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Abstract: This paper proposes detailed and practical guidance on applying model-based design
(MBD) for voltage and frequency stability assessments, control tuning and verification of off-grid
hybrid power plants (HPPs) comprising both grid-forming and grid-feeding inverter units and
synchronous generation. First, the requirement specifications are defined by means of system,
functional and model requirements. Secondly, a modular approach for state-space modelling of
the distributed energy resources (DERs) is presented. Flexible merging of subsystems by properly
defining input and output vectors is highlighted to describe the dynamics of the HPP during various
operating states. Eigenvalue (EV) and participation factor (PF) analyses demonstrate the necessity
of assessing small-signal stability over a wide range of operational scenarios. A sensitivity analysis
shows the impact of relevant system parameters on critical EVs and enables one to finally design and
tune the central HPP controller (HPPC). The rapid control prototyping and control verification stages
are accomplished by means of discrete-time domain models being used in both off-line simulation
studies and real-time hardware-in-the-loop (RT-HIL) testing. The outcome of this paper is targeted
at off-grid HPP operators seeking to achieve a proof-of-concept on stable voltage and frequency
regulation. Nonetheless, the overall methodology is applicable to on-grid HPPs, too.

Keywords: hybrid power plant; off-grid electricity systems; model-based design; state-space model;
voltage stability; frequency stability; small-signal analysis; control tuning; controller validation

1. Introduction

Off-grid electricity systems have attracted significant attention in emerging and frontier markets
in order to conduct rural and island electrification and to supply remote industrial sites (e.g., mining
areas) [1–3]. Such isolated grids—commonly associated with the microgrid (MG) concept—are
characterized by increasing hybridization of the involved distributed energy resources (DERs).
Traditional fossil-fueled production systems (e.g., diesel generators) are replaced or augmented
by renewable generation (e.g., wind power, solar photovoltaic (PV)) and energy storage due to
environmental, economic and social reasons. During the design stage of an off-grid hybrid power plant
(HPP), it becomes evident that the most cost effective approach is to retain a fossil-fueled generator
with time-limited operation to supply the net load demand only whenever it is needed [4–7].

It is crucial to ensure power supply and balance stability and control system stability in the
HPP [8]. In this context, small-signal stability is concerned with assessing the occurrence of voltage,
frequency or power oscillation modes and sufficient stability margins in every technically feasible
operating state of the HPP. Moreover, a robust control solution and adequate tuning guidelines are
required to keep the frequency and voltages within the operational limits.
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Several publications address the topic of small-signal modeling and voltage/frequency stability
assessment in MGs [9–13]. In [9,10] state-space models of inverters, grid and loads were developed
and the sensitivities of eigenvalues (EVs) to control parameters were evaluated. The stability analysis
was targeted for a MG consisting of inverter based DERs that share the grid-forming task among each
other. A similar type of analysis was performed in [11] for a system with synchronous generator (SG),
asynchronous generator and battery energy storage system (BESS) in PQ control mode [14]. Finally,
in [12,13] the parallel operation of SG and grid-forming inverter was investigated to study the dynamics
of the MG and to adjust some control parameters of the individual DERs to ensure system stability.
All above-mentioned publications do not further extend their scope beyond modeling and stability
analysis. Further developments and studies on control design and tuning for voltage and frequency
regulation are missing which are required to achieve a proof-of-concept on the HPP control system.

In this regard, various MG control architectures are proposed in the literature and can be classified
as centralized or decentralized [15,16]. However, in these publications it remains unclear how to
effectively design and tune decentralized controllers with the objective of keeping the frequency and
voltages within the limits during any possible operating condition. The most common way is to utilize
a central system controller that dispatches commands to the individual DERs to achieve a global
control objective. Here, control design and tuning methods need to take into account the dynamics
occurring within the HPP. In the present literature, no clear guidelines on the models applied and
control methods are identified.

The novelty of this paper is to propose a model-based design (MBD) approach that includes all
necessary building blocks to achieve stable voltage and frequency regulation in off-grid HPPs; i.e., the
required set of models; a systematic and complete stability assessment; a design and tuning method of
a hierarchical control system consisting of central HPP controller (HPPC) and DER controllers; and
final verification and validation of the control system. The HPP in the scope of this study consists of
wind turbine generator (WTG), PV, BESS and a fossil-fuel generator set (hereinafter called genset).
An overview of the different stages from development to testing is given in Figure 1.

Section 2 describes the requirement specifications which are distinguished into system, functional
and modeling requirements (Step I).

In Section 3, a modular approach for state-space modelling of each DER, and subsequently
the entire HPP is presented (Step II). State-of-the-art inverter models and generic rules for control
design are referenced. The state, input and output vectors of the state-space models are summarized.
A representative model of the genset including speed governor and automatic voltage regulator (AVR)
is summarized in equal manner. Here, it is highlighted how to utilize in and output variables of the
model depending on whether grid-forming inverter and/or genset provide the grid frequency reference.
A set of numerical simulation models is proposed to be used during the rapid control prototyping
(RCP) and control verification stage.

