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Abstract: Different alternatives are being studied nowadays in order to enhance the behavior of
transcritical CO2 refrigeration plants. Among the most studied options, subcooling is one of the
most analyzed methods in the last years, increasing cooling capacity and Coefficient Of Performance
(COP), especially at high hot sink temperatures. A new cycle, called integrated mechanical subcooling
cycle, has been developed, as a total-CO2 solution, to provide the subcooling in CO2 transcritical
refrigeration cycles. It corresponds to a promising solution from the point of view of energy efficiency.
The purpose of this work is to present, for the first time, thermodynamic analysis of a CO2 refrigeration
cycle with integrated mechanical subcooling cycle from first and second law approaches. Using
simplified models of the components, the optimum operating conditions, optimum gas-cooler
pressure, and subcooling degree are determined in order to obtain the maximum COP. The main
energy parameters of the system were analyzed for different evaporation levels and heat rejection
temperatures. The exergy destruction was analyzed for each component, identifying the elements
of the system that introduce more irreversibilities. It has been concluded that the new cycle could
offer COP improvements from 11.7% to 15.9% in relation to single-stage cycles with internal heat
exchanger (IHX) at 35 ◦C ambient temperature.
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1. Introduction

The refrigeration sector has been highly altered in recent years due to the latest European
directive [1] and other restrictions and protocols [2,3], which leave carbon dioxide as the only
alternative for centralized commercial refrigeration because of its low Global Warming Potential
(GWP) and its security characteristics (non-flammable nor toxic, A1 ASHRAE classification). However,
CO2 working in classical refrigeration cycles has some inconveniences such as its low performance
compared to systems working with other HydroFluoroCarbons (HFC) refrigerants. This is the reason
that the greatest technological advances in the last years have been developed specifically in line with
the search for solutions to improve the performance of this refrigerant in hot climates, where classical
configurations do not perform well enough.

Some research lines have proposed the use of a parallel compressor in the system to improve
the energy behavior. By simulation, Sarkar and Agrawal [4] have optimized three cycles with
different architectures including parallel compression economization alone, parallel compression
economization with subcooler, and multistage compression with flash gas bypass. The cycle with
parallel compression economization reached improvements in COP of 47.3% in relation to the basis
CO2 transcritical refrigeration cycle. Chesi et al. [5] experimentally showed the limits that present
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the parallel compressor in a real plant, which lead to increments in COP not as promising as the
theoretical results. Also, the use of ejectors is widely studied as a way to improve CO2 installations
either using multi-ejectors [6] or adjustable ejectors [7]. Even with the promising results of this solution,
the operation and control remain complex.

The other great research line is focused on subcooling methods [8]. The purpose of subcooling
methods is to subcool the CO2 at the exit of the gas-cooler, which increases the COP of the plant due
to the increment on the specific cooling capacity, the reduction of the optimum working pressure,
and the reduction of the specific compression work [9]. First, studies show that when the subcooling is
higher, the increments are higher. However, not all the subcooling systems have the same performance,
nor the same range of application. The improvements they can produce depend on the cost of the
subcooling and on the working conditions. To obtain the greatest benefits of this type of system, they
must be optimized in terms of pressure and subcooling degree to achieve maximum COP. In addition
to the benefits that contribute to the energy efficiency of the plant, these systems also have benefits
from an exergy analysis. The reduction of the optimum pressure and the subcooling allow for reducing
the exergy destruction that takes place in the expansion process, leading to configurations with greater
exergy performance.

The main subcooling methods are classified as internal methods and dedicated subcooling
methods. The first studied method and widely applied in applications nowadays is the use of an
internal heat exchanger (IHX). This heat exchanger produces a light subcooling of the CO2, which
slightly improves its performance but also has some negative effects, which decrease that improvement,
as it is the superheat produced at the suction line of the compressor [10].

