm,CF = ∆Tlm,PF = ∆Tlm, for counter-flow (∆Tlm,CF) and parallel-flow (∆Tlm,PF) heat
exchangers, ∆Tm = Fcorr∆Tlm,CF for any other flow arrangements [3,4], ∆Tlm—is the log mean
temperature difference (LMDT), ∆Tlm = ∆TI−∆TII

ln(∆TI/∆TII)
, ∆TI, ∆TII—temperature differences between

two fluids at each end of a counter-flow or parallel-flow heat exchanger, Ainn, Aot—inner and outer
surface of the wall, m2, αinn, αot—convection heat transfer coefficients.for the inner outer surface of the
wall, W/m2 K, Rfoinn, Rfoot are the fouling factors for the inner and outer surface of the wall m2

·K/W,
Rwall is the resistance of the wall, m2 K/W, Fcorr = f(P, R) is the log-mean temperature difference
correction factor (or exchanger configuration correction factor). The correction factor Fcorr is a measure
of the deviation of ∆Tlm from the log mean temperature difference for counter-flow arrangement
∆Tlm,CF [1–4]. The Fcorr depends on the geometry and the inlet and outlet temperatures is expressed
by effectiveness P, the heat capacity rate ratio R, and the flow arrangements. It can be determined from
charts prepared by Bowman et al. [14].

During the sizing problem, one should determine A or UA of a heat exchanger to satisfy the
required terminal values of some variables, whereas during the rating problem, one should determine
the terminal values of the variables for the existing heat exchanger, its physical heat transfer area A or
overall conductance UA [3].

If the rating provides acceptable thermal performance with pressure drop below the maximum
limits, the configuration of the heat exchanger may be considered as a solution to the problem. If not,
the configuration’s modification should be carried out, and a new design ought to be selected for the
next rating procedure [2].

When multiple configurations are possible, usually, the cost of the heat exchanger is a further
criterion of the selection as well as service conditions or maintenance requirements. For sizing tasks,
the heat balance and LMTD (log-mean temperature difference) method are mostly applied to calculate
the fluid outlet temperatures when mass flow rates and inlet temperatures are known [2]. The LMTD
method can also be used for rating problems. However, since it is a tedious approach, it can be
simplified by using the ε-NTU method (effectiveness-number of transfer units) [1,15].

Taking the above into account, the design of a heat exchanger is a complex procedure, mostly with
rather qualitative judgments, trade-offs, and compromises than quantitative analytical evaluation [2,3].
Despite the fact that rating and sizing are common tasks in a heat exchanger design procedure, modeling
provides some additional information and data, allowing to improve a specific solution [16–24].

Lots of papers deal with modeling of adsorption chillers, including heat exchangers, as their good
design in such devices as sorption units, which are merely thermodynamic systems, is crucial for
improving their performance [11,12]. For example, a state-of-the-art overview of adsorption cooling
systems modeling techniques can be found in [25]. The authors classified the modeling techniques
of adsorption chillers into three groups: heat and mass transfer models, lumped parameters models,
and thermodynamic models [26]. They underlined that a lot of research work is necessary to improve
heat and mass transfer performance of adsorption chillers and more advanced, both simulation
and optimization models, ought to be developed to allow the optimal design of the coolers [25]. A
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thermodynamic model of a three-bed adsorption chiller of a cooling capacity of 90 kW can be found
in [27]. The thermal and structural analysis of high-temperature fin-and-tube heat exchanger was
carried out in [28].

Falling film evaporators are heat exchangers commonly used in adsorption chillers, as this kind of
evaporator provides the most efficient heat transfer conditions [29–33]. Because of the complexity of
two-phase flow in the falling film, different factors affect their heat transfer performance, including
designing factors (e.g., configuration of enhanced surfaces, tube pass arrangements) and operating
factors (e.g., falling film flow rate) [34]. An interesting survey of heat transfer correlations applicable
for falling film evaporators can be found in [35]. The effects of tube diameter, saturation temperature,
heat flux, and film flow rates on the falling film heat transfer of R134a outside a single horizontal
smooth tube are given in [36]. The authors determined heat transfer correlations for falling film
evaporation on a horizontal tube. A threshold Reynolds number was introduced to define full wetting
and partial dry out regimes [36]. A semi-analytical model of heat transfer coefficient during falling
film evaporation on a smooth tube array was developed in [37]. Interesting models of falling film
evaporators are described by Yang and Wang in [38]. A falling film factor was used to compare the
pool boiling performance for non-dry out and partial dry out [39]. A distributed parameter model of
a falling film evaporator was developed in [40]. The authors managed to reduce the computational
time by limiting the number of grids. A mathematical model of heat transfer in a horizontal falling
film evaporator was also developed in [41]. Both evaporation and condensation of falling films on the
inside and the outside of a horizontal tube were discussed in the study. The pipe circumference was
divided into two areas: a zone of laminar flow and an impingement area [41].

A broad review of computational fluid dynamics (CFD) simulations of boiling and condensation
processes are given in [42]. Using a CFD approach, various falling film patterns of a horizontal tube
bundle with different flow rates were observed [43].

The one-dimensional (1D) and two-dimensional (2D) CFD models were employed to simulate
heat and mass transfer during laminar air flows inside vertical plate channels with falling water
film in a variety of geometric and boundary conditions [44]. Interesting CFD investigations of heat
exchangers were shown in [45,46]. Meshing methods, allowing to improve the accuracy of the CFD
models, can be found in [47]. CFD simulations of the working fluid flow distribution in individual
tubes of a fin-and-tube heat exchanger were performed in [48]. Innovative modification of the sorbent
layer structure, improving the heat transfer characteristics in the heat exchanger boundary layer was
proposed in [49]. The use of CFD methods with conjugate heat transfer analysis, to determine the
crucial input parameters in a heat exchanger of an adsorption chiller was discussed in [50].

A dimensionless correlation for the local heat transfer coefficient during saturated boiling in
bundles of plain and enhanced tubes was developed in [51]. The authors considered a vast amount of
operational data, including tubes of different materials, 12 fluids, and inline and staggered arrangements,
as well as a variety of pitch to diameter ratios, reduced pressures, mass flux, heat flux, and vapor
quality. A mean absolute error of 15.2% was achieved, using a total of 2173 data points from 51 various
data sets and 28 works [51].

The above-described modeling methods belong to the so-called programmed computing approach.
These techniques are usually featured by complex, time consuming, and laborious algorithms. The
approach sometimes demands to use additional assumptions, employing various correlations or even
experimental data [52,53]. These drawbacks are key shortcomings of the programmed computing
techniques, and the development of an alternative approach is an urgent challenge.