In Section 4 a voltage and frequency stability assessment is shown (Step III). First, EV and
participation factor (PF) analysis was conducted for two relevant test scenarios; i.e., genset in or out of
service. The occurring dynamic modes and the associated state variables of each DER were clustered
with respect to their eigenfrequencies. Such a clustering method provides insight into the dynamic
modes and control parameters that require further attention with regard to absolute and relative system
stability. Subsequently, the sensitivity of EVs to certain DER control parameters was assessed. This is a
useful step to gain more confidence on specific control parameters (e.g., droop gains) which need to be
parametrized in the context of the entire HPP.

Section 5 deals with the design and tuning of voltage and frequency controller (Step IV). State-space
models are converted to transfer functions which are used to tune DER control parameters and design
and tune the central HPPC.

Subsequently Section 6 shows discrete-time domain models being applied to test the control
algorithms under various operating conditions to identify the robustness of the design (Step V). This
stage is called RCP.
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in Figure 2. 
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between various control schemes, since it prevents smooth transition due to controller reset and 
eventual plant shut-down and restart. Hence, the optimum solution for the power management 
strategy is to use droop regulation. It ensures seamless transition between operation scenarios on the 
one hand, and on the other facilitates smoother integration of the HPP, if it becomes grid-connected. 

Figure 1. Proposed model-based design (MBD) approach for stability assessment, control tuning and
verification in off-grid hybrid power plants (HPPs).

The final stage of proposed MBD approach is control verification and validation against system
and functional requirements (Step VI and VII). In Section 7, an outlook is given for verifying the
performance of HPPC platform by means of real-time hardware-in-the-loop (RT-HIL) testing. The
developed control algorithms including physical implementation on target hardware are then ready
for site testing as a final validation stage.

The mathematical formulations and procedures are demonstrated in general to enable studies in
off-grid HPPs on either kW-scale or MW-scale and with modular expansion of the production subsystem.

2. Step I: Requirement Specifications

The single-line diagram (SLD) of the benchmark off-grid HPP investigated in this study is shown
in Figure 2.

This paper uses the optimal configuration for an off-grid HPP, as derived in [3], since it constitutes
a representative system optimized from a techno-economic perspective. The production subsystem
consists of a full-scale converter WTG (80 kW) and PV (40 kW), a BESS (160 kWh/90 kVA) and a
fossil-fuel genset (90 kVA). At least one grid-forming unit is required that provides the voltage and
frequency reference in the HPP. Typically, SGs are responsible for this task. By allowing flexible HPP
operation with partial shut-down of fossil-fuel generators it becomes evident that the BESS inverter
system must implement grid-forming capabilities, too. Then, it is not desirable to switch between
various control schemes, since it prevents smooth transition due to controller reset and eventual plant
shut-down and restart. Hence, the optimum solution for the power management strategy is to use
droop regulation. It ensures seamless transition between operation scenarios on the one hand, and on
the other facilitates smoother integration of the HPP, if it becomes grid-connected.

The demand subsystem (90 kW peak) might comprise multiple low voltage (LV) feeders with
residential, commercial and small industrial consumers. In this study, it is represented as an aggregated
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electrical load which is modelled as constant impedance (RL) load [17]. Production and demand
subsystems are connected via the point of common coupling (PCC).Energies 2020, 13, x FOR PEER REVIEW 4 of 27 
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2.1. Step Ia: Defining System Requirements

System requirements are related to the performance of the HPP system and are usually specified
in so-called grid codes, technical regulations or guidelines.

First and foremost, it is essential in off-grid HPPs to ensure system stability for voltage and
frequency regulation due to the characteristics of isolated MGs. The stability phenomena in MGs,
which can be classified as control system stability and power supply and balance stability, are explained
in [8] and summarized in [18]. Absolute and relative stability can be measured by means of an EV
analysis. Absolute stability is ensured if all poles are located in the left half plane. Relative stability is
associated with the damping ratio of the EVs. In order to avoid critically low damping of any voltage
or frequency oscillations in the HPP, a reasonable target for the damping ratio is ζ ≥ 0.05 according
to [19].

Then, operational requirements for off-grid HPPs are difficult to define by means of existing grid
codes, since each MG size, the layout, the DERs involved, and hence, the related technical regulations,
are unique [18]. However, some generic guidelines are found in [20]. A steady-state voltage and
frequency profile of fg = {48, 52} Hz and V = {0.85, 1.15} pu is suggested. Dynamic performance
requirements for voltage and frequency regulation are not specified.

2.2. Step Ib: Defining Functional Requirements

Functional requirements refer to the necessary functions that are to be implemented in the HPP
control system in order to satisfy certain system requirements. A comprehensive overview of the
required control functions in MGs is provided in [21] and summarized in [18]. In this section, the
specific elements of voltage and frequency control function are elaborated on.

