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Abstract: The paper suggests a method of early detection of cyber-attacks by using DDoS attacks
as an example) using the method of extreme filtering in a mode close real time. The process of
decomposition of the total signal (additive superposition of attacking and legitimate effects) and its
decomposition using the method of extreme filtering is simulated. A profile model of a stochastic
network is proposed. This allows to specify the influence of the intruder on the network using
probabilistic-time characteristics. Experimental evaluation of metrics characterizing the cyber-attack
is given. It is demonstrated how obtained values of metrics confirm the process of attack preparation,
for instance the large-scaled telecommunication network, which includes the proposed method for
early detection of attacks, has a recovery time of no more than 9 s, and the parameters of quality of
service remain in an acceptable range.

Keywords: DDoS; detection of cyber-attacks; extreme filtering; signal decomposition;
stochastic network conversion method

1. Introduction

For the period from 2019 to 2024, one of the national projects in Russia was the “Digital Economy”
project, the main tasks of which were to ensure information security in the transmission, processing,
and storage of data [1]. This task was fully valid for modern power supply systems and grids, especially
in modern conditions, where smart electronic devices and software-defined networks are embedded in
energy power infrastructures [2,3].

This fact confirms the relevance of information security and the need for diverse solutions in
this area. References [4–15] describe the most common types of attacks, especially DDOS attacks.
According to the Kaspersky Lab, in 2019 the total number of attacks and the number of smart attacks
(i.e., attacks which require more thorough preparation and are directed on the most vulnerable network
element) were increased. Moreover, despite a decrease in the average duration of DDOS attacks, the
duration of smart attacks increased. The longest attacks that were employed lasted 509 h. The dynamics
of the distribution of the total duration of attacks during the year had not changed much: those
attacks that lasted no more than 4 hours dominate. At the same time, the cost of DDOS attacks was
reduced due to their simple implementation [16]. However, if we take into account the fact that each
year the implementation time of the longest attacks significantly increases (329 h in 2018 and 509
in 2019), the ever-increasing influence of these attacks on various organizations becomes obvious.
Thus, the negative effect of attacks increases. Therefore, the issue of timely detection of such actions
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on the network in order to make decisions and minimize the consequences of the attack becomes
increasingly urgent.

DDOS attacks are characterized by a sharp increase in the malicious traffic being processed.
This results in denial of service to legitimate traffic [17–21]. As a result, when a DDOS attack is carried
out, for example, at critical facilities, the result of such an attack will be not only financial loss and
destruction of reputation, but also a threat to the life and health of the population, including the
possibility of organizing a terrorist act.

To implement DDOS attacks, the intruder must fulfill training, which consists of carrying out a
group of the following cyber-attacks [22]:

• Analysis of network traffic;
• Scanning of transfer protocols;
• Analysis of network and its vulnerabilities.

After carrying out this group of attacks, the attacker proceeds to the implementation of the last
stage of a DDOS-attack, which is implemented faster than preparation for the attack, and which causes
inevitable damage, as the decision to minimize the consequences of the attack is made after the start of
its implementation. This indicates the need for early detection of this type of attacks during the cyber
intelligence phase.

Currently, DDOS attacks are detected mainly by three kinds of methods: signature-based (SB),
statistical analysis (SA), and machine learning (ML) [23–26]. At present, additional mechanisms are
used to implement signature-based DDOS attack detection methods, for example, the fuzzy-genetic
algorithms and game theory methods for performance evaluation [27], the inference mechanisms [28],
and so on. This increases their effectiveness. However, signature methods are typically used for a
limited number of protocols and do not allow real-time operation, which is critical when preparing
un-targeted attacks. DDOS attack detection mechanisms based on machine learning use various
classifiers [29,30] and deep neural networks [31] while analyzing various parameters, such as the
distance between IP addresses [32], traffic entropy [33], intensity stream [34], and others. Machine
learning methods tend to have high accuracy in detecting attacks. However, they require a lot
of time for training. For this reason, they cannot be used efficiently for early detection of attacks.
Statistical methods are usually based on various analytical models [35,36], which do not require large
computational costs. For this reason, such methods can be used for early detection of attacks.