Methods that can help to overcome them are technics based on artificial intelligence (AI) approach,
including, e.g., Genetic Algorithms and Neural Networks (GA and ANN, respectively) [54,55]. There
are some papers dealing with these bio-inspired modeling methods. A Neural Network was used
to calculate and estimate heat transfer in an air-cooled heat exchanger with butterfly inserts [56] and
to predict the average heat transfer from the arrays of horizontal isothermal cylinders [57]. A direct
adaptive fuzzy controller was used to study the central air conditioning evaporator in [58]. Neural
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Networks and Genetic Algorithms were applied to optimize a three-bed adsorption chiller in [59].
The inlet part of a microchannel ceramic heat exchanger was optimized using a surrogate model
coupled with a Genetic Algorithm in [60]. Damavandi et al. performed a Pareto based multi-objective
optimization of a wavy fin-and-elliptical tube heat exchangers. Computational fluid dynamics,
GMDH (Group Method of Data Handling) type Artificial Neural Networks, and Non-Dominated
Sorting Genetic Algorithm, NSGA-II type Genetic Algorithm were employed in the study. Four
geometric parameters were chosen as design variables to optimize heat transfer and pressure drop
in wavy fin-and-elliptical tube heat exchangers [61]. A Genetic Algorithm was used to carry out
exergy—economic analysis of an integrated system for the simultaneous production of electricity and
fresh water [62]. Thermal modeling and optimal design of compact heat exchangers are presented
in [15]. A plate-fin heat exchanger was considered in the study using a Genetic Algorithm. Yin et al.
proposed a multi-objective optimization models between heat transfer rates and design parameters [63].
Heat recovery exchangers on rotary kilns were taken into account in the study. Recovery systems
on rotary kilns were optimized in [64]. The NSGA type, i.e., the Genetic Algorithm combined with
the Artificial Neural Network, was used to optimize the of flat-tube multilouvered fin compact heat
exchangers with delta-winglet vortex generators in [65]. Two distinct geometries and Reynolds
numbers were considered in work. Pareto solutions for minimization of the heat-transfer area and
pumping power to solve a shell-and-tube heat exchanger multiobjective optimization problem can
be found in [66]. The authors used Predator-Prey, Multiobjective Particle Swarm Optimization, and
Non-Dominated Sorting Genetic Algorithm II Evolutionary Algorithms. Sustainability optimization of
shell and tube heat exchanger, using the brute force approach, Monte Carlo, and Genetic Algorithm
optimization techniques, were carried out in [67]. Three design variables were taken into account.
The shell and tube heat exchanger was also discussed in [68]. Polynomial Neural Network approach
was applied to detect significant geometric parameters influencing the performance of shell and tube
heat exchanger. Neural Networks were used to evaluate heat transfer analysis in a shell and tube
heat exchanger [69]. Exergetic plant efficiency, energetic cycle efficiency, electric power, fouling factor,
and cost were considered during the study. Numerical analysis and optimization of a shell and tube
heat exchanger with segmental and helical baffles using Neural Networks and Genetic Algorithms
were performed in [70]. The authors carried out parametric studies of baffle cut and staged angle for
the shell and tube heat exchanger with segmental baffles. The performance and optimization of a
miniaturized concentric-tube heat exchanger using Artificial Neural Networks and Genetic Algorithms
can be found in [71].

The above literature review reveals that since the AI models employ the non-iterative methods,
they are considered to be the tools that sometimes have the ability to overcome the shortcomings of the
laborious programmed computing approach and expensive, time-consuming experimental procedures.
Moreover, since they are able to reproduce the process from training samples, a detailed knowledge of
the considered object is not indispensable.

The paper introduces a comprehensive approach to heat exchangers design procedures using AI
techniques, i.e., Artificial Neural Networks and Genetic Algorithms. The application of the method was
illustrated using a large falling-film evaporator, as one the most promising evaporators in renewable,
adsorption desalination-cooling systems. The introduced method constitutes a complementary
approach, comparing to the commonly used, rating, and sizing tasks of heat exchangers.

The approach is not only limited to the discussed case, but is also devoted to general applications
and has the potential to be treated as a universal approach, extending the existing techniques to more
general problems.

As the method allows us to derive critical parameters related to both design and operating
conditions, from training samples and have the ability to generalize the acquired knowledge, it can be
applied for all kinds of heat exchangers.
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To the best of our knowledge, there are no reports on such a general approach. Since the existing
in the literature, AI-based models are usually focused on a selected aspect of heat exchangers operation
or their parts, the problem was not considered as comprehensively and completely as it is in this study.

The presentation of the object of investigation and the methods used in the study are shown in
the next section.

2. Material and Methods

The discussed method allows deriving critical parameters related to both design and operating
conditions, from training samples. Since the approach is based on Artificial Neural Networks and
belongs to the so-called soft computing methods, it can generalize the acquired knowledge and
may be applied for any heat exchanger [72]. Therefore, the technique can be deemed as a universal
methodology in design considerations and optimization procedures.

The application of the proposed approach covers two main steps: (1) selection and preparation of
the input and output data sets and (2) defining and adjusting the ANN components (e.g., weights,
activation functions, biases, numbers of heading layers, and neurons in each of them).

The use of this method is illustrated on a large falling-film evaporator, as one the most promising
evaporators in renewable, adsorption desalination-cooling systems.

2.1. An Object of Investigation

The considered evaporator (Figure 1) is designated for large compression refrigeration systems [38].
It is a two-tube pass evaporator on the side of chilled water. The HFC-134a was used as a refrigerant
in the system, which is assumed to evaporate at 6 ◦C. The evaporator consists of 236 horizontal heat
transfer tubes of 3.97 m long and an outer diameter of 19.05 mm. The peach of tubes in tube bundles is
equal to 24.5 mm.
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Figure 1. The schematic diagram of the large falling film evaporator.

The temperatures of chilled water, so-called ice-water, at the inlet and the outlet, are 12 ◦C and
7 ◦C, respectively. The mass flow rate of ice-water is 52.49 kg/s. Four kinds of tubes are considered in
the study, i.e., three types of enhanced surface tubes: Turbo B, Turbo BII, Turbo EHP, and the plain
tube. The detailed geometric data of each kind of pipes are described in Table 1 [38].
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Table 1. The dimensions of the tubes applied in the large falling film evaporator [38].

Tube Dimensions
Kind of Tube

Plain Turbo B Turbo BII Turbo EHP

Outside
dimen-sions

Dot, mm 19.500 19.500 19.500 19.500
Dr, mm - 17.250 17.270 17.800

Fin - 40 48 42

Inside
dimen-sions

Dinn, mm 17.780 16.050 16.050 16.540
Drh, mm - 0.508 0.356 0.406
F, m2/m 0.0558 0.0770 0.080 0.080

Moreover, three kinds of tube pass arrangements are taken into account, which are possible
in the usual two tube pass on the side of ice-water: the side-by-side (left-to-right or right-to-left),
the bottom-to-top, with the tube-side inlet pass at the bottom and the outlet pass at the top and
top-to-bottom (Figure 2) [38].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Falling  

film  

tubes 

The refrigerant vapor outlet 

The liquid inlet 

Distributor 

The refrigerant vapor outlet 

The liquid inlet 

Distributor 

a) b) 

Figure 2. The schematic diagram of the tube pass arrangements of the falling film evaporator,
(a) side-by-side, (b) bottom-to-top and top-to-bottom.

Both geometric and operational data are used to develop and validate the model in the paper.

2.2. The Bio-Inspired Optimization Methods

The NeuroNet application by Mic-Apps Limited was used to develop the AGENN model. It
is a tool for managing and optimizing artificial Neural Networks via techniques used by Genetic
Algorithms [59,73]. These two methods belong to the so-called biologically motivated computing
approaches as the biology systems delivered inspiration for the development of such computational
systems [74].

The whole model’s development procedure consists of two main steps (Figure 3).
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Figure 3. The model’s development procedure.

During the first one, the parameters of a beforehand determined Neural Network are selected and
optimized via the Genetic Algorithms (GA). In this epoch, the region of a global optimum is located by
reproduction, cross-over, and mutations techniques.

In the next stage, the training of the ANN via the backpropagation (BP) method is carried out. In
this phase, the ANN’s parameters are refined, allowing to improve the performance and accuracy of
the model [75].

A detailed description of the mathematical model behind the software can be found in the
subsequent sections as well as in Appendix A.

2.2.1. Genetic Algorithms Approach

Numerous parameters of a Genetic Algorithm ought to be previously set and adjusted before we
start to develop the model. The most crucial GA model’s factors are: maximum number of iterations
(niter), maximum storage (ns), population size (npop), reseed fraction (rf), maximum number of reseed
(nr), screening offset (so), screening module (sm), mutation factor (mf), a nearest neighbor parameter
(Kn), general control factor (GCf), and the initial and final crowding factors (inf and finf, respectively).