Among the dedicated systems, the dedicated mechanical subcooling is a solution that involves
the addition of a vapor compressor cycle that is combined with the CO2 cycle through a subcooler.
This cycle is independent and can operate with other fluids different from CO2. The first theoretical
studies, presented by Llopis et al. [9], show important improvements in COP by the use of the DMS
when comparing it to a basic CO2 cycle. This study showed the existence of an optimum pressure
and, evaluating different subcooling degrees, it was observed that the improvement was greater for
the highest subcooling degree (10 K). Later, these results were corroborated experimentally, where
increments up to 26.1% in COP and 39.4% in cooling capacity are obtained for 40 ◦C of heat rejection
temperature and an evaporating level of 0 ◦C [11]. These experiments were optimized in terms of
discharge pressure but the subcooling degree was not optimized. Sanchez et al. [12] also carried out
tests in a smaller plant and compared them with the same system with IHX.

Dai et al. [13] studied a R152a DMS single-stage cycle optimizing gas-cooler pressure and
subcooling degree, obtaining the best results at low evaporation levels and high heat rejection
temperatures. The advantages of using zeotropic mixtures in the DMS cycle have also been analyzed [14]
obtaining higher increments in COP due to the small heat transfer irreversibility that it generated
directly related to the glide of the mixture.

The implementation of this cycle has also been experimentally studied for booster systems [15–17].
Nebot-Andrés et al. [18] compared the dedicated mechanical subcooling versus the cascade system
concluding that the DMS is more energy efficient for warm climates considering annual operating times
for applications whose evaporation level is greater than −15 ◦C. That is why subcooling systems are
interesting for medium-temperature applications in hot climates where the temperature lift between
the cold and heat sources is lower than 28.5 K.

Classified as an internal cycle, we found the integrated mechanical subcooling (IMS, Figure 1) that
has some similarities with the DMS in its main characteristics. The subcooling is also reached thanks
to a subcooler placed after the gas-cooler and performed by a vapor compressor cycle. The main
difference is that the working fluid of the IMS is also CO2, extracted from the main cycle. Another
benefit of this cycle is that it has less components than the DMS because it does not need a condenser
because the CO2 is injected in the gas-cooler after the compression stage. This cycle therefore presents
the same potential benefits of the DMS cycles, such as the improvement of the COP and the reduction
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of the entropy generation, but it only works with CO2 and its precise configuration requires a smaller
number of components. This cycle is also similar to the parallel compression with an economizer
presented by Sarkar and Agrawal [4], with the advantage of controlling gas-cooler pressure and useful
superheat at the evaporator at the same time, allowing one to optimize the cycle.
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Figure 1. Schematic diagram (left) and Ph diagram of the cycle (right).

The first time this cycle was presented was in the patent of Shapiro [19]. Then, Cecchinato et al. [20]
theoretically evaluated this system obtaining promising increments in relation to the basic single-stage
cycle. The cycle has also been studied by Qureshi and Zubair [21] but not for CO2 applications.

Catalán-Gil et al. [17] have compared both the integrated and the dedicated mechanical subcooling
cycles in booster systems for supermarket applications, where the most favorable regions for the
implementation of each of the systems are identified. They presented annual energy consumption
reductions between 2.9% and 3.4% for warm countries and between 1.3% to 2.4% for hot regions by
using the IMS. Nebot-Andrés et al. [22] also presented a theoretical comparison of both mechanical
subcooling cycles, obtaining similar increments for both cycles in relation to the cycle with IHX but,
at medium environment temperatures; the IMS cycle was more beneficial.

This work has been developed in order to analyze the benefits of energetic and exergetic
performance of the integrated mechanical subcooling and also to study the behavior of this cycle for
applications of medium temperature (evaporating levels between −15 ◦C and 5 ◦C) both in transcritical
and subcritical conditions. It has been demonstrated the COP depends on the environment and
application conditions, on the components, but also on the subcooling degree and gas-cooler pressure.
The existence of optimal pressure and subcooling for when the COP is maximum has been demonstrated
and these optimal conditions have been determined. In the same way, two correlations that allow the
identification of these optimal parameters for this type of cycle are presented.

The results presented on the paper correspond to the evaluation a single-stage CO2 refrigeration
cycle with integrated mechanical subcooling cycle, based on manufacturers data. The cooling capacity
and COP of the cycle have been evaluated at five different evaporation levels (−15 ◦C, −10 ◦C, −5 ◦C,
0 ◦C, and 5 ◦C) and ambient temperatures between 15 ◦C and 40 ◦C, always for the optimum conditions
of gas-cooler pressure and subcooling degree.