Table 1 demonstrates the main advantages and disadvantages of these cyber-attack detection
methods. It can be seen that earlier detection of DDOS attacks is effective with statistical analysis
methods. Given the nature of the damage caused by a DDOS attack in telecommunication networks,
especially in networks of modern energy infrastructures, the possibility of early detection of DDOS
attacks can increase the stability and continuity of telecommunication networks by reducing the
network recovery time after the attack.

Table 1. Characteristics of cyber-attack detection methods.

## Characteristics of Attacks
Methods

SB ML SA

1 Possibility of operation in real time mode Yes/No No Yes
2 Accuracy Middle High Middle
3 Possibility of early DDOS-attack detection No No Yes

This paper suggests a new method of early detection of cyber-attacks (by using DDOS attacks
as an example). The method suggested in the paper belongs to the group of statistical methods
for attack detection. It works in real time, which is important for preparing un-targeted attacks.
However, the impact of the intruder introduces some additional component into the network traffic.
Using filtering methods, as well as knowing the model of the intruder’s actions and their order, it is
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possible to identify this additional component and perform early attack detection. Therefore, one of
the goals of the paper is to confirm the fact that the proposed method can significantly reduce the
recovery time of telecommunication networks after DDOS attacks.

The method of early detection of cyber-attacks is suggested in the second section. The third section
presents the results of experiments. The fourth section summarizes the main results and considers the
direction of further research.

2. Method of Early Detection of Cyber-Attacks

Since the process of implementing a DDOS attack includes the preparation process, which in
turn is a complex of attacks aimed at detecting the most vulnerable network elements, the early
detection of a DDOS attack is aimed at finding the activity of the attacker that precedes the DDOS
attack. This detection method is the most effective, since at the time of the start of a DDOS attack it
is practically impossible to restore the network’s performance due to the lack of tools to influence
network elements. However, when a specific activity in the network is detected (traffic anomalies) at
an earlier time, the possible consequences of an impending attack will be minimized.

The method of early detection of cyber impact on the network involves the traffic analysis in a time
mode close to real, which imposes a number of requirements on the selected method, namely simplicity
of mathematical calculations and small volume of the studied data.

As a method of detecting the change in traffic structure, the authors in [37,38] used the method of
extreme filtering, which is based on parallel high-frequency and low-frequency filtering. The algorithm
of operation within the selected method is quite simple to implement and does not require large
computational costs. Therefore, it enables real-time data processing.

Let us represent the impact on the network as a time-ordered sequence of events (where the y-axis
values depict the number of received packets per unit time), given as a time series, and select a time
interval for analysis. The time interval must be selected so that it is equal to the time of the control
cycle of the system. The selected gap is searched for extremes. Then, the operator smoothing the
function by extreme alternating values:

ysi = 0.25yei−1 + 0.5yei + 0.25yei+1 , (1)

where ysi is the value in the point i, relatively to which smoothing is performed, and yei is the extremum
in the point i.

Then, the sign-variable component is separated:

ypi = −0.25yei−1 + 0.5yei − 0.25yei+1 , (2)

where ypi is the value of sign-variable component in the point i.
Theoretical justification of extreme filtering, as well as proof that the coefficients used are the only

possible ones, are given in [39].
Further calculations are made in a similar way with the “remainder” of the signal. At the first

iteration, the highest frequency component is highlighted. Next, low frequency components are
extracted. Thus, this decomposition procedure allows us to allocate components introduced into traffic,
even minor components, to evaluate them relatively to the desired component, defined by the model
of actions of the intruder and their order.

Using the given technique, in the environment of MatLab (The MathWorks, Inc., 1 Apple Hill
Dr, Natick, MA 01760, United States), two variants of impact of the malefactor on the network are
simulated: 1) determined, with identical intervals between phases of carrying out the attack, and 2)
accidental, with accidental intervals. Let us spread out a summed signal to the making components.