The maximum number of iterations constitutes the number of individuals, which are created
before stopping the optimization, while the population size is the total of individuals that make the
working set. The maximum storage is the number of individuals who are kept in memory as a reference,
for producing new ones or during reseeding a young population. These individuals are also used in
the cases when the working population loses its diversity and ought to be refreshed by the introduction
of new individuals, to find the global optimum. A factor called reseed fractions states the fraction of
the population that is reseeded, while the maximum number of reseeding parameter expresses the
maximum amount of times a reseed possible during calculations.

Turning on the screening module helps to avoid calculating individuals who are too similar. An
important parameter, called the mutation factor, expresses to what extent an individual is mutated.
The other two ones, i.e., GC factor and K nearest neighbor, define how unlikely individuals are crossed
together and determines the number of most adjacent specimens that are taken into account before
rejection or screening, respectively. To maintain the variety inside a population and help the exploration
process, the initial crowding factor has to be close to, or equal 1, while the final one ought to be close to
or just equal 0, to eliminate the diversity among individuals.

2.2.2. Neurocomputing Approach

The second stage of the model’s performance procedure constitutes using a gradient descent
method via the BP scheme (Figure 3). The applied method is based on the ANN’s ability to reproduce an
object or a process from training data. Moreover, Artificial Neural Networks are capable of dealing with
ill-defined, uncertain, incomplete, and imprecise, redundant, and excess data as well as generalizing
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the complex interactions between inputs and outputs. Such kinds of data are usually a feature of a
complex system. During the BP scheme, simultaneous modification of momentum, as well as the
learning rate is conducted, since they are crucial parameters, significantly influencing the learning
capability of an ANN model.

The learning rate defines the training rate of a network, while momentum describes the inertia of
the learning process. Higher values of learning rates may lead to a lack of convergence and cause an
overlook of the optimum. On the other side, for the lower learning rates, the training process may
stack in a local optimum, instead of the global one [59]. Momentum allows ignoring insignificant
features of the training data set, but higher values permit to obtain the solution faster. Too high ones,
however, usually lead to instability of the whole training process.

This approach turned out to be a very effective method, as the formulated AGENN model is
capable of making accurate predictions being developed on limited training data. For the purpose of
this paper, the data given in [38] were used to derive and validate model parameters. The set of the
desired data consists of a total of 88 samples with 18 independent testing results. Therefore, learning
examples stand for the data set of 70 input-output data pairs, acquired from the operation of the
large falling film evaporator. These results cover different design (geometric configuration) inputs
and a wide range of operating conditions, including various kinds of tubes (plain and three kinds of
enhanced tubes: Turbo B, Turbo BII and Turbo EHP) different tube pass arrangements (top-to-bottom,
side-by-side and bottom-to-top), as well as broad range of liquid refrigerant mass flow rates and
number of flooded tubes of the evaporator [38].

Since the developed approach is based on the AI methods using Genetic Algorithms and
neurocomputing techniques, detailed heat transfer calculations of a heat exchanger are not necessary
to be carried out. That is why the proposed approach can be considered as a complementary method
and alternative task in a heat exchanger design procedure, besides the common rating and sizing
tasks, which are based on thermal analysis with sizing (design problem) and rating (performance
analysis) calculations.

Moreover, the proposed method is flexible in the use and provides novel abilities to optimize the
design and performance of heat exchangers. A more detailed description of the approach can be found
in the Appendix A.

For the considered case, a proper selection of the inputs allows determining optimum geometric
configurations and operating conditions to obtain the required total heat transfer rate of a heat
exchanger, e.g., the large evaporator. This is where the neurocomputing approach can sometimes
overcome the shortcomings of expensive experimental procedures, as well as the laborious, conventional
programmed computing approach, and also stands for the novelty of the paper.

The next section shows the application of the method and the developed model.

3. Results and Discussion

3.1. Application of the Method

As was previously underlined, an ANN operation depends on its topology, including the number
of layers and neurons in each layer, where the number of input and output neurons is equal to the
number of inputs and outputs, respectively. Therefore, the first phase in the whole model’s performance
process, i.e., GA adjusting and optimization, when the main parameters of the ANN’s architecture are
being set, is essential. The established GA model’s features are listed in Table 2.



Energies 2019, 12, 4441 10 of 32

Table 2. The GA model’s parameters.

Parameter Value

niter 1500
npop 33
ns 333
rf 1
nr 2
sm On
so 1
mf 5

GCf 0.25
Kn 2
inf 1
finf 0.1

The second stage deals with Neural Network Optimization. The following factors are taken into
account: the tag KT expressing the kind of tube (‘1′ for plain tubes, ‘2′ for Turbo B, ‘3′ for Turbo BII and
‘4′ for Turbo EHP tubes), the tag PA, which defines the tube passes arrangement (‘1′ for side-by-side
(right to left or left to right), ‘2′ for top-to-bottom (the tube-side inlet pass at the top and the outlet at
the bottom), ‘3′ for bottom-to-top), number n of flooded heat transfer tube rows and liquid refrigerant
mass flow rate m to the top row of the tube array.

The inputs are listed in Table 3.

Table 3. The inputs employed for training and testing of the AGENN model.

Input Parameter Value

Kind of tubes, KT * 1, 2, 3, 4
Tube pass arrangement, PA ** 1, 2, 3
Number of flooded heat transfer tube rows, n 1, 2, 3, 4, 5, 6, 7, 8
Liquid refrigerant mass flow rate, m, kg/s 4.5–12

* 1 stands for plain tubes, 2—Turbo B tubes, 3—Turbo BII tubes, 4—Turbo EHP tubes, ** 1 stands for side-by-side
tube passes arrangement (right-to-left or left-to-right) tube, 2—Top-to-bottom, 3—Bottom-to-top.

An extended heat surface contains fins or appendages on primary heat transfer surfaces, leading
to the increase in heat transfer area (usually on the gas side). Therefore, the performance of heat
exchangers with enhanced tubes is higher than the one with plain tubes.

The tube pass arrangement defines the decline rates of the temperature difference between the
refrigerant and chilled water along the tubes, which are different for different tubes pass arrangements.
This decline leads to a decrease in the heat flux from the chilled water to the refrigerant and the
reduction in the total heat transfer rate. On the other hand, the small refrigerant mass flow rate takes
part in dry areas formation on the external tube surface. If the refrigerant flow rate is insufficient
locally on the tube surface and the tube temperature is high enough, the local dry areas appear on
the tube surface. This reduction of the effective wetted area by the liquid film on the tube surface
deteriorates the overall heat transfer coefficient.

Finally, the number of flooded tube rows defines the number of tubes that should be flooded by
the liquid refrigerant to keep the required amount of refrigerant at the bottom of the evaporator. This
amount of coolant is necessary to recover the lubricant conveniently and keep the steady operation of
the large evaporator.

The total heat transfer rate Q of the large falling film evaporator constitutes the output of the
ANN model.

As the number of inputs and outputs define the total input and output neurons, the input and
output layers are composed of 4 and 1 neurons, respectively.
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The ANN of the developed AGENN model was trained using a supervised, BP training scheme [59].
Different ANN topologies were tested during the study, as the performance and the accuracy of

the model depend on its architecture.
The number of hidden layers and neurons in each hidden layer was changing by one, and

the performance of the AGEEN model was observed. The approach allows reducing the risk of
memorization instead of generalization of the relationships within the considered data set. The optimal
Neural Network turned out to be [4-3-3-3-1]. Three hidden layers with three sigmoid neurons in each
of them form the developed AGENN model.

The architecture of the developed AGENN model is shown in Figure 4.
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Figure 4. The topology of the AGENN model with [4-3-3-3-1] Artificial Neural Network.