As explained previously in this section one part of the overall power management strategy is to
utilize parallel grid-forming DERs (i.e., BESS and genset) to regulate grid frequency and voltages within
their nominal limits specified in Section 2.1. Moreover, the studies in [13] reveal that it is important
to evaluate the transient power sharing performance between several grid-forming units—to avoid
any unwanted oscillations within the HPP and to minimize the duration of unequal power sharing.
This aspect is related to DER droop regulation (primary control) [13]. Primary control actions by DERs
will leave steady-state errors in voltage and frequency. There are good reasons that these deviations
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from the nominal value should be eliminated, even if the voltages and frequency remain within the
normal operating range. Firstly, it is not desired to operate the PCC voltage below nominal value, as it
will lower the voltage levels in the demand subsystem as well. Depending on the feeder length and
the connected loads, severe undervoltages can be expected that would lead to load disconnection.
Secondly, it is preferred to avoid grid frequencies below nominal value for a longer time period, as they
will lower the power consumption and efficiency of some frequency dependent loads; e.g., hydraulic
pumps. Field measurements in an island power system with water supply pumps have revealed that
the active load changes with approximately 8.5%/Hz [22]. Hence, steady-state voltage and frequency
errors need to be compensated by secondary control actions of the central HPPC.

2.3. Step Ic: Defining Modeling Requirements

As part of the MBD process it is necessary to define certain requirements of the models being
developed in Step II:

• Linearized models are required for stability assessment and control tuning in frequency domain.
• The model bandwidth shall be limited to a minimum value that enables the assessment of voltage

and frequency stability and control.
• Numerical models are required that are applicable for RCP and control verification purposes.

Computational effort of model execution shall be taken into account to achieve accelerated off-line
simulation studies during RCP stage and to ensure real-time capability for RT-HIL testing.

• Simulation platforms must be carefully selected to reduce the modeling effort by re-using
developed models throughout various MBD stages shown in Figure 1.

3. Step II: Modeling of Hybrid Power Plant

3.1. Step IIa: Modeling Plant Components in State-Space

The small-signal models were developed using the state-space approach, as it allows one to
represent each plant component separately and subsequently merge according to the balance of plant
(BoP) shown in Figure 2 [18]. With regard to stability analysis, any unstable system mode can be
consistently assessed by means of frequency and damping ratio (EV analysis) and ascribed to the
causative state variables (PF analysis). Furthermore, state-space models can be directly converted
to transfer functions, and thus applied in the control tuning stage [18]. It is possible to develop
state-space models in either S-domain or Z-domain. However, since the dynamics in the power system
applications involve a wide range of time constants and various sampling times for the involved
subsystems, a continuous time domain tuning is preferred. Some considerations on the required level
of model details for assessing voltage and frequency stability are given in [18]. It should be noted that
the models described do not facilitate harmonic stability assessment and are solely be used for voltage
and frequency stability assessment and control design and verification.

A set of state-space equations describe dynamic states of the system. The linearized differential
equations of each plant component model are obtained by linearizing around steady-state values with
resulting matrices A, B and C; D linking state vector x; input vector u; and output vector y according to
Equation (1) [23].

∆ dx
dt = A∆x + B∆u

∆y = C∆x + D∆u.
(1)

Each plant component model presented in this section is represented in a local synchronous
rotating reference frame (SRRF) with dq-variables. The global reference frame (DQ-variables) of the
HPP model is defined on the grid rotating at angular frequency ωg. Equations (2) and (3) describe the
Park transformation of reference frames. The matrix in Equation (3) is valid for inverter based units
where the local SRRF is aligned with the d-axis grid voltage vd and grid voltage angle δg (Figure 3a). In
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case of the genset the local SRRF rotates at rotor speed ωr and is aligned with the q-axis voltage vq and
rotor angle δr as expressed by Equation (4). and illustrated in Figure 3b.[

vd
vq

]
= [T]

[
vD

vQ

]
(2)

TPES =

[
cos δg sin δg

− sin δg cos δg

]
(3)

TGS =

 sin(δg + δr) − cos
(
δg + δr

)
cos

(
δg + δr

)
sin

(
δg + δr

)  (4)
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The correct performance of linearized state-space models has been verified in MATLAB
SimPowerSystems Toolbox by means of numerical models which are described in Section 3.3.

In the following subsections, the state-, input- and output vectors of each component state-space
model are explained as they are of high relevance for the EV and PF analysis. The corresponding
system matrices can be found in various references [17,24–27].

3.1.1. Grid-Forming Inverter

In Figure 4 the most typical structure of a grid-forming inverter with droop control mechanism
and power-based synchronization is depicted. It is characterized by an ideal voltage source with low
output impedance [14]. The grid-forming functionality can be part of the BESS, where the voltage is
controlled by a DC/DC converter at the source side. The dynamic model of the grid-forming inverter is
explained in [13] and [28] and serves as a basis for the subsequent state-space representation.
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The state vector xFORM of the small-signal model is given by Equation (5) where:

• i1d, i1q, i2d, i2q, vcd and vcq refer to the dynamic states of LCL filter. Note that it is necessary to
represent the filter capacitance, as the voltage vc is controlled in this control structure.