2. Integrated Mechanical Subcooling Cycle. Model Description

The integrated mechanical subcooling cycle is one of the subcooling methods that can be applied
in CO2 systems and aims to subcool the CO2 at the exit of the gas-cooler to improve its energy behavior.

2.1. Description of the Cycle

The schema of this cycle is shown in Figure 1 as well as the Ph diagram of the cycle. The subcooling
is performed at the subcooler, placed next to the gas-cooler, thanks to the extraction of a current of CO2

that is expanded and evaporated in the subcooler. Then, this CO2 is re-compressed by an auxiliary
compressor and re-injected into the main circuit. This system can be configured in three different
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architectures; the extraction of the CO2 can be done from the exit of the gas-cooler, the exit of the
subcooler, or from the liquid tank. In this work, the studied configuration is the one extracting from
the gas-cooler exit.

2.2. First Law Approach: Thermodynamic Analysis

This section describes the thermodynamic model and assumptions used to simulate this cycle
and to assess the critical parameters that influence the performance of the cycle for both operational
modes, transcritical and subcritical. The thermodynamic model is based on REFPROP v.9.1. [23] for
the thermo-physical properties of the fluid and it is calculated by assuming the following hypothesis:

• Environment temperatures from 15 ◦C to 40 ◦C are considered.
• Five evaporation levels are studied: 5 ◦C, 0 ◦C, −5 ◦C, 10 ◦C, and −15 ◦C.
• Steady-state conditions.
• No pressure drops are considered.
• The heat losses through the environment are neglected.
• Both compressors efficiencies are correlated based on manufacturer’s data, calculated as presented

in Equation (1) and parameters from Table 1.

ηV = ηG = a0 + a1·Psuc + a2·Pdis + a3·

( Pdis
Psuc

)
+ a4·vsuc (1)

• Useful superheating is considered of 10 K at the main evaporator and 5 K at the subcooler in the
low-pressure line.

• Subcritical conditions are always considered when the ambient temperature is lower than 24 ◦C
and transcritical conditions when it is over 25 ◦C. Between these temperatures, both regimes are
considered, selecting the one with better energy performance.

• The approach considered in the gas-cooler is 2 K for transcritical conditions due to the good
thermal transfer of carbon dioxide at the supercritical region [24,25] while an approach of 5 K is
considered for subcritical conditions.

tgc,o = tenv + ∆tgc (2)

• The efficiency of the subcooler is not considered to be constant. Its evaporation temperature is
fixed considering a pinch between subcooler exit temperature and the evaporation temperature of
2 K for transcritical conditions and 5 K for subcritical conditions.

tevap,ims = tsub,o − ∆tsub (3)

• The subcooling degree considered in the subcooler, defined as Equation (4), varies in order to
optimize the system, as it is described in the following section.

SUB = tgc,o − tsub,o (4)

• Both mass flows are related by the energy balance on the subcooler, being the mass flow of the
IMS cycle defined by Equation (5) when working in nominal conditions.

.
mims,nominal =

.
mevap·

(
hgc,o − hsub,o

)(
hevap,o,IMS − hgc,o

) (5)

• To obtain the desired value of subcooling degree, the IMS mass flow must be adapted by varying
the compressor speed. A linear relation between the mass flow and the compressor velocity is
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considered to calculate the actual mass flow. The power consumption of the IMS compressor is
also considered as linearly dependent on the compressor speed.

N = 1450·
.

mims
.

mims, nominal
(6)

Pc,ims = Pc,ims,nominal·
N

1450
(7)

Table 1. Performance data compressors obtained from manufacturers data.