During decomposition, the received components are compared to the noise (influence of the
malefactor) imposed on a legitimate signal. As a desired signal, we use a random number generator
with distribution of time of consistently received Internet Protocol (IP) packages to the normal law.
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When modeling, we will accept the amplitude of the entered component commensurable with a signal
amplitude. To define the values of sign-variable components, assessment of the sign of the received
values should be made relatively mathematical expectation.

Let us apply the influence of the attacker additively to the traffic of the attacked node of the
computer network.

To spread out the summed signal thus received, it is necessary to select the sign-variable
components. For this purpose, values of a signal in a full form register in the form of a matrix of
amplitudes and a matrix of values of the times corresponding to them. For a definition of an interval
search of extrema, the values in a matrix of amplitudes are multiplied by couples consistently:

yei = yei · yei+1 . (3)

Furthermore, we ran a search of negative values in the matrix. Two consecutive negative values
defined the interval of the search of minima and maxima. Moreover, they correspond to intersections by
function of a time axis. The maxima and minima found thus will be sign-variable extrema. The result
of iteration in a full form is presented in the form of two matrixes—a matrix of extrema of amplitude
and a matrix of the time points corresponding to them:∣∣∣∣∣∣ ye11 ye12 ye13 . . . ye1n

yek1 yek2 yek3 . . . yekn

∣∣∣∣∣∣ , (4)

∣∣∣∣∣∣ xe11 xe12 xe13 . . . xe1n
xek1 xek2 xek3 . . . xekn

∣∣∣∣∣∣ . (5)

The results of each iteration are used to approximate cubic splines and remove the selected
component from the total signal. The next iteration is performed with signal “remainder” values.

During the simulation, the time scale was set by readings (150 samples). The values analyzed at
different points in time represent the number of packets transmitted over the protocol (for example,
(Transmission Control Protocol (TCP)) per unit of time.

Let us assume that the violator influence happens with regular intervals between phases
(a determined mode), and the volume of the entered packets in unit of time is a constant, that is it can
be described by means of function with the equal periods, for example, a sinusoid. Let us impose it
on a desired signal and decompose it according to the described algorithm. Let us compare initial
influence to the selected component.

In Figure 1, the result received on the second iteration of decomposition is shown. This iteration
has the highest coefficient of cross correlation among five consecutive iterations of one selection.

Figure 1a shows a similarity of initial influence and influence that was received by method
of extreme filtering of a summed signal. Red color shows initial influence, and blue shows the
selected component.

Figure 1b displays coefficient of cross correlation of two sequences discrete on time (initial and
selected from a summed signal).

The analysis of this diagram allows us to draw a conclusion that on borders of the studied interval,
both components have low correlation and, therefore, the reliability of detection of influence is also
low. At the same time, in the middle of an interval, the coefficient of cross correlation reaches value
0.91, which demonstrates high reliability of detection of initial influence.

The diagram of a difference of functions (Figure 1c) shows a difference of amplitudes of two functions
in discrete time points. It should be noted that the result of the carried-out iteration can be counted up the
most reliable on an interval from 10th to the 80th counting on the general segment in 150 counting.

Let us assume further that the violator influence happens with accidental intervals between phases
(an accidental mode). Then, it is possible to present this influence in the form of pulse sequences with
a different frequency of following.



Energies 2019, 12, 4768 5 of 14

In Figure 2, the result of decomposition on the first iteration is shown. This iteration has the
highest coefficient of cross correlation among five consecutive iterations of one selection.

Figure 2a allows us to analyze phase coincidence and amplitudes in the imposed component and
selected from a summed signal. On an interval [0–60], the phase of two signals almost completely
matches; their amplitudes are approximately identical. On the subsequent counting, it is visible that
the imposed influence matches on a phase at the moments of “activity” of the violator, but amplitudes
can significantly differ. At the same time, at moments of long absence of “activity” of the violator,
the selected component saves frequency.