• ϕid and ϕiq are the state variables of the current controller (PI).
• ϕvcd and ϕvcq are the state variables of the outer voltage controller of type PI.
• Pc,avg and Qc,avg refer to the dynamics of a low pass filter (LPF) for power measurements, leading

to an average value for active and reactive power.

xFORM =
[

i1d i1q i2d i2q vcd vcq ϕid ϕiq ϕvcd ϕvcq Pc,avg Qc,avg
]

(5)

The classic droop characteristics for active power sharing (ωg/Pc) and reactive power sharing
(vc/Qc) can be used, since the coupling impedance between grid-forming inverter and genset is
mainly given by the grid-side inductor of the inverter (X � R). The essential components for the
implementation of droop control are the LPF cut-off frequency fLPF,PQ applied for the power-based
synchronization (Equation (6)) and the droop characteristics. They need to be parametrized in the
context of the entire HPP to ensure stable operation in parallel to other grid-supporting DERs, as
demonstrated later in Sections 4 and 5. dPc,avg

dt
dQc,avg

dt

 = 2π · fLPF,PQ · 〈

[
Pc

Qc

]
−

[
Pc,avg

Qc,avg

]
〉 (6)

It is defined that the grid-forming inverter provides the global reference frame to be used by the
remaining HPP component models, in this way d = D, q = Q.

The input vector uFORM is defined in Equation (7), where grid voltage variables vgD and vgQ,
voltage reference V∗c, frequency reference ω∗g, active power reference P∗c and reactive power reference
Q∗c act as input variables to the system.

uFORM =
[

vgD vgQ V∗c ω∗g P∗c Q∗c
]

(7)

The output vector yFORM provides the currents i2D and i2Q at the PoC and the grid frequency ωg

(Equation (8)).
yFORM =

[
i2D i2Q ωg

]
(8)
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Again, the power-electronic switches are not modeled explicitly, as their dynamic process is in the
kHz range, and thus, not relevant for voltage and frequency control.

3.1.2. Grid-Feeding Inverter

Figure 5 shows a schematic diagram of a grid-feeding inverter which is characterized by a
current-controlled source connected to the grid with high parallel impedance [14]. It is the most typical
inverter control structure of grid-connected WTGs and PV systems [29]. The dynamics of the DER
source side are not considered due to the decoupling effect of the inverter DC link. A comprehensive
overview on the modeling and control design of a grid-feeding inverter is provided in [13] and [28]
and was used in this study.
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Figure 5. Schematic diagram of grid-feeding inverter.

Vector xFEED (Equation (9)) describes the dynamic state variables of the system where:

• The dynamic states of LCL filter and current controller are the same as in grid-forming control
mode. Note that it is not mandatory to represent the filter capacitance for the intended studies
in this paper, as harmonics are not of concern. It is nevertheless retained to align the modeling
representation of grid-forming and grid-feeding inverter control structure.

• ϕvdc and ϕQg relate to the PI controllers of DC link voltage and reactive power respectively.
• Vdc corresponds to the dynamic of DC-link capacitor and Qg,avg to a LPF for reactive

power measurement.
• ϕPLL belongs to a first-order filter of the phase-locked loop (PLL) and δ is the phase angle dynamic

as a derivative of the grid frequency.

xFEED =
[

i1d i1q i2d i2q vcd vcq ϕid ϕiq ϕvdc ϕQg Vdc Qg,avg ϕPLL δ
]

(9)

The input vector uFEED is defined in Equation (10), where the grid voltage variables vgD and vgQ,
the reactive power reference Q∗g and the DC source current I∗dc act as input variables to the system. I∗dc
represents an active power modulation of the WTG or PV system.

uFEED =
[

vgD vgQ Q∗g I∗dc

]
. (10)

The output vector yFEED of the system (Equation (11)) provides the currents i2D and i2Q at the
point of connection (PoC).

yFEED =
[

i2D i2Q
]

. (11)
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It should be noted that an average model of the inverter is used to represent the pulse width
modulation (PWM) of power-electronic switches, assuming that vi,dq = v∗i,dq (Figure 5). This type of
model preserves the average voltage dynamics over one fundamental period being necessary to design
controls [8].

3.1.3. Generator Set

Figure 6 shows a schematic diagram of a genset with speed-governor droop and AVR droop
function. The genset model consists of three main elements; i.e., electrically excited SG, speed governor
and AVR. The SG is described by a 7th-order model including stator and rotor flux linkage dynamics
and rotor dynamics [26]. The dynamics of prime mover and excitation system are modeled as a simple
first-order time response [13,27]. Speed governor and AVR are implemented by a PID controller with
design specifications given in [13].

Energies 2020, 13, x FOR PEER REVIEW 9 of 27 

 

It should be noted that an average model of the inverter is used to represent the pulse width 
modulation (PWM) of power-electronic switches, assuming that 𝑣,ௗ = 𝑣,ௗ∗  (Figure 5). This type of 
model preserves the average voltage dynamics over one fundamental period being necessary to 
design controls [8]. 

3.1.3. Generator Set 

Figure 6 shows a schematic diagram of a genset with speed-governor droop and AVR droop 
function. The genset model consists of three main elements; i.e., electrically excited SG, speed 
governor and AVR. The SG is described by a 7th-order model including stator and rotor flux linkage 
dynamics and rotor dynamics [26]. The dynamics of prime mover and excitation system are modeled 
as a simple first-order time response [13,27]. Speed governor and AVR are implemented by a PID 
controller with design specifications given in [13]. 