.
VG at 1450 rpm (m3

·h−1) Transcritical Operation Subcritical Operation

Main 3.48 ηV Equation (1) ηG Equation (1) ηV Equation (1) ηG Equation (1)

IMS 1.12 a0 1.04732360 a0 0.76339328 a0 1.03502109 a0 0.48684658

a1 0.00310608 a1 −0.00209763 a1 0.00187469 a1 −0.00860962

a2 −0.00299916 a2 0.00134440 a2 −0.00173232 a2 0.01152106

a3 0.00121579 a3 −0.05713840 a3 −0.05880831 a3 −0.26866360

a4 −11.12818829 a4 0.54246804 a4 −3.61739020 a4 20.84319985

2.3. Second Law Approach: Exergy Analysis

The exergy analysis of the system is performed calculating the exergy destruction in each of the
components of the cycle with the aim to identify where more irreversibilities are produced. The death
state is considered as 0 ◦C and 1 bar. The exergy of a point is the difference between the enthalpy of the
point and the enthalpy of the death state plus the product of the death state’s temperature and the
difference between the entropy of the point and the entropy of the death state (Equation (8)).

e = (h− ho) − to(s− so) (8)

• Exergy destruction at the compressors is calculated as shown in Equation (9) were
.

Wcomp is the
work rate of the compressor.

.
Exdest,comp =

.
mevap(ei − eo) +

.
Wcomp (9)

• At the subcooler, the exergy destruction of both flows taking part in the heat transfer is considered
(Equation (10)).

.
Exdest,sub =

.
mevap(ei − eo) +

.
mims(ei,ims − eo,ims) (10)

• In the expansion valves and the back pressure, it is calculated as the product of the mass
flow circulating on the device and the difference between the exergy at the inlet and outlet of
the component.

.
Exdest =

.
m(ei − eo) (11)

• At gas-cooler and evaporator, only the exergy destruction of the CO2 side is considered, as shown
in Equations (12) and (13), respectively.

.
Exdest,gc =

.
mCO2(ei − eo) (12)

.
Exdest,evap =

.
mevap(ei − eo) (13)

3. Performance Advantages of the IMS System

Subcooling at CO2 systems has several benefits on their performance. Specifically, the mechanical
subcooling cycles allow for increasing the specific cooling capacity of the installation and reducing the
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optimum working pressure, which leads to a reduction in the specific compression work and, despite
the addition of a second compressor, the overall COP of the cycle increases. Regarding the exergy
losses of the system, the introduction of the subcooling also drifts in a reduction of the irreversibilities
that take place in the expansion stage [8].

3.1. First Law

Comparing the CO2 refrigeration system with integrated mechanical subcooling to a single-stage
refrigeration cycle with internal heat exchanger (IHX) from a first law analysis, the improvements of
COP are clearly seen, due to the benefits named before.

Figure 2 shows the increment of COP obtained with the IMS compared to the cycle with IHX.
As it can be seen, the increments are higher at high ambient temperatures, reaching increments of 40%
for evaporation levels of −10 ◦C, which justifies the implementation of this system in warm and hot
climates, due to its improved performance.
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The comparison of the IMS to a classical CO2 system demonstrates the potential improvements
that this system can introduce to transcritical CO2 cycles from an energy efficiency point of view.

3.2. Second Law

In this section, an exergy destruction analysis is performed. As it is presented by Llopis et al. [8],
the introduction of the subcooling avoids some of the exergy losses that take place in the throttling
processes, with this benefit being more important in transcritical conditions due to the reduction of the
high pressure.

Figure 3 presents the T-s diagram of a transcritical CO2 system with internal heat exchanger
(yellow) and with integrated mechanical subcooling (orange). The effect of the subcooling can clearly
be observed, moving the inlet back-pressure point to the left and thus reducing the exergy losses in
that stage. The reduction of the optimum working pressure also contributes to the reduction of the
irreversibilities because the temperatures of the IMS are lower.

The implementation of the IMS also produces an increment in the cooling capacity of the cycle.
To compare the exergy destruction of this system to the cycle with internal heat exchanger, it is necessary
to refer the exergy destruction to the cooling capacity of the analyzed cycle.