The logarithmic sigmoid function was applied as an activated function for all neurons. Such
selection was made on the base of initial calculations, as well as prior experience and the fact that
this kind of activation function is one of the widely used in the neurocomputing computations. The
architecture of the considered [4-3-3-3-1] Artificial Neural Network is described in detail in Table 4.

Table 4. The features of the AGENN model with [4-3-3-3-1] Artificial Neural Network.

Weights, υi,K,j *

υ0,0,0 −3.810
υ0,0,1 1.305
υ0,0,2 10.634
υ1,0,0 −10.013
υ1,0,1 −0.007
υ1,0,2 0.519
υ2,0,0 −2.125
υ2,0,1 0,859
υ2,0,2 3.013
υ3,0,0 −3.154
υ3,0,1 2.700
υ3,0,2 −9.283
υ0,1,0 −1.911
υ0,1,1 −4.618
υ0,1,2 2.567
υ1,1,0 9.920
υ1,1,1 7.640
υ1,1,2 −10.019
υ2,1,0 −4.603
υ2,1,1 1.021
υ2,1,2 2.377
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Table 4. Cont.

Weights, υi,K,j *

υ0,2,0 −2.405
υ0,2,1 3.727
υ0,2,2 −8.748
υ1,2,0 −4.121
υ1,2,1 6.328
υ1,2,2 −10.000
υ2,2,0 −7.475
υ2,2,1 −3.965
υ2,2,2 −5.002
υ0,3,0 0.897
υ1,3,0 3.541
υ2,3,0 1.132

Neuron biases, бi,K *

б0,1 10.036
б1,1 2.755
б2,1 −7.759
б0,2 6.695
б1,2 1.904
б2,2 4.489
б0,2 −9.814
б1,2 −4.486
б2,2 6.041
б0,3 2.530

* a weight connecting the neuron i on a layer K with the neuron j on a layer K + 1; neurons and layers in the network
in Figure 4 are numbered from top to bottom (i = 0–3), (j = 0–2) and from the left to the right (K = 0–3), respectively.

Since the knowledge about the influence of geometric and operational parameters on the total heat
transfer rate of the heat exchanger is stored in the structure of the Artificial Neural Network, Table 4
summarizes essential data, including weights, obtained via the ANN’s training process, necessary
stage to properly build of the considered AGENN model. So the data from Table 4 contain all the
required information about the ANN topology, capable of describing the behavior of the considered
heat exchanger, i.e., the large falling film evaporator.

An additional and valuable feature of the AGENN model is the possibility to conduct the advanced
design considerations, using the non-integer values of KT and PA. These cases allow taking into account
diverse tubes configurations, including shares of different kinds of tubes and tube pass arrangements
within the evaporator’s construction. Moreover, the non-integer value of n means partially flooded tube
rows. Thus, the presented approach allows considering various geometric and operational scenarios
of the heat exchanger. Thus, the developed model is capable of generalizing the knowledge about
the object gained during the learning stage, and this comprehensive tool provides unique abilities for
design considerations and performance of a heat exchanger.

3.2. Validation of the Model

The AGENN model has been successfully validated against the desired data, both training and the
new results, unseen by the network during the training process, since the comparison between desired
and predicted data is considered as the most challenging method of validation. The comparison
of the predicted Qp and the desired Qd total heat transfer rate of the evaporator, for wide range of
both: geometric and operating conditions as well as different kinds of tubes, variety of tube pass
arrangements, number of flooded heat transfer tube rows, and liquid refrigerant mass flow rates, is
presented in Figure 5.
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Figure 5. Comparison of the total heat transfer rate of the large falling fill evaporator desired and
predicted by the AGENN model (red symbols � refer to training while the blue ones � apply to the
new, testing data set).

Good performance of the developed AGENN model has been achieved, even for the new testing
data set. The predicted results are located within the range of ±3%, compared to the desired data. Such
small relative error forms a solid basis for the possibility of using the developed model in practice.

The heat transfer rates of the considered large falling film evaporator, desired and predicted by
the AGENN model with [4-3-3-3-1] Artificial Neural Network, are also shown in Table 5.

Table 5. The selected values of heat transfer rate desired Qd vs predicted Qp by the AGENN model.

Inputs, Outputs, Error KT PA N m Qd Qp δ

Data - - - kg/s kW %

Data
not used for training the ANN

4 2 5 10 1134.9 1137.8147 −0.26
4 3 5 5.12 1136.6 1134.3085 0.20
4 1 3 5.75 1074.4 1076.1096 −0.16
4 1 6 5.75 1113.3 1106.7961 0.58
4 2 4 5.75 1080.9 1089.7294 −0.82
4 3 2 5.75 1114.9 1120.3034 −0.49
4 3 7 5.75 1139.3 1138.4263 0.08

Data
used for trainingthe ANN

1 1 5 5.75 425 433.977 −2.11
2 1 5 5.75 1051 1052.118 −0.11
3 1 5 5.75 1066 1063.146 0.27
4 1 5 5.75 1105 1099.907 0.46
4 2 5 5.75 1090 1099.704 −0.89
1 3 5 5.75 426 427.600 −0.38
2 3 5 5.75 1080 1063.684 1.51

The relative errors for most of the predicted Q are even smaller than 1%. The comparison of the
desired and predicted heat transfer rate of the large falling film evaporator is also shown in Figures 6
and 7. The higher errors are observed for lower heat transfer rates and liquid refrigerant mass flow
rates. This behavior can be attributed to the difficulties in precisely determining the operational
parameters in such conditions. For lower mass flow rates of liquid refrigerant to the top row of
the tube array, dry patches in the first and the second tube rows may be generated, or even small
maldistribution of liquid refrigerant may occur. Such conditions deteriorate the total heat transfer rate
of the evaporator. Additionally, the nonlinear domain, which exists at low mass flow rates, ought to be
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covered by more training data, which are hardly available, especially for large-scale units. Nevertheless,
the maximum error is lower than ±3%. The highest relative error of the prediction generated by
the AGENN model is equal to 2.11%. This observation confirms the excellent generalization ability
of the developed [4-3-3-3-1] type of ANN, which validates the broad applicability of the proposed
approach and the developed AGENN model. The achieved results also confirmed that the developed
AGENN model is flexible enough to be applied for different design configurations and a wide range of
operational conditions.Energies 2019, 12, x FOR PEER REVIEW 14 of 32 
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Figure 7. The dependence of the heat transfer rate Q desired (blank symbols) and predicted (filled
symbols) with the number of flooded tube rows (KT = 4, m = 5.75 kg/s).

Various kinds of tubes (plain and enhanced tubes: Turbo B, Turbo BII, and Turbo EHP), different
tube pass arrangements (top-to-bottom, side-by-side, and bottom-to-top) as well as a wide range of
liquid refrigerant mass flow rates and numbers of flooded tubes can be analyzed by the tool. Thus,
the AGENN model can successfully determine the required design considerations and operating
conditions to generate the desired total heat transfer rate of the large evaporator.
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The introduced method allows getting quick and accurate results, as an answer to new inputs,
via the non-iterative or end-to-end, easy to use, calculating procedure. In the considered case, one
only has to enter the inputs: KT, PA, n, and m, to calculate the total heat transfer rate Q of the
large-scale evaporator.

Such a developed tool allows also studying the influence of input variables on the evaporator’s
total heat transfer rate. To conduct the study, other inputs ought to be fixed, as a dependency can be
determined only for the specific case, expressed by geometric and operational conditions.

Such methodology was carried out, and the results are given in the next Section of the paper.

3.3. Effect of the Evaporator Design and Operating Parameters on the Heat Transfer Rate

To evaluate the impact of the inputs, i.e., the evaporator design and operating variables on the
total heat transfer rate of the evaporator, the input parameters with values extended by 20% each
way were applied to allow making predictions outside of the training zone. The basic structural
configurations of the large falling film evaporator take into account four kinds of tubes and three types
of pass arrangements, expressed by the integer KT and PA values, respectively.