On the basis Figure 2b,c, it can be judged that the coefficient of cross correlation and the amplitude
difference of functions do not display these patterns, as their values are not informative for influence
detection confirmation.
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Thus, analysis of the calculation results shows that in the above embodiment of the attacker’s
impact on the network, detection of a given function is performed with very high accuracy (Figure 1).
However, in the case where the pause intervals between the series of packets of the intruder are random
(Figure 2), the detection accuracy of a given function is reduced by the extreme filtering method.

To set the attack function of the intruder, consider the process of preparation of DDOS-attack
from the point of view of the stochastic network conversion method [22]. Let us present this process
as a sequence of events, each characterized by a distribution function, average time, and variance.
These indicators make it possible to determine with a given degree of probability the number of packets
transmitted by an attacker at the moments of exposure to the network and the time intervals between
these actions. They allow one to specify mathematically the process of influencing the network in
order to collect data on the network architecture, its elements installed on the elements of software
components in order to identify vulnerabilities through which it is possible to affect the network.

A complete description of the DDOS attack model is presented in [40], which shows that the
DDOS attack profile model consists of the following steps (Figure 3):

• Carrying out the attack “The analysis of network traffic” with probability P1 for average time t1

with time distribution function D(t);
• Carrying out the attack “Scanning of data transfer protocols” with probability P2 for average time

t2 with time distribution function N(t);
• Carrying out the attack “Scanning of network and its vulnerabilities” with probability P3 for

average time t3 with time distribution function V(t).
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If the equivalent attack is not realized, then repeated performance happens for the average time
trepeat with time distribution functions b1(t), b2(t), and b3(t).

To describe the profile model, let us consider the sequential implementation of these events.
Each phase of the equivalent attack can be presented in the form of several simpler implementations.

To carry out “The analysis of network traffic”, it is necessary to carry out the analysis of packets
at the data link layer (with probability P1.1 and with an average time of t1.1) and at the network
layer (with probability P1.2 and with an average time t1.2). For an implementation the attack
“Scanning of transfer protocols”, it is necessary to scan for an attack by a TCP packet with SYN flags
(with probability P2.1 and an average time t2.1), FIN (with probability P2.2 and an average time t2.2),
ACK (with probability P2.3 and an average time t2.3), XMAS (with probability P2.4 and an average time
t2.4), NULL (with probability P2.5 and an average time t2.5), UDP packets (with probability P2.6 and an
average time t2.6) and ICMP (with probability P2.7 and an average time t2.7). For an implementation of
the attack “Scanning of network and its vulnerabilities”, scanning is carried out in the protocols RIP,
OSPF, SNMP, HTTP, SAMBA, TELNET, POP3, NNTP, FINGER, FTP, TFTP, RLOG-IN, IDENT, MAC,
and RPC.

Let us assume that the effects of the intruder (the time intervals between incoming non-concrete
packets) are subject to the exponential law of distribution. According to the stochastic network
conversion method, the stochastic network is closed by a dummy branch that connects the end of the
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last node and the beginning of the first node. Then, the equivalent function of the stochastic network is
as follows:

Q(s) =
e(s)·d(s)·p1·n(s)·p2·v(s)·p3·a(s)

1− x(s) − y(s) − z(s) + x(s)·y(s) + x(s)·z(s) + y(s)·z(s) − x(s)·y(s)·z(s)
, (6)

where x(s), y(s), and z(s) are calculated by following formulas:

x(s) = d(s) · (1− p1) · b1(s), (7)

y(s) = n(s) · (1− p2) · b2(s), (8)

z(s) = v(s) · (1− p3) · b3(s). (9)