Figure 4 represents the contribution of each of the components of the system to the exergy
destruction divided by the total cooling capacity of the system. The exergy destruction on the
gas-cooler represents 56%; 21% comes from the compressor, 7% from the expansion valve, 5% of the
back pressure, and 4% corresponds to the expansion in the IMS cycle. Only 4% is produced on the IMS
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compressor, 2% on the subcooler, and 1% on the evaporator. The main irreversibilities are produced
in the gas-cooler and the compressor. However, extracting a part of the CO2 and subcooling the rest
allows reducing the irreversibilities produced on the expansion stage because the mass flow is smaller
and the temperature at the entrance of the expansion device is lower. The additional compressor,
the IMS expansion valve, and the subcooler are elements that introduce irreversibilities to the system.
However, the reduction obtained because of the pressure reduction and the subcooling leads to a total
exergy destruction per cooling capacity unit lower than that produced in the system with IHX. It is for
these reasons that the IMS is a very interesting system from the point of view of exergy performance
for the application in warm and hot climates.
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4. Optimum Parameters

CO2 systems must be optimized in order to maximize the efficiency of the cycle. In the
following section, the existence of these optimum parameters for which the COP is maximum is
demonstrated for these cycles. The parameters that must be optimized are the discharge pressure and
the subcooling degree.

COP of the system is the ratio between the cooling capacity on the main evaporator and the power
consumption of both compressors as described in Equation (14).

COP =

.
Qevap

Pc,main + Pc,ims
(14)

where cooling capacity is:
.

Qevap =
.

mevap
(
hevap,o − hsub,o

)
. (15)

Power consumption of the main compressor is calculated as Equation (16) and of the IMS
compressor as Equation (17).

Pc,main =

.
mevap (hdis,s − hevap,o)

ηg
(16)

Pc,ims =

.
mims (hdis,ims,s − hevap,o,ims)

ηg,ims
(17)

Combining Equations (5), (14)–(18) is obtained:

COP =

(
hevap,o − hsub,o

)
hdis−hevap,o

ηg
+

hgc,o−hsub,o
hevap,o,ims−hgc,o

·
hdis,ims−hevap,o,ims

ηg,ims

. (18)

COP depends on hgc,o, hsub,o, hdis, hdis,ims, hevap,o, hevap,o,ims, ηg, and ηg,ims. Equations (19)–(24) show
the dependence of each of the previous mentioned parameters.

hgc,o = f
(
pgc, tenv, εgc

)
(19)

hsub,o = f
(
pgc, hgc,o, SUB

)
(20)

hdis,s = f
(
pgc, tevap, SH, ηg

)
(21)

hevap,o = f
(
tevap, SH

)
(22)

hdis,s,ims = f
(
pevap,ims, pgc, SHims

)
(23)

hevap,o,ims = f
(
pevap,ims, SH

)
(24)

pevap,ims = f
(
tgc,o, SUB, εsub

)
(25)

Thus, the COP is only function of the environment temperature, the evaporation level,
the gas-cooler pressure, the subcooling degree, the efficiency of the gas-cooler and subcooler,
the superheating in evaporator and on the subcooler, and the performance parameters of the compressors
(Equation (26)). The last four parameters depend on the efficiency of the components of the plant (heat
exchangers and compressors); evaporation and environment temperatures are fixed by the needs of
the application and the ambient conditions. Gas-cooler pressure and the subcooling degree are the
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only parameters that can be modified in order to maximize COP, so these are the two parameters that
must be optimized in CO2 cycles with integrated mechanical subcooling.

COP = f
(
tevap, tenv, Pgc, SUB, εgc, εsub, SH, SHims, ηg, ηg,ims

)
(26)

4.1. Optimum Pressure

All the transcritical CO2 systems must be optimized in terms of discharge pressure but for this
system with integrated mechanical subcooling, the optimum pressure is not the same as for classical
CO2 systems.

Figure 5 shows the COP variation for different ambient temperatures at different gas-cooler
pressures. It can be observed that for all the cases, there exists a gas-cooler pressure for which the COP
is maximum. It is also observed that for the ambient temperature of 25 ◦C, the optimum pressure
corresponds to the critical one. This fact is due to the different temperature approach obtained between
the ambient temperature and the gas-cooler exit temperature in subcritical and transcritical conditions.
For this environment temperature, we found that reducing the pressure is beneficial for the system but
when going under the critical pressure, the temperature approach increases significantly, worsening
system performance.Energies 2020, 13, x FOR PEER REVIEW 9 of 17 
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Figure 5. Evolution of the COP as function of the gas-cooler pressure for tevap = 0 ◦C and different
environment temperatures.