 
Figure 6. Schematic diagram of generator set. 

The resulting state-space model of the entire genset is characterized by its state vector 𝒙𝑮𝑺 in 
Equation (12) where: 

𝒙𝑮𝑺 =  𝑖ௗ 𝑖ௗ 𝑖ௗ  𝑖 𝑖 𝜔  𝛿 𝑃,௩𝑄,௩ 𝑣,௩ 𝜑ீଵ  𝜑ீଶ 𝑇 𝜑ோଵ  𝜑ோଶ 𝑣ௗ൨ (12) 

• The first five state variables result from the stator and rotor flux dynamics. 𝑖ௗ and 𝑖 are the 
stator currents, 𝑖ௗ  and 𝑖 are currents in the damper winding and 𝑖ௗ is the field winding 
current [26]. 

• The rotor dynamics are expressed by the swing equation (Equation (13)). It should be noted that ∆𝜔 is the rotor angular speed deviation from the grid angular frequency. 𝐻 is the inertia time 
constant, 𝐷  the damping factor coefficient and 𝑇  and 𝑇  the mechanical and electrical 
torques. An expression for the rotor angle displacement ∆𝛿𝑟 is given in Equation (14) [30]. 

 𝐻 𝑑∆𝜔𝑑𝑡 = 𝑇 − 𝑇 − 𝐷 ∙ ∆𝜔 = 𝑇 − 𝑇 − 𝐷 ∙ (𝜔 − 𝜔)  (13) 

 𝑑∆𝛿𝑑𝑡 = ∆𝜔 = 𝜔 − 𝜔  (14) 

•   𝑃,௩, 𝑄,௩ and 𝑣,௩ refer to the dynamics of a LPF for voltage and current measurement, 
leading to an average value for active and reactive power. 

• 𝜑ீଵ  and 𝜑ீଶ  are the derivative and integral states of the governor PID controller, while 𝑇 
relates to the change in mechanical torque due to prime mover dynamics (fuel actuator and 
combustion engine). 

• 𝜑ோଵ and 𝜑ோଶ are the derivative and integral states of the AVR, while 𝑣ௗ corresponds to the 
dynamics of the excitation voltage. 

Figure 6. Schematic diagram of generator set.

The resulting state-space model of the entire genset is characterized by its state vector xGS in
Equation (12) where:

xGS =

[
igd i f d ikd igq ikq ωr δr Pg,avg

Qg,avg vg,avg ϕG1 ϕG2 Tm ϕAVR1 ϕAVR2 v f d

]
(12)

• The first five state variables result from the stator and rotor flux dynamics. igd and igq are the stator
currents, ikd and ikq are currents in the damper winding and i f d is the field winding current [26].

• The rotor dynamics are expressed by the swing equation (Equation (13)). It should be noted that
∆ωr is the rotor angular speed deviation from the grid angular frequency. H is the inertia time
constant, D the damping factor coefficient and Tm and Te the mechanical and electrical torques.
An expression for the rotor angle displacement ∆δr is given in Equation (14) [30].

H
d∆ωr

dt
= Tm − Te −D · ∆ωr = Tm − Te −D ·

(
ωr −ωg

)
(13)

d∆δr

dt
= ∆ωr = ωr −ωg (14)

• Pg,avg, Qg,avg and vg,avg refer to the dynamics of a LPF for voltage and current measurement,
leading to an average value for active and reactive power.

• ϕG1 and ϕG2 are the derivative and integral states of the governor PID controller, while Tm

relates to the change in mechanical torque due to prime mover dynamics (fuel actuator and
combustion engine).
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• ϕAVR1 and ϕAVR2 are the derivative and integral states of the AVR, while v f d corresponds to the
dynamics of the excitation voltage.

Droop characteristics are implemented for both speed governor (ωr/Pg) and AVR (vg/Qg).
The input vector uGS is given in Equation (15), where grid voltage variables vgD and vgQ, voltage

reference V∗g, speed referenceω∗r, active power reference P∗g and reactive power reference Q∗g act as input
variables to the system. It should be noted that the grid frequency ωg, imposed by the grid-forming
inverter, is an input variable as well.

uGS =
[

vgD vgQ ω∗r P∗g V∗g Q∗g ωg
]

(15)

The output vector yGS (Equation (16)) involves the currents igD and igQ at the generator terminals
and the rotor speed ωr.

yGS =
[

igD igQ ωr
]

(16)

In cases when a grid-forming inverter is absent, ωg is not an input variable any longer. In this
case, the rotor speed becomes synchronized with the grid frequency (ωr = ωg).

3.2. Step IIb: Merging of State-Space Models
The remaining components of the HPP are distribution lines, transformers and loads.

The corresponding state-space expressions are well-known and can be found in [17].
Subsequently, all grid components and the individual DER state-space models need to be connected

according to BoP shown in Figure 2 (black colored). This is achieved by linking input and output
variables of the models in the global SRRF, as indicated by the functional diagram in Figure 2 (red
colored). As a result a multiple-input-multiple-output (MIMO) model with matrices AHPP, BHPP, CHPP

and DHPP is obtained [18].