However, as was mentioned before, in the specific, considered case, the developed AGENN model
allows also finding more advanced design solutions of the evaporator. The non-integer values of KT
and PA stand for sophisticated cases, corresponding to the mixed shares of different kinds of tubes and
types of tube pass arrangements, respectively (Table 6).

Table 6. The extended ranges of inputs used in the optimization study by AGENN model.

Input Parameter Value

Kind of tubes, KT * 1–4
Tube pass arrangement, PA ** 1–3
Number of flooded heat transfer tube rows, n 0.8–9.6
Liquid refrigerant mass flow rate, m, kg/s 3.6–14.4

* 1 stands for plain tubes, 2—Turbo B, 3—Turbo BII, 4—Turbo EHP, ** 1 stands for side-by-side tube passes
arrangement (right to left or left to right) tube, 2—Top-to-bottom, 3—Bottom-to-top.

The non-integer n values express partially flooded heat transfer tube rows inside the large
evaporator. Thus, the introduced method based on the neurocomputing approach and the developed
AGENN model allows taking into account advanced structural configurations and operating scenarios
of the heat exchanger.

This feature is an added value of the proposed approach allowing to evaluate nonstandard and
complex cases, defined by a set of input data.

3.3.1. Effect of Kinds of Tubes and Tube Pass Arrangements

The influence of a type of tubes on the total heat transfer rate of the considered large falling film
evaporator is given in Figure 8. The study was performed, including the lowest and the highest number
of flooded heat transfer tube rows n, as well as liquid refrigerant mass flow rate m, respectively.
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For the lowest n = 0.8, the liquid refrigerant mass flow rate should be higher than 6.27 kg/s to
allow the reliable operation of the evaporator. Therefore, further considerations were performed for
m = 6.5 kg/s (see the top row in Figure 8). On the other hand, for the lowest refrigerant mass flow rate,
equal to 3.6 kg/s, the minimum number of fully flooded heat transfer tube rows corresponds to 9. That
is why further analysis was performed for n = 9 (see the bottom row in Figure 8).

The obtained results revealed that the tubes with enhanced/augmented heat transfer surfaces
(KT > 1) are more efficient and allow to generate higher heat transfer rates as the increase in surface
area (e.g., in a finned surface) is one of the main methods to enhance the heat transfer rate. Even though
the highest heat transfer rate Qmax = 1140.01 kW can be obtained for all kinds of tubes (Figure 8d), the
most effective one seems to be the Turbo-EHP (Figure 8a,c). The lowest heat transfer rate was obtained
for plain tubes (KT = 1), whereas the highest one for Turbo-EHP (KT = 4), characterized by a favorable
combination of geometric parameters, including the highest, among enhanced tubes of both root and
nominal inside diameters; thus, the following dependency can be written:

QKT = 1 < QKT = 2 < QKT = 3 < QKT = 4 (4)

However, the increase in mass m flow rates of liquid refrigerant to the top row of the tube array
and the number of flooded heat transfer tube rows n leads to the reduction in the significance of
the kind of tubes KT parameter (Figures 6–8). At the highest m = 14.4 kg/s, the evaporator reaches
the highest heat transfer rate Qmax = 1140.01 kW (Figure 8d) for all kinds of tubes KT, but only for
bottom-to-top tube pass arrangement (PA = 3). The PA significance also lowers with the increase of n
and m (Figures 6 and 7). However, for the lowest n = 0.8 (Figure 8a) and m = 3.6 kg/s (Figure 8c) the
bottom-to-top tube pass arrangement (PA = 3) allows obtaining higher heat transfers rates.

The influence of tubes pass arrangements PA on Q is associated with the decline rates of the
temperature difference between the refrigerant and chilled water along the tubes, which are different
for different pass arrangements [39]. This decline leads to a decrease in the heat flux from the chilled
water to the refrigerant and the reduction in the total heat transfer rate. For the optimum, bottom-to-top
tube pass arrangement, only a few dry patches are created in the rows of falling film tubes, as this is
the most effective tube pass arrangement with crossflow and counterflow of both fluids [1,2,4].

Operating parameters should also be taken into account to define the optimum operating strategy of
the evaporator.

3.3.2. Effect of the Number of Flooded Tube Rows and the Refrigerant Mass Flow Rates

To easily recover lubricant and keep a well overall performance in varied loads, usually, several
bottom tubes are flooded in the falling film evaporators. The rest, upper heat transfer tube rows, are
wetted by the liquid refrigerant film from the trickling distributor, making so-called falling film tubes [38].

In other words, the number of flooded tube rows defines the number of tubes that should be
flooded by the liquid refrigerant to keep the required amount of refrigerant at the bottom of the
evaporator. This amount of refrigerant is necessary to recover the lubricant conveniently and keep the
steady operation of the large evaporator.

However, for a higher number of flooded heat transfer tube rows, the lower tubes exhibit poor
heat transfer performance as the negative influence of the liquid refrigerant column on the evaporation
appears. Thus, the optimum n depends on the specific both design and operational conditions,
including the refrigerant mass flow rate m [76].
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The influence of mass flow rates m and the number n of flooded tube rows on the total heat
transfer rate of the evaporator are given in Figures 9 and 10. The increase in mass flow rates m of liquid
refrigerant to the top row of the tube array leads to the rise in the heat transfer rate Q of the evaporator.
Such behavior can be explained by the fact, that for high enough m, more heat evaporation can be
withdrawn from the tubes system with the evaporated steam. In such conditions, the number of local
dry areas on the tubes surfaces decreases and the falling film mode between horizontal tubes changes
from droplet mode, through the jet mode, where liquid leaves the tube as continuous columns, to the
sheet mode [35].

On the other hand, the local dry areas appear on the tubes surfaces for locally insufficient
refrigerant liquid flows and high enough tube’s surface temperature, due to the reduction of the active
wetted area by the liquid film. Such conditions may occur, especially for the lower tubes (counting
from the top tube rows) placed under the refrigerant distributor. Since at dry areas heat transfer
happens only via natural convection, the lower liquid mass flow rates lead to the deterioration of the
overall external heat transfer performance [77].

The total heat transfer rate of the evaporator increases with m before the flow rate reaches a certain
value, and then, it is kept almost constant. These transition values are different for various kinds of
tubes KT, tube pass arrangements PA and number n of flooded tubes in the evaporator. Generally, it
declines with the increase in input parameters KT, PA, n, and almost disappears for KT = 4, PA = 3,
n > 7.

The reported above observations allow selecting the best operational strategy of the evaporator,
which is depicted in the next section.
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4. The Best Strategy for Heat Transfer Efficiency of the Evaporator

The evaluation carried out in this study showed, that the total heat transfer rate, i.e., the heat
transfer efficiency of the evaporator, depends on the kind of tubes (KT), the tube pass arrangement
(PA), the number of flooded tube rows (n) and the refrigerant mass flow rate (m). The developed global
AGENN model, based on the introduced AI approach, allows to optimize the heat exchanger as the
optimal set of input parameters could be determined, taking into account the total heat transfer rate
i.e., the output value. In the case of the considered large falling film evaporator, some structural and
operational parameters can be selected, defining the optimal design of the evaporator and the best
strategy in thermal energy conversion.

As was underlined above, the highest total heat transfer rate is equal to Qmax = 1140.01 kW and
can be obtained for all kinds of tubes, but only for bottom-to-top tube pass arrangement (PA = 3) and
the selected optimal operational conditions n and m (Figure 8). However, to minimize operational
costs and the negative effect of the hydrostatic pressure of the refrigerant, the n and m should be
reduced [30–32]. The developed AGENN model allows selecting the optimal mass flow rate of the
refrigerant, corresponding to the minimum value n = 0.8 of flooded tubes for each kind of tubes KT,
allowing to obtain Qmax. The results confirm previous observations that the most effective type of tube
is the KT = 4, i.e., the Turbo-EHP, as the lowest refrigerant mass flow rate is demanded, equal to 8 kg/s
(Figure 10f).