Given the exponential law of private process allocation, the probability of execution of the k-th
attack process is determined by the following formulas:

e(s) =

∞∫
0

exp(−st)d[E(t)] =
e

e + s
, (10)

d(s) =

∞∫
0

exp(−st)d[D(t)] =
d

d + s
, (11)

n(s) =

∞∫
0

exp(−st)d[(N(t)] =
n

n + s
, (12)

v(s) =

∞∫
0

exp(−st)d[V(t)] =
v

v + s
, (13)

a(s) =

∞∫
0

exp(−st)d[A(t)] =
a

a + s
. (14)

Let us substitute the expression (8)–(15) in (7) and bring the equivalent function of the stochastic
network to the following form:

Q(s) =
e·d·n·v·a·p1·p2·p3·(b1− s)·(b2− s)·(b3− s)

(a− s)·(e− s)·(s6 + A·s5 + B·s4 + C·s3 + D·s2 + E·s + H)
. (15)

Coefficients A, B, C, D, E, and H correspond to the numerical coefficients of the polynomial. To
define the integral function of time distribution, we use the Heaviside decomposition [41]:

Q(s) =
8∑

k=1

f (sk)

ϕ′(sk)
·

1
s− sk

. (16)

To define deductions in poles, we will find roots of the polynom s6 +A · s5 +B · s4 +C · s3 +D · s2 +

E · s + H, considering that e = 1/tquery, d = 1/ttraffic, n = 1/tscan, v = 1/ tvuln, a = treport., b1 (2; 3) = trepeat,
which correspond to the following intensities: sending requests with the average time tquery and
the time distribution function E(t); the analysis of traffic with the average time ttraffic and the time
distribution function D(t); scanning of data transfer protocols with the average time tscan and the time
distribution function N(t); search of vulnerabilities with the average time tvuln and the time distribution
function V(t); drawing up the report with the average time treport and the time distribution function
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A(t), repetition of the private attack with the average time trepeat and the time distribution function B1
(2; 3) (t).

Let us integrate (16) and make calculations. As basic data, we will accept tquery = 2 min,
ttraffic = 7 min, tscan = 7 min, tvuln = 5 min, treport.= 6 min, t repeat = 4 min, p1 = 0.3, p2 = 0.5, p3 = 0.8.
The time distribution function F(t) is presented in Figure 4.Energies 2019, 12, 4768 8 of 14 
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The distribution function F(t) can be approximated by an incomplete gamma function:

Fγ(t) =
µα

Γ(α)

∫ t

0
tα−1
· e−µtdt , (17)

where µ =
T(Pn)
D(Pn)

, α =
T(Pn)

2

D(Pn)
are parameters of the scale and the form of an incomplete gamma

function; T(Pn) is the average time for attack implementation; and D(Pn) is the variance of the attack
implementation time.

The average attack implementation time is determined by the following function:

T(Pn) = −
d
ds

[
Q (s, Pn)

Q(s = 0, Pn)

]
s=0

. (18)

The variance of the attack time is determined by the following function:

D(Pn) =
d2

ds2

[
Q (s, Pn)

Q(s = 0, Pn)

]
s=0
−

{
−

d
ds

[
Q (s, Pn)

Q(s = 0, Pn)

]
s=0

}2

. (19)

The function Fγ(t) as a result of the approximation is also presented in Figure 4.
Knowing the time distribution function, it is possible to determine the function of probability

density h(t), as well as the intensity λ(t), using the following expressions:

F(t) =

t∫
0

h(t)dt , (20)
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λ(t) =
h(t)

1− F(t)
. (21)

Thus, preparation of the DDOS attack can be presented in the form of the sequence of incoming
packets on interfaces of the firewall or the server. At the same time, this sequence of requests is
characterized by the following functions: F(t)-the quantity of the arrived illegal packets in unit of
time (amplitude of the imposed noise); λ(t)-the time between series of requests of the malefactor.
Thus, the presented model allows to formalize implementation process of the attack and to define
function which is required to be found in the set period.