For the rest of the evaluated temperatures, working with a lower pressure than the optimum
causes an important decrease in the COP value. For this reason, the system must be optimized in terms
of gas-cooler pressure and the optimum working pressure must be determined.

Reducing or increasing the pressure with respect to the optimum, produces reductions in the
value of the COP. For an environment temperature of 25 ◦C we obtain reductions of COP of 9% by
increasing the optimum gas-cooler by 5 bars. A reduction of 3 bars and an increment of 3 bars produces
reductions of 22.0% and 2.5% for tenv = 30 ◦C, respectively. The same variation produces reductions of
1.7% and 0.9% for tenv = 35 ◦C and of 0.9% and 0.3% for tenv = 40 ◦C. It must be said that if optimum
conditions cannot be reached, it is advisable to work at pressures above the optimum since it is for
lower pressures when the COP of the cycle drops dramatically.

The optimum pressure is determined for all the studied conditions and presented in Figure 6.
It can be observed that the optimum pressure is clearly related to the environment temperature, but it
is not dependent on the evaporation level.
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Figure 6. Optimum discharge pressure depending on environment temperature and the evaporation
level (left) and contour (right).

When working in subcritical conditions, the optimum pressure was established by condensation;
in the transition zone, the optimum pressure corresponds to the critical pressure and for the transcritical
regime, the optimum pressure increases linearly with the ambient temperature. The following
correlations allow for determining the optimum gas-cooler pressure for CO2 systems with IMS.

pgc,opt = pcond for 15 ◦C ≤ tenv < 24 ◦C (27)

pgc,opt = pcrit for 24 ◦C ≤ tenv < 29 ◦C (28)

pgc,opt = 2.108·tenv + 13.645 for 29 ◦C ≤ tenv ≤ 40 ◦C (29)

The average error of the correlation (29) is 0.16 bars with a maximum error of 0.38 bars for a range
of application from 29 ◦C ≤ tenv ≤ 40 ◦C and −15 ◦C ≤ tevap ≤ 5 ◦C.

One of the interests of these systems is that the subcooling cycle allows for reducing the high
working pressure of the cycle. Figure 7 shows the optimum pressure reduction accomplished with the
IMS system for transcritical CO2 systems compared to one of the classical correlations for transcritical
CO2 systems [26]. Only the evaporations levels from −10 ◦C to 5 ◦C and gas-cooler outlet temperatures
over 30 ◦C are compared according to the range of application of Liao’s correlation.
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An important reduction is observed, with it being more important when the outlet gas-cooler
temperature is higher. The reductions reach values up to 12 bars for the highest gas-cooler outlet
temperatures and lowest evaporation levels.

4.2. Optimum Subcooling Degree

The subcooling degree, presented in Equation (4), is an operation parameter that must be optimized
both in transcritical and subcritical conditions. Figure 8 shows the evolution of the COP for different
environment temperatures as a function of the subcooling degree, demonstrating that there is an
optimum subcooling degree for each of the studied conditions.Energies 2020, 13, x FOR PEER REVIEW 11 of 17 
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Figure 8. Evolution of COP depending on the subcooling degree for tevap = 0 ◦C.

As it can be observed in Figure 8 and comparing these results with those of Figure 5, it can be
stated that the influence of the subcooling on the COP is less strong than the pressure influence. For an
environment temperature of 25 ◦C, we obtain reductions of COP of 0.6% and 0.7% by increasing or
decreasing the optimum subcooling degree by 3 K. The same variation produces reductions of 0.6%
and 0.4% for a decrease and increase of 2.5 K at tenv = 30 ◦C, of 1.4% and 0.9% for tenv = 35 ◦C, and of
0.9% and 0.6% for a decrease and increase of 4 K, respectively, at tenv = 40 ◦C.

When optimizing the subcooling degree, it can be observed that it is completely dependent
on the environment temperature but also on the evaporation level, obtaining higher degrees for
lower evaporation temperatures and higher ambient conditions. Figure 9 summarizes the optimum
subcooling conditions for all the outdoor temperatures and evaporation levels.