Thus, the highest total heat transfer rate Qmax can be achieved by the large falling film evaporator
for the structural configurations and operating scenarios, described by the following input parameters:
KT = 4, PA = 3, n = 0.8 and m = 8 kg/s (Figure 11).

Energies 2019, 12, x FOR PEER REVIEW 20 of 32 

 

4. The Best Strategy for Heat Transfer Efficiency of the Evaporator 

The evaluation carried out in this study showed, that the total heat transfer rate, i.e., the heat 
transfer efficiency of the evaporator, depends on the kind of tubes (KT), the tube pass arrangement 
(PA), the number of flooded tube rows (n) and the refrigerant mass flow rate (m). The developed 
global AGENN model, based on the introduced AI approach, allows to optimize the heat exchanger 
as the optimal set of input parameters could be determined, taking into account the total heat 
transfer rate i.e., the output value. In the case of the considered large falling film evaporator, some 
structural and operational parameters can be selected, defining the optimal design of the evaporator 
and the best strategy in thermal energy conversion. 
As was underlined above, the highest total heat transfer rate is equal to Qmax = 1140.01 kW and can be 
obtained for all kinds of tubes, but only for bottom-to-top tube pass arrangement (PA = 3) and the 
selected optimal operational conditions n and m (Figure 8). However, to minimize operational costs 
and the negative effect of the hydrostatic pressure of the refrigerant, the n and m should be reduced 
[30–32]. The developed AGENN model allows selecting the optimal mass flow rate of the 
refrigerant, corresponding to the minimum value n = 0.8 of flooded tubes for each kind of tubes KT, 
allowing to obtain Qmax. The results confirm previous observations that the most effective type of 
tube is the KT = 4, i.e., the Turbo-EHP, as the lowest refrigerant mass flow rate is demanded, equal to 
8 kg/s (Figure 10f).  

Thus, the highest total heat transfer rate Qmax can be achieved by the large falling film 
evaporator for the structural configurations and operating scenarios, described by the following 
input parameters: KT = 4, PA = 3, n = 0.8 and m = 8 kg/s (Figure 11). 

 
Figure 11. Effect of PA and KT on the total heat transfer rate of the evaporator, (n = 0.8, m = 8 kg/s). 

Taking into account the fact that the highest heat transfer efficiency of the evaporator can be 
achieved for the extended Turbo-EHP kind of tubes (KT = 4), we can determine the increase in the 
total heat transfer rate ΔQ, relative to that which can be obtained for other kinds of tubes (KT = 1, 2, 
3). The results can be seen in Figure 12. 

Figure 11. Effect of PA and KT on the total heat transfer rate of the evaporator, (n = 0.8, m = 8 kg/s).

Taking into account the fact that the highest heat transfer efficiency of the evaporator can be
achieved for the extended Turbo-EHP kind of tubes (KT = 4), we can determine the increase in the total
heat transfer rate ∆Q, relative to that which can be obtained for other kinds of tubes (KT = 1, 2, 3). The
results can be seen in Figure 12.
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0.8, m = 8 kg/s).

The highest increase in the total heat transfer rate is observed when the Plain tubes (KT = 1) are
replaced with the Turbo EHP ones (KT = 4). The results are also confirmed by the effectiveness ε of
the falling film evaporator. From all the considered structural and operational sceneries, the highest
effectiveness is equal to ε = 0.866, which corresponds to the selected optimum case.

Finally, the cost of the heat exchanger should be a further criterion of the heat exchanger selection
in the introduced approach.

It is also worth mentioning that a critical issue turns out to be a reliable operation of liquid
refrigerant distributors. Trickling distribution of refrigerants in falling film evaporators are more
effective than spraying one and saves the recycle pump. As was underlined above, if the mass flow rate
of falling refrigerant is not equal to the evaporated one or if the refrigerant is not evenly distributed
onto the first row of the tube bundles, the maldistribution of liquid occurs and dry out areas on local
surfaces may be formed, leading to the deterioration of the total heat transfer rate of the evaporator [39].

The developed AGENN model allows optimizing both geometrical and operational indicators
of heat exchangers, including large falling film evaporators. The introduced bio-inspired technique
may also be treated as a convenient tool for rapid and virtual prototyping environments described
by Rix et al. [78] of heat exchangers, as it allows to extend the approach to a more general problem
from design considerations to sizing and rating ones. The proposed method can be considered as a
complementary task in a heat exchanger design procedure.

5. Conclusions

The paper introduces a comprehensive, innovative bio-inspired approach in heat exchangers
optimization, using AI methods. The application of the method was illustrated on a large falling-film
evaporator, as one the most promising evaporators in renewable, adsorption desalination-cooling systems.

The AGENN model is developed in the paper using Genetic Algorithms and Neural Networks.
The model allows conducting an optimization study of the heat exchanger concerning the total heat
transfer rate of the evaporator. Good agreement between predicted and desired data was achieved. A
maximum relative error, lower than ±3%, validates the reliability of the model. The highest total heat
transfer rate, which can be obtained by the evaporator, is 1140.01 kW and may be achieved for Turbo
EHP tubes, bottom-to-top tubes pass arrangements, the minimum number of flooded tube rows and
liquid refrigerant mass flow rate 8 kg/s.
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The introduced AI approach, which belongs to the soft computing techniques, can be considered
as an alternative and complementary method in heat exchangers design procedures, besides the
common rating and sizing tasks.

Moreover, as the proposed technique allows us to derive critical parameters related to both
design and operating conditions, from training samples and have the ability to generalize the acquired
knowledge, it can be applied for all kinds of heat exchangers and refrigerants.

Thus, the method can be considered as a cost-effective and universal methodology that users,
including process engineers, energy researchers, or environmental scientists, can apply to develop
robustness AI-based models. Finally, the method can be treated as a tool for rapid and virtual
prototyping environments and computer applications of heat exchangers.

Funding: This research was funded by National Science Centre of the Republic of Poland, grant number
2018/29/B/ST8/00442.

Conflicts of Interest: The author declares no conflicts of interest.

Abbreviations

A Heat transfer area, m2

Dinn Inside tube diameter, m
Dot Outside tube diameter, m
Dr Root diameter, m
Drh Nominal height of a ridge, m
Err Error of prediction
f Activation function
F Equivalent inner surface area, m2/m
Fcorr Correction factor
Fin Number of fins per inch
GCf General control factor
h Enthalpy, J/kg
Kn Nearest neighbor parameter,-
l learning rate
LMDT Log Mean Temperature Difference, K
m Liquid refrigerant mass flow rate, kg/s
mf Mutation factor
n Number of flooded heat transfer tube rows
niter Maximum number of iterations
npop Population size
nr Maximum number of reseed
ns Maximum storage
Q Total heat transfer rate of the evaporator, kW
rf Reseed fraction, -
Rfo Fouling factor, m2 K/W
Rwall Thermal resistance of the wall, m2

·K/W
s signal
sm Screening module,-
so Screening offset
T Temperature, K
U Overall heat transfer coefficient, W/m2

·K
x Input
y Output
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Greek symbols
α Convection heat transfer coefficient, W/m2

·K
б Biases of neurons
δ Relative error, %
ε Heat exchanger effectiveness
µ Momentum
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Appendix A

According to Section 2.2 the whole model’s development procedure consists in combining of genetic
algorithms (GA) and back propagation (BP) methods to optimize the artificial neural network (ANN). By GA
optimization, the global optimum can be identified, whereas the BP learning algorithm allows improving the
network response refining the previously determined ANN’s parameters.