3. Experimental Results

In order to increase the accuracy of the method considered and reduce the number of false positives,
we propose to consider indirect supporting signs of attack, namely network characteristics. [42–47]
describe the metrics by which cyber-attacks are indirectly detected. As an example, there is a model of
a telecommunications network operating in an attack mode consisting of two steps, each of which
violates the operation of the system with the probability pi. As initial data, we will accept:

• The average time to repair of a system after cyber action td = 2 s,
• The average time of successful implementation of the first attack tr1 = 400 s,
• The average time of successful implementation of the second attack tr2 = 300 s,
• The average volume of a data packet V = 0.25 Mbit,
• The data transmission rate Rv = 150 Mbit/s,
• The flow is self-similar with Hurst index equaled 0.71,
• The entering flow of packets is characterized by Veybull’s distribution.

We will use the method of transformation of stochastic networks in modeling the behavior of
the intruder.

In the simulation process, we determine the dependence of the average packet delay time,
the probability of packet loss, and the packet delay time jitter on the incoming flow rate (λ1 = 10
packet/s and λ2 = 13 packet/s). The results are summarized in Table 2.

Table 2. Simulation data for variable incoming flow intensity.

Metrics
Metric Values at Different Incoming Flow Intensities

λ1 = 10 λ2 = 13

The average packet delay time, sec. 0.788 1.23
The probability of packages losses 0.195 0.25

The packet delay time jitter, sec. 0.811 1.268

Let us evaluate the network characteristics at the incoming flow intensity λ = 10 and the varying
average volume of the data packet. The results are presented in Table 3.

Table 3. Simulation data at changing probabilities of system failure at computer attack stages.

Metrics
Metric Values at Different Average Volumes of Packets V

λ1 = 10
V1 = 0.2

λ1 = 10
V2 = 0.27

The average packet delay time, sec. 0.749 0.805
The probability of packages losses 0.19 0.197

The packet delay time jitter, sec. 0.776 0.827

The findings results suggest that the metrics given are sensitive to minor changes in both flow
intensity and average packet volume. In both cases, with increasing intensity of incoming flow and
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average volume of packets, average delay time of packets, and jitter of delay time of packets change
most clearly, probability of packet loss changes less appreciably. This confirms the conclusion that the
selected metrics allow additional traffic analysis to early detect cyber-attacks in computer networks.

The system, which includes a complex to detect an attack at an early stage (at the stage of
preparation), has less recovery time during retransmission or preparation time for the next stage of the
attack. Table 4 presents the simulation results (network characteristics) in a system where only the
recovery time from the attack phase will change.

Table 4. Simulation data with varying system recovery times after computer attack phases.

Metrics
Metric Values at Different Recovery Times

λ = 10
tr1 = 3 s

λ = 10
tr2 = 9 s

The average packet delay time, sec. 4.403 18.253
The probability of packages losses 0.327 0.801

The packet delay time jitter, sec. 5.476 36.28

The given data confirm that the system, which includes the proposed complex of early detection of
cyber-attacks, has significantly better metrics with equal effects from the violator. This means reducing
the impact of cyber-attacks on system performance.

Table 5 shows the results of a comparative evaluation of the proposed method with well-known
approaches in terms of accuracy and duration of attack detection.

Table 5. Comparison of the proposed and known methods for the accuracy and duration of DDOS
attack detection.

Attack Detection Method Accuracy Duration, Sec.

Signature-based [27] 0.75 10
IP distance-based [32] 0.99 100

Kolmogorov complexity based [36] - 10
Extreme filtering:

- determined mode 0.9 1.5
- accidental mode 0.8 7.5

Table 5 demonstrates that none of the known methods for DDOS attack detection has such a small
value of the detection duration as the extreme filtering method has. Moreover, this method has fairly
good attack detection accuracy. This is a fair result, since the method of extreme filtering allows one
to quickly process the flow of data arriving at the network element, and at the same time, it is not
demanding in terms of the power of hardware resources. The advantage of the method in comparison
with the signature analysis is the lower number of false positives during the same detection time.
Machine learning requires additional hardware resources (which leads to an increase in the cost of the
attack detection complex) and has a significant detection time, which does not allow analysis in a time
mode close to real, but the detection accuracy is very high. Therefore, the proposed method is most
suitable for implementing early detection of DDOS attacks. In addition, the extreme filtering method
can be used in combination with machine learning methods at the stage of preprocessing of the data
stream on network elements.