3.3. Step IIc: Developing Discrete-Time Domain Models for Control Verification

So far, linearized state space models have been developed in the S-domain for the purpose of
small-signal analysis and controller tuning. At this stage, it was proposed to prepare in parallel
numerical simulation models that, on the one hand, can validate the developed small-signal models,
and on the other hand, can be used later on for RCP (Step V) and control verification (Step VI). Here,
dynamic models of WTG, PV, BESS and genset were to be implemented by means of discrete-time
domain models [31]. Thus, they can be used both for accelerated off-line simulation studies and for
RT-HIL verification, as explained in Section 1.

The grid-forming inverter model described in Section 3.2 does sufficiently represent the dynamic
behavior of BESSs. The transient response for voltage and frequency control is dominated by the
inverter system, while the voltage/current dynamics of the battery cells can be neglected (V∗DC = const.;
see Figure 4) [31].

With regards to WTG and PV system, it is necessary to further extend the model capabilities
beyond the inverter system in order to conduct realistic test scenarios for control assessment. More
specifically, DC current variations are expected due to changes in power (I∗DC , const.; see Figure 5).
Some simple performance models of WTG and PV are proposed and validated by field data in [31].
They are capable of emulating power output variations according to wind speed vw, solar irradiance G,
temperature T and active power reference P∗WTG or P∗PV , respectively. Figure 7 shows how the inverter
models described in Section 3.2 are coupled with the performance models proposed in [31]. PWTG and
PPV are AC power output at the DER’s PoC. Hence, the model coupling block accounts for inverter
and possible transformer losses and calculates the DC current input to the inverter model by using the
generated DC power PDER,dc of each DER, respectively (Equation (17)).

I∗DC =
PDER,dc

Vdc
(17)



Energies 2020, 13, 49 11 of 26

Input and output signals of the grid-feeding inverter model are as described in Figure 5.
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4. Voltage and Frequency Stability Assessment

This section deals with the assessment of voltage and frequency stability by using the state-space
models described in Section 3.1 and 3.2.

4.1. Step IIIa: Defining Relevant Operating Sccenarios

The EVs of state matrix AHPP were determined for two essential operational scenarios of the
HPP [3]: (1) only grid-forming inverters (i.e., BESS) and grid-feeding inverters (i.e., WTG, PV) are in
operation; (2) all inverter based DERs and genset are in operation. For each scenario, matrix AHPP

is updated by model linearization around steady-state values, which are within the range of normal
operating conditions; i.e., Vg = {0.85, 1.15}pu, fg = {48, 52} Hz, PLD = {0, 1}pu, PWTG = {0, 1}pu,
PPV = {0, 1}pu. In this way, a thorough stability assessment is assured as the system behavior might
depend on its actual operating state, i.e., permitted voltage and frequency deviations [20], and partial
or full loading of DERs.

The EVs represent dynamic modes of the HPP system and are characterized by its frequency and
damping ratio. Then, in order to identify the dominant state variables participating in a particular
dynamic mode, it is necessary to determine the participation matrix Pi. Its PFs pki are obtained by
Equation (18), where the right (φki) and left (ψki) eigenvectors of the system matrix AHPP are used. The
magnitudes of pki provide a measure of the relative participation of the kth state variable in the ith
mode and vice versa. [23]

Pi =


p1i
p2i
...

pni

 =


φ1i
φ2i

ψ1i
ψi2

...
φni

...
ψin

 (18)

In both test scenarios, the cut-off frequency for the grid-forming inverter’s power measurement
filter is per default fLPF,PQ = 5 Hz according to [13]. The droop characteristics are set to 5% for both
frequency/active power control and voltage/reactive power control.
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4.2. Step IIIb: Clustering of Eigenvalues

Figure 8a shows the EV map for HPP operation with only grid-forming and grid-feeding inverters.
It was ascertained that all poles were located in the left hand side of the complex plane, indicating that
the plant model is stable. The distribution of EVs demonstrates that their location depends on the
linearization points. A detailed analysis of EV movement was not attempted due to the vast number of
dynamic modes. Instead, the focus of this analysis was to determine absolute stability by identifying
EVs in the right-half plane and relative stability by observing the EVs with lowest damping ratio.Energies 2020, 13, x FOR PEER REVIEW 13 of 27 
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In order to illustrate the extensive results of EV and PF analysis more effectively, a clustering of
EVs was attempted. Table 1 presents several clusters of EVs according to their eigenfrequencies and
associated state variables. The identified EV clusters are encircled in Figure 8.

Table 1. Clustering of eigenvalues for test scenario 1.

EV Cluster Eigenfrequency fn [Hz] Damping Ratio ζ [-] Associated Dominant State Variables

1 {185, 20 × 103} {0.03, 0.79} Plant inductances and capacitances
2 {130, 160} 1 Inverter inner current control loops
3 {5, 30} {0.39, 1} Inverter outer control loops

Cluster #1 involves the time constants of physical plant parameters; i.e., inductances and
capacitances of inverter LCL filters and DC link, plant transformers and distribution lines. Some EVs
are highly underdamped (ζ = 0.03). However, their sensitivity to a plant’s operating condition is
negligible and their damping ratio does not become negative which otherwise would lead to system
instability. Too much attention should not be paid to EV cluster #1, as it concerns the high frequency
range relevant for harmonic stability, which is not in scope of this study. Small-signal models of the
inverter switching phenomena are required for accurate harmonic analysis.