The optimum subcooling degree increases as the environment temperature does. There is a change
in the trend in the transition zone due to the changes in the thermal properties of the CO2 in the critical
region [27] and the variation of the hypothesis between subcritical and transcritical regime.

Equation (30) describes the optimum subcooling degree as a function of the environment
temperature and the evaporation temperature for transcritical CO2 systems with integrated
mechanical subcooling.

SUBopt = 2.7925 − 0.40180·tevap + 0.0021·t2
evap + 0.2704·tenv − 0.0002·t2

env (30)

The range of application of this correlation is for evaporating temperatures between −15.0 ◦C and
5.0 ◦C and environment temperatures from 15.0 ◦C to 40 ◦C with a maximum error of 1.6 K.
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5. Energy Results

This section presents the main energy parameter results obtained from this study for the different
evaluated conditions, always optimizing gas-cooler pressure and subcooling degree in order to obtain
the maximum COP.

5.1. Cooling Capacity

Cooling capacity is calculated as the product of the mass flow circulating on the evaporator
and the enthalpy difference between the inlet and outlet of the evaporator (Equation (15)). The inlet
enthalpy is considered to be the same as the enthalpy at the exit of the subcooler.

Figure 10 shows the cooling capacity of the system for the range of studied environment
temperatures and the different evaporation levels. The cooling capacity of the system is between
17.9 kW and 13.1 kW for tevap = 5 ◦C, between 15.6 kW and 11.3 kW for tevap = 0 ◦C, between 13.5 kW
and 9.7 kW for tevap = −5 ◦C, between 11.5 kW and 8.2 kW for tevap = −10 ◦C, and between 9.7 kW and
6.9 kW for tevap = −15 ◦C. The observed trend is the same for all the evaporation levels, suffering a
decrement on the capacity of the cycle as the environment temperature increases.
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The enthalpy at the exit of the subcooler can be also defined as the enthalpy at the gas-cooler
outlet; if it is less the enthalpy difference produced in the subcooler (Equation (31)), then the cooling
capacity can be redefined as shown in Equation (31).

.
Qevap =

.
mevap·

(
hevap,o − hgc,o + ∆hsub

)
(31)

Expressed in another way, the cooling capacity is the sum of the cooling capacity of the cycle
without subcooling plus the cooling capacity of the IMS system, as described in Equation (32).

.
Qevap =

.
mevap·

(
hevap,o − hgc,o

)
+

.
QIMS (32)

Figure 11 represents the cooling capacity contribution of the IMS system as a percentage of the
total cooling capacity. It can be noticed that the most important contributions of the IMS are obtained
from 30 ◦C of ambient temperature. The contribution always increases as the environment temperature
does, but the increments are more abrupt for these hottest levels; that is, for transcritical conditions.
This increment in the contribution of the IMS is because it is in the transcritical regime where the CO2

pure system performs worse and thus needs more improvement. Analyzing the IMS contributions as a
function of the evaporation level, higher contributions are obtained when the evaporation level is lower
but the differences at different evaporation temperatures and a defined environment temperature are
not so marked.
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Figure 11. Cooling capacity contribution of the IMS system.

5.2. COP

Figure 12 shows overall COP of the system for the optimum working conditions at the different
evaluated evaporation levels and range of ambient temperatures. COP values decrease from 8.13 to
4.76 for tevap = 5 ◦C, from 6.17 to 3.94 for tevap = 0 ◦C, from 4.92 to 3.31 for tevap = −5 ◦C, from 4.03 to
2.79 for tevap = −10 ◦C, from 3.34 to 2.34 for tevap = −15 ◦C at subcritical conditions, and from 4.78 to
2.48 for tevap = 5 ◦C, from 3.93 to 2.16 for tevap = 0 ◦C, from 3.29 to 1.89 for tevap = −5 ◦C, from 2.79 to
1.66 for tevap = −10 ◦C, and from 2.38 to 1.45 for tevap = −15 ◦C in the transcritical regime.
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In order to contrast the possible advantages of the IMS solution, the theoretical results of Chen
and Gu [28] for a single-stage CO2 transcritical system with an IHX have been contrasted with the
COP values obtained in this work. The comparison is made for an environment temperature of 35 ◦C
and evaporating levels from −10 to 5 ◦C. Figure 13 presents the COP values and the increments in
relation to the system working with internal heat exchanger. On the left, the COP of both systems is
presented for different evaporating temperatures, with the COP of the CO2 system with IMS always
being higher. On the right, the increment of COP, achieved thanks to the IMS in reference to the system
with IHX, is shown. It is observed that the increments are higher when lower the evaporation level is.
The calculated increments are 15.9% for tevap = −10 ◦C, 14.8% for tevap = −5 ◦C, 12.9% for tevap = 0 ◦C,
and 11.7% for tevap = 5 ◦C.
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6. Conclusions