The main domains of GA application are the search and optimization issues as they are based on the concept
of using mechanisms, which resemble the evolution process to determine the optimum solution. Being a part of
the Evolutionary Computations the GA techniques, together with the ANN, belong to Computational Intelligence
methods. Based on the genetic processes of biological organisms, they mimic the processes of natural populations
evolving according to the principles of natural selection and survival of the most fitted individuals described by
Charles Darwin [75].

Three stages, i.e., reproduction, crossover, and mutation make basic genetic algorithms that work with a set
of individuals, making so-called populations.

A potential solution (an individual) may be represented by a so-called chromosome, i.e., a set of parameters
known as genes, joined together to form a string of values. Crossover and mutation arethe two main genetic
operators, used for reproduction selected parents [75].

In the crossover, chromosomes of the two taken individuals are cut at a randomly chosen position
(single-point crossover), generating head segments and tail segments, which are then swapped over, producing
new chromosomes (Figure A1).
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Figure A1. The scheme of a single-point crossover process of two 7-bit numbers.

The mutation is the second basic genetic operator which is employed for the recombination of chromosomes
(Figure A2).

It protects against a possible loss of desirable features of individuals that may happen during reproduction
and crossover processes. During mutation, a randomly selected gene is altered with a small probability. The
likelihood of crossover and mutation is typically between 0.6–1.0 and 0.001, respectively.
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Figure A2. The scheme of a single mutation process.

Because of the fact that each of the individuals, previously reproduced in a population, constitutes a possible
solution of a given problem, each of them is assigned a so-called fitness score, informing how good a solution
of the issue is. Only the highly fitted individuals have the chance to be reproduced with other individuals via
the crossover mechanism. Such produced offspring population share some features taken from each parent
individuals, whereas less fitted individuals are not selected for the next reproduction process, and thus, “die”. This
mechanism assures that the new population of possible solutions is composed of the best-fitted individuals [70].
Such an approach was applied in the considered study to find optimal parameters of the artificial neural network
(ANN) structure.

The next step in the model’s development procedure constitutes in refining these parameters by the gradient
descent algorithm, via the BP method. An ANN can reproduce a process from via training procedure, which
resembles a human brain operation. An artificial neuron is a model of a foundational unit of the human brain, built
on a computer (Figure A3a). According to the similarity to its biological equivalents, each i-th artificial neuron
takes in some number of inputs xi multiplied by a weight
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i, which are summed together. Such an obtained logit
is combined with a bias бand passed through an activation function f generating the output y, which then can be
transmitted to other neurons. The output signal can be described by the equation:

y = f

б+ n∑
i=0
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ixi

 = f (s) (A1)

Biases are scalars necessary to ensure that at least a few nodes in a layer are activated, regardless of signal
strength, allowing learning even when the signals are low.

Some of the most common activation functions are the sigmoid (logistic) activation function (A2):

f =
1

1 + e−y (A2)

and hyperbolic tangent (A3):

f = tanh(y) =
sin h(y)
cos h(y)

=
ey
− e−y

ey + e−y (A3)
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Since a single neuron has a limited memorizing capacity, a neural network constitutes a group of
interconnected (by so-called weights) neurons (Figure A3b). Thus, the output signal of a neuron i on a
layer K during a learning epoch τ can be written as:

yi,K(τ) = f
(
si,K(τ)

)
(A4)

 

 

 

 
b) 

 

Figure A3. The schematic diagram for an artificial neuron (a) and a neural network (b). 
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Figure A3. The schematic diagram for an artificial neuron (a) and a neural network (b).
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Before a neural network becomes a useful modeling tool, it should be previously trained. The most popular
and efficient learning method, used to train artificial neural networks, is the previously mentioned backpropagation
learning (BP) algorithm [73,75,76]. This technique performs a gradient descent procedure, where the slope of the
loss function is calculated by taking a derivative. The technique is a supervised learning method when the input
pattern is repeatedly presented simultaneously with its corresponding output pattern. Therefore, the training
process is supervised by the “teacher” via a set of the training data (pattern) [70]. Let us consider the ANN with
one output. During the learning (training) epoch, the neural network output y generated by the output layer is
compared with the pattern, and the obtained difference Err (error of prediction) can be considered as an error
measure for calculation of a loss function. In the mean squared error loss (MSE), the error Err is squared and
averaged over the number L of data points:

MSE =
1
L

∑L

i=1
Err(τ)2

i =
1
L

E(τ) (A5)

The difference Err is also a measure of the weights modification rate during the training (learning)
procedure [75,79].

The modified weights for the next learning epoch
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According to Section 2.2 the whole model’s development procedure consists in combining of 

genetic algorithms (GA) and back propagation (BP) methods to optimize the artificial neural 

network (ANN). By GA optimization, the global optimum can be identified, whereas the BP learning 

algorithm allows improving the network response refining the previously determined ANN’s 

parameters. 

The main domains of GA application are the search and optimization issues as they are based 

on the concept of using mechanisms, which resemble the evolution process to determine the 

optimum solution. Being a part of the Evolutionary Computations the GA techniques, together with 

the ANN, belong to Computational Intelligence methods. Based on the genetic processes of 

biological organisms, they mimic the processes of natural populations evolving according to the 

principles of natural selection and survival of the most fitted individuals described by Charles 

Darwin [75]. 

Three stages, i.e., reproduction, crossover, and mutation make basic genetic algorithms that work 

with a set of individuals, making so-called populations.  

A potential solution (an individual) may be represented by a so-called chromosome, i.e., a set of 

parameters known as genes, joined together to form a string of values. Crossover and mutation 

arethe two main genetic operators, used for reproduction selected parents [75]. 

In the crossover, chromosomes of the two taken individuals are cut at a randomly chosen position 

(single-point crossover), generating head segments and tail segments, which are then swapped over, 

producing new chromosomes (Figure A1).  

i.K, j(τ+ 1) are calculated using their values from the
previous τ stage,

Energies 2019, 12, x FOR PEER REVIEW 23 of 32 

 

ʋ Weight connecting a neurons i on layer K with a neuron j from layer K + 1, - 

τ An epoch, - 

Subscripts 

CF, PF counter-flow, parallel-flow 

d desired 

p predicted 

i, j numbers of neurons, i = 0–3, j = 0–2 

inn inner surface of the wall 

K number of a layer, K = 0–3 

m mean 

max maximum 

opt. optimum 

ot outer surface of the wall, 

Acronyms 

AI Artificial Intelligence 

AGENN Genetic Algorithms combined with Artificial Neural Networks 

ANN Artificial Neural Networks 

BP Back-propagation method 

CFD Computational Fluid Dynamics  

CFB Circulating Fluidized Bed 

EHP Enhanced High Performance 

GA Genetic Algorithms 

GMDH Group Method of Data Handling 

KT Kind of tubes 

NN Neural networks 

NTU Number of Transfer Units 

NSGA Non-Dominated Sorting Genetic Algorithm 

PA Tube pass arrangement 

Appendix A 

According to Section 2.2 the whole model’s development procedure consists in combining of 

genetic algorithms (GA) and back propagation (BP) methods to optimize the artificial neural 

network (ANN). By GA optimization, the global optimum can be identified, whereas the BP learning 

algorithm allows improving the network response refining the previously determined ANN’s 

parameters. 

The main domains of GA application are the search and optimization issues as they are based 

on the concept of using mechanisms, which resemble the evolution process to determine the 

optimum solution. Being a part of the Evolutionary Computations the GA techniques, together with 

the ANN, belong to Computational Intelligence methods. Based on the genetic processes of 

biological organisms, they mimic the processes of natural populations evolving according to the 

principles of natural selection and survival of the most fitted individuals described by Charles 

Darwin [75]. 

Three stages, i.e., reproduction, crossover, and mutation make basic genetic algorithms that work 

with a set of individuals, making so-called populations.  