EV cluster #2 concerns the state variables related to the inverters’ current control loops. Their
dynamics are non-oscillatory (ζ = 1).

All dynamic states of the inverters’ outer control loops are assigned to EV cluster #3. They include
PLL, DC link voltage and reactive power controllers of grid-feeding inverters and voltage controller
and power measurement filter of the grid-forming inverter. The EVs in cluster #3 are highly relevant
for voltage and frequency stability of the HPP. The critical EV λ1,cr in this test scenario is the one with
lowest damping ratio (ζ = 0.39). λ1,cr exhibits an eigenfrequency of fn ≈ 30 Hz and corresponds to
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the DC link voltage dynamics of grid-feeding inverters. The property of λ1,cr is solely determined
by the design of DC link voltage controller whose parameters are not subject to any change during
HPP operation.

The slowest dynamic mode in the HPP is related to the power measurement filter of grid-forming
inverter where the LPF cut-off frequency is fLPF,PQ = 5 Hz. The associated EV exhibits a damping ratio
of = 1. This is expected, as dynamic load changes are compensated by the grid-forming inverter only.
Test scenario 2 will demonstrate that the EV properties change if power is shared by multiple droop
controlled DERs.

4.3. Step IIIc: Applying Corrective Measures for System Stability

Figure 9a depicts the EV map for a scenario where all inverter based DERs and the genset are
in operation. It can be seen that one EV pair is located in the right-half plane, indicating that the
system is unstable. This EV has an eigenfrequency of fn ≈ 18 Hz and its damping ratio ranges between
ζ = {0.02,−0.1}.
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In fact, negative damping is ascertained only during operating points where the BESS is in
charging mode. This emphasizes the need for assessing the entire range of scenarios for HPP operation.

The PFs reveal that this oscillatory mode is associated with state variables of SG stator and rotor
flux (igd, i f d, ikd) and of grid-forming inverter (ϕvcd, i1d). In order to stabilize the system the focus
needs to be laid on these particular state variables. On the one hand, it is not feasible to modify the
physical characteristics of the genset. On the other hand, adjustments in the inverter control loops can
result in a stable system. The cascaded control structure for voltage and current regulation is designed
according to the physical characteristics of the inverter (i.e., LCL filter, switching frequency) [13].
Hence, re-tuning of these control loops might not be desired. Another way is to adjust the voltage
feed-forward filter G f f (s) (see schematic diagram in Figure 4). The voltage feed-forward term is used
to minimize the initial transient effect of the current. Generally, a filter with very high cut-off frequency
(e.g., 20 kHz) is applied, and thus, it was neglected so far [28]. However, it can be adjusted to lower
values to prevent system stability issues. Thereby, two additional state variables vcd,avg and vcq,avg are
introduced to the state-space model (Equation (19)). The cut-off frequency is tuned to fLPF,vc = 30 Hz
to yield a sufficient damping ratio of the EVs (ζ = 0.42). dvcd,avg

dt
dvcq,avg

dt

 = 2π · fLPF,vc · 〈

[
vcd
vcq

]
−

[
vcd,avg
vcq,avg

]
〉 (19)

The EV map in Figure 9b demonstrates that the HPP is now stable in every operating condition.
A time-domain simulation using a numerical model of the HPP (see Section 3.3) is performed to verify
the observed stability phenomena. Figure 10 shows the grid frequency during a time interval t = {0, 5}s
with fLPF,vc = 20 kHz and during a time range of t = {5, 10}s where the filter cut-off frequency is
adjusted to fLPF,vc = 30 Hz. Grid frequency oscillations with negative damping are observed for t < 5 s,
while the system stabilizes after filter tuning at t = 5 s.Energies 2020, 13, x FOR PEER REVIEW 15 of 27 
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In the next step, the occurring EVs, shown in Figure 9b, are characterized by means of Table 2.
The resulting EV clusters are encircled in Figure 9.

Table 2. Clustering of eigenvalues for test scenario 2 (stable case).