Thus, the proposed system of early detection of cyber-attacks using the method of extreme filtering,
functioning in “real time,” allows to minimize the effect of carrying out cyber-attacks.

4. Discussion

As was shown by the experimental results, the proposed method of extreme filtering allows,
with high and fairly fast accuracy, to detect equal periodic actions of the intruder, which may correspond
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to the initial stages of the DDOS attack implementation. This is an essential advantage of the proposed
method. At the same time, it should be noted that if the intruder generates his requests at random
intervals, then the probability (accuracy) of network traffic detection is slightly reduced.

The conducted simulation scenario corresponded to a case of a rather strong DDOS attack.
In this scenario, the amplitude of the superimposed signal was comparable to the amplitude of the
desired signal. In other words, the number of incoming illegitimate packets to the attacked ports of
the communication node per unit time was comparable with the total number of packets entering
the server.

At the same time, the secondary features of cyber-attacks were used in the work. As main
secondary features, it was proposed to use such network characteristics as the times of the successful
implementation of the first and second attacks, the recovery time of the system after the attack,
the volume of the data packet, the data transfer rate, and the distribution law to which the network
flow follows. Using these features allows one to successfully detect a DDOS attack at an early stage of
its spread and, thereby, minimize its consequences.

The suggested profile model of the stochastic network for the initial stage of the DDOS attack
implementation allows in real-time one to obtain the probability-time characteristics of this process.
All the necessary mathematical calculations and transformations that must be performed during the
processing of the stochastic network of the analyzed process are quickly performed on the modern
means of mathematical calculations, for example, in the MatLab (The MathWorks, Inc., 1 Apple Hill Dr,
Natick, MA 01760, United States) system.

The proposed model of the process of the DDOS attack implementation allows one to estimate
the network recovery time after an attack if the proposed attack detection mechanism is used in the
security system. Based on the results of the experimental assessment, it is possible to conclude that the
network recovery time lies in the range from 3 s to 9 s. At the same time, the parameters of quality of
service remain in an acceptable range.

It should be noted that the realized studies thus far only demonstrate the potentiality and
effectiveness of the proposed attack detection method. The practical implementation and further
improvement of this method, its distribution to other types of cyber-attacks, as well as its interaction in
the security system with other methods, determine further areas of research.

5. Conclusions

The method of extreme filtering succeeded with high accuracy to find equally periodic actions of
the violator which can correspond to implementation of preparation of the DDOS attack in the simplest
option. When using accidental intervals between the violator’s requests, the probability of detection of
network traffic decreases. When modeling amplitude of an alias signal was comparable to amplitude
of a desired signal, that is the quantity of the entering illegitimate packets on the attacked ports of hub
site for unit of time was comparable to a total quantity of the packets entering on the server.

The advantage of the proposed method is its low resource consumption, which allows detecting
cyber-attacks in real time, as well as the ability to detect DDOS attacks in the early stages of their
development. The latter factor is very important for telecommunication networks of the energy
infrastructures, since it allows maintaining high stability and uninterrupted functioning of energy
power grids under the influence of cyber-attacks.

The proposed profile model of the stochastic network of the DDOS attack preparation process
and the probability-time characteristics obtained by it allow one to set the function to be detected by
the proposed method based on the stochastic network transformation.

As secondary features of cyber-attack, it is proposed to use network characteristics that are
sensitive to the occurrence of additional incoming flow and sharply deteriorate if the preparation stage
is successful. Thus, with the proposed method, it is possible to detect DDOS attacks at an early stage
(preparation stage) and thus minimize its consequences.
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The main directions of further research are the comprehensive experimenting with using the
approach suggested for different kinds of attacks and its practical implementation in existing cyber
security systems of energy power grids.
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