A potential solution (an individual) may be represented by a so-called chromosome, i.e., a set of 

parameters known as genes, joined together to form a string of values. Crossover and mutation 

arethe two main genetic operators, used for reproduction selected parents [75]. 

In the crossover, chromosomes of the two taken individuals are cut at a randomly chosen position 

(single-point crossover), generating head segments and tail segments, which are then swapped over, 

producing new chromosomes (Figure A1).  

i.K, j(τ), by the following formula [80]:Energies 2019, 12, x FOR PEER REVIEW 23 of 32 

 

ʋ Weight connecting a neurons i on layer K with a neuron j from layer K + 1, - 

τ An epoch, - 

Subscripts 

CF, PF counter-flow, parallel-flow 

d desired 

p predicted 

i, j numbers of neurons, i = 0–3, j = 0–2 

inn inner surface of the wall 

K number of a layer, K = 0–3 

m mean 

max maximum 

opt. optimum 

ot outer surface of the wall, 

Acronyms 

AI Artificial Intelligence 

AGENN Genetic Algorithms combined with Artificial Neural Networks 

ANN Artificial Neural Networks 

BP Back-propagation method 

CFD Computational Fluid Dynamics  

CFB Circulating Fluidized Bed 

EHP Enhanced High Performance 

GA Genetic Algorithms 

GMDH Group Method of Data Handling 

KT Kind of tubes 

NN Neural networks 

NTU Number of Transfer Units 

NSGA Non-Dominated Sorting Genetic Algorithm 

PA Tube pass arrangement 

Appendix A 

According to Section 2.2 the whole model’s development procedure consists in combining of 

genetic algorithms (GA) and back propagation (BP) methods to optimize the artificial neural 

network (ANN). By GA optimization, the global optimum can be identified, whereas the BP learning 

algorithm allows improving the network response refining the previously determined ANN’s 

parameters. 

The main domains of GA application are the search and optimization issues as they are based 

on the concept of using mechanisms, which resemble the evolution process to determine the 

optimum solution. Being a part of the Evolutionary Computations the GA techniques, together with 

the ANN, belong to Computational Intelligence methods. Based on the genetic processes of 

biological organisms, they mimic the processes of natural populations evolving according to the 

principles of natural selection and survival of the most fitted individuals described by Charles 

Darwin [75]. 

Three stages, i.e., reproduction, crossover, and mutation make basic genetic algorithms that work 

with a set of individuals, making so-called populations.  

A potential solution (an individual) may be represented by a so-called chromosome, i.e., a set of 

parameters known as genes, joined together to form a string of values. Crossover and mutation 

arethe two main genetic operators, used for reproduction selected parents [75]. 

In the crossover, chromosomes of the two taken individuals are cut at a randomly chosen position 

(single-point crossover), generating head segments and tail segments, which are then swapped over, 

producing new chromosomes (Figure A1).  

i.K, j(τ+ 1) =

Energies 2019, 12, x FOR PEER REVIEW 23 of 32 

 

ʋ Weight connecting a neurons i on layer K with a neuron j from layer K + 1, - 

τ An epoch, - 

Subscripts 

CF, PF counter-flow, parallel-flow 

d desired 

p predicted 

i, j numbers of neurons, i = 0–3, j = 0–2 

inn inner surface of the wall 

K number of a layer, K = 0–3 

m mean 

max maximum 

opt. optimum 

ot outer surface of the wall, 

Acronyms 

AI Artificial Intelligence 

AGENN Genetic Algorithms combined with Artificial Neural Networks 

ANN Artificial Neural Networks 

BP Back-propagation method 

CFD Computational Fluid Dynamics  

CFB Circulating Fluidized Bed 

EHP Enhanced High Performance 

GA Genetic Algorithms 

GMDH Group Method of Data Handling 

KT Kind of tubes 

NN Neural networks 

NTU Number of Transfer Units 

NSGA Non-Dominated Sorting Genetic Algorithm 

PA Tube pass arrangement 

Appendix A 

According to Section 2.2 the whole model’s development procedure consists in combining of 

genetic algorithms (GA) and back propagation (BP) methods to optimize the artificial neural 

network (ANN). By GA optimization, the global optimum can be identified, whereas the BP learning 

algorithm allows improving the network response refining the previously determined ANN’s 

parameters. 

The main domains of GA application are the search and optimization issues as they are based 

on the concept of using mechanisms, which resemble the evolution process to determine the 

optimum solution. Being a part of the Evolutionary Computations the GA techniques, together with 

the ANN, belong to Computational Intelligence methods. Based on the genetic processes of 

biological organisms, they mimic the processes of natural populations evolving according to the 

principles of natural selection and survival of the most fitted individuals described by Charles 

Darwin [75]. 

Three stages, i.e., reproduction, crossover, and mutation make basic genetic algorithms that work 

with a set of individuals, making so-called populations.  

A potential solution (an individual) may be represented by a so-called chromosome, i.e., a set of 

parameters known as genes, joined together to form a string of values. Crossover and mutation 

arethe two main genetic operators, used for reproduction selected parents [75]. 

In the crossover, chromosomes of the two taken individuals are cut at a randomly chosen position 

(single-point crossover), generating head segments and tail segments, which are then swapped over, 

producing new chromosomes (Figure A1).  

i.K, j(τ) + 2lδi,K(τ)x j,K(τ) (A6)

where:

δi,K = −
1
2

∂E(τ)
∂si,K(τ)

(A7)

and l is the learning rate, which controls the speed rate of the weights’ modification.
One of the interesting instances of the BP technique is the back propagation algorithm with momentum term

µ [80]. This method applies a momentum term, which defines inertia of the learning process, i.e., the inertia of
the weights’ modification during the learning stage. The momentum is proportional to the weight change in the
previous iteration and improves the stability of the learning process.

Therefore, the modified weights for the next learning epoch, via modified BP algorithm with momentum
term, are calculated by the following formula:Energies 2019, 12, x FOR PEER REVIEW 23 of 32 
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i.K, j(τ− 1)
]

(A8)

Too high values of learning rates lead to the divergence, whereas too low ones might cause to stop
calculations in a local, instead of the global optimum. Higher momentum allows reaching faster convergence of
the computations as well as to prevent from getting stuck in a local optimum, but too high values lead to unstable
and diverge optimization [70].

Taking the above into consideration, the ANN algorithm for the optimization of a heat exchanger design is
given in Figure A4.

First, we define the problem, i.e., inputs, outputs, and vectorized representation of both. It is necessary to
keep in mind that necessary data (training and test) of inputs and outputs have to be collected to train the ANN
and develop the model.

Inputs can make, e.g., flow arrangement, overall dimensions, details on the materials and surface geometries,
fluid flow rates, inlet and outlet fluid temperatures, and pressure drops on each fluid side.

The outputs may constitute, e.g., total heat transfer rate, physical size (length, width, height, and surface
areas on each side) of an exchanger, the fluid outlet temperatures, and pressure drops on each side of the exchanger.

Then, we need to build an ANN architecture, including input, hidden, and output layers. During the
GA optimization procedure, each individual represents a network setting, including weight, bias, and type of
activation function. The genetic algorithm optimization allows locating the area of the global optimum. Once the
right area has been identified, the BP procedure can be applied. This technique permits to improve the ANN
response and increase the accuracy of the model, expressed by the errors and the model’s performance on the
training and test data. If we are unsatisfied with the response and the performance of the model, we should
rethink the ANN architecture. Otherwise, the neural networks can be used to achieve an adequate response, i.e.,
output data, via non-iterative calculations, with a low processing time and small memory resources, as an answer
to new stimuli, not previously “seen” by the network [75,81,82]. The developed model can be deployed as a useful
tool for design considerations as well as optimization of the design and performance of a heat exchanger.
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