In this paper, the use of an integrated mechanical subcooling system for improving CO2

refrigeration systems is studied from a theoretical approach. The study has been carried out using a
simplified thermodynamic model based on assumptions as close to reality as possible.

It has been demonstrated that the COP of CO2 refrigeration plants depend on the operating
conditions, the performance of the components, and the discharge pressure and subcooling degree,
with these last two being the only ones that can be adjusted to obtain the maximum COP in a specific
plant for given operating conditions. Optimum working conditions of this type of cycle have been
determined, with it being necessary to optimize the system in terms of discharge pressure but also the
subcooling degree performed at the exit of the gas-cooler.

The optimum working conditions have been determined both for transcritical and subcritical
conditions, for different evaporation levels (from −15.0 ◦C to +5 ◦C), and a wide range of ambient
temperatures between 15.0 ◦C and 40.0 ◦C. It has been observed that the use of the IMS cycle reduces the
optimum gas-cooler pressure of the system when working in a transcritical regime compared to classical
pressure correlations of CO2 systems are higher. The optimum pressure is more reduced in ambient
temperatures, reaching reductions over 10 bar for environment temperatures of 40 ◦C. At subcritical
conditions, the optimum pressure corresponds to the condensation pressure. The optimum subcooling
degree is also defined as being higher when the ambient temperature is higher and when the evaporation
level is lower.

The main energy parameters of the cycle, COP and cooling capacity, are calculated for all the
studied levels obtaining values of COP from 8.13 to 2.48 for tevap = 5 ◦C, from 6.17 to 2.16 for tevap = 0 ◦C,
from 4.92 to 1.89 for tevap = −5 ◦C, from 4.03 to 1.66 for tevap = −10 ◦C, and from 3.34 to 1.45 for
tevap = −15 ◦C. The system presents remarkable increases in COP compared to systems with internal
heat exchanger, up to 15.9% for tevap = −10 ◦C and tenv = 35 ◦C. Cooling capacity of the system is
between 17.9 kW and 13.1 kW for tevap = 5 ◦C, between 15.6 kW and 11.3kW for tevap = 0 ◦C, between
13.5 kW and 9.7 kW for tevap = −5 ◦C, between 11.5 kW and 8.2 kW for tevap = −10 ◦C, and between
9.7 kW and 6.9 kW for tevap = −15 ◦C.

Furthermore, the cycle has also been studied from a second law approach, identifying the
components of the system, which present more irreversibilities. The exergy destruction in the
expansion process is reduced and the components that present larger exergy destruction are gas-cooler
and compressor.

Finally, as a general conclusion, we can affirm that the integrated mechanical subcooling cycle is
an interesting subcooling method to improve the performance of CO2 plants and its high pressure and
subcooling degree must be optimized in order to obtain the maximum COP.
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Abbreviation

Nomenclature
app approach, K
COP coefficient of performance
h specific enthalpy, kJ·kg−1
.

m mass flow kg·s−1

p absolute pressure, bar
Pc power consumption, kW
.

Q cooling capacity, kW
SH superheating, K
SUB degree of subcooling produced in the subcooler, K
t temperature, ◦C
Greek symbols
ρ density, kg·m−3

η compressor efficiency
ε heat exchanger efficiency
Subscripts
dis compressor discharge
evap evaporation
exp expansion
gc gas-cooler
ims corresponding to the IMS cycle
in inlet
main corresponding to the main cycle
0 death state
o outlet
sub corresponding to the subcooler
suc compressor suction
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