EV Cluster Eigenfrequency fn [Hz] Damping Ratio ζ [-] Associated Dominant State Variables

1 {225, 20 × 103} {0.03, 0.76} Plant inductances and capacitances
2 {80, 160} {0.61, 1} Inverter inner current control loops, SG flux

3 {0.3, 34} {0.19, 1}
Inverter outer control loops, SG flux,
excitation system, genset mechanical time
constants and control loops

The EVs in cluster #1 are associated with the same state variables as in test scenario 1.
The second cluster involves the dynamics of both inverters’ current controller and SG stator and

rotor flux. All EVs in cluster #2 are sufficiently damped (ζ ≥ 0.61).
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The third EV group includes all dynamics within the frequency range of below 35 Hz. It is
impossible to provide a more granular classification due to the vast number of state variables associated
with each EV. The PF analysis revealed that the dynamic modes of cluster #3 are linked with inverters’
outer control loops and all genset dynamic states; i.e., electrical time constants of SG, mechanical
time constants (inertia, prime mover) and control loops (governor, AVR). It should be noted that the
presence of the genset introduces some dynamics in the very low frequency range ( fn < 2 Hz), caused
by speed governor and AVR. In this test scenario, the critical EV λ2,cr with the lowest damping ratio
(ζ = 0.19) exhibits an eigenfrequency of f = 11 Hz. The corresponding PFs indicate that state variables
of grid-forming inverter (Pc,avg) and genset (ωr, δr, Pg,avg, Tm, ϕG2) have a dominant impact on the
EV. In conclusion, this dynamic mode is associated with the power sharing performance between
grid-forming inverter and genset. Oscillatory behavior is caused by the inverter power measurement
filter in combination with genset’s inertia and active power control.

The major conclusion from this subsection is that stability issues are of much more concern in
scenario 2 (parallel operation of grid-forming inverter and genset) than in scenario 1 (operation with
only inverter based DERs). Additionally, it is demonstrated by means of Figure 9 that the EVs of cluster
#3 are located nearest to the imaginary axis. Hence, it is most crucial to observe the low frequency
dynamics (<35 Hz) during the small-signal analysis.

4.4. Step IIId: Performing Sensitivity Analysis

A sensitivity analysis was applied to investigate the impact of various parameters on system
stability during test scenario 2. Of particular interest is λ2,cr, as it exhibits relatively low damping. The
criterion for absolute system stability is ζ > 0. However, in order to avoid critically low damping of
any voltage or frequency oscillations in the HPP, a reasonable target for the minimum damping ratio is
ζmin = 0.05, as specified in Section 2.

4.4.1. Test Case 1: Power Measurement Filter of Grid-Forming Inverter

Power-based synchronization means that the grid-forming inverter is synchronized based on
the power exchange between inverter and grid rather than measuring the voltage by means of PLL.
The LPF of power measurements (see Figure 4) acts as a delay to any grid power variations, and
hence affects the power sharing performance. Section 4.3 showed that the dynamic state of LPF (Pc,avg)
is associated with λ2,cr. Thus, the sensitivity of damping ratio to the filter cut-off frequency fLPF,PQ
needs to be assessed. Up to now, a arbitrary value of fLPF,PQ = 5Hz has been applied. In Figure 11
the damping ratio of λ2,cr is shown for various values within fLPF,PQ = {1, 30}Hz and in steps of
∆ fLPF,PQ = 0.5 Hz. It is observed that the damping ratio ζ hits bottom at fLPF,PQ = 5 Hz and increases
with rising values of fLPF,PQ. However, it remains above ζ > 0.15. Thus, relative system stability is not
seriously influenced by the value for fLPF,PQ.
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4.4.2. Test Case 2: Frequency/Active Power Droop Characteristic

The dynamic performance of power sharing between various DERs is dependent on the droop
characteristic selected [13]. The correlation between frequency (or speed) and active power in
steady-state is described by Equation (20), where mP is the so-called droop gain and ω∗ and P∗ are
frequency (or speed) reference and active power reference, respectively.

ω−ω∗ = −mP · (P− P∗) (20)

Typical values for the droop gain are in the range of mP = {2, 12}% [32]; however, an optimum
range is yet to be ascertained.

It is well known that the composite frequency/power characteristic of a power system contributes
to the overall system damping [23]. In fact, there is an inverse relationship between system damping
and droop gain mP. Since EV λ2,cr is associated with state variables of both droop controlled DERs
in the HPP, the sensitivity of its damping ratio to droop gain mP was investigated. The results are
presented in Figure 12 where the droop gain was incremented with ∆mP = 1%. As expected, the
damping ratio decreases significantly for increasing droop gains. It is not recommended to apply
larger droop gains than mP > 10%, as the damping ratio falls below the limit of ζmin = 0.05.Energies 2020, 13, x FOR PEER REVIEW 17 of 27 
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The major conclusion from this section is that selecting feasible values for the droop gain mP are of
much higher concern for system stability than tuning the power measurement filter of the grid-forming
inverter due to large sensitivity of EV λ2,cr to droop gain mP.

5. Step IV: Design and Tuning of Hybrid Power Plant Controller

This section deals with the design and subsequent tuning of the central HPPC. As explained in
Section 2, primary control actions by DERs will leave steady-state errors in voltage and frequency
which need to be compensated by secondary control actions of the central HPPC.

5.1. Step IVa: Designing Hybrid Power Plant Controller

Figure 13 depicts a system representation of the HPPC control architecture which is valid for both
frequency and voltage control, yet being decoupled from each other. The plant system consists of DERs
with primary voltage and frequency control (i.e., BESS and genset), the HPP internal grid consisting
of the remaining DERs (i.e., WTG and PV), cables and transformers and a load which represents a
disturbance to the system (∆PLD and ∆QLD). The measurement block contains an LPF for voltage and
frequency measurements, respectively. The time delay block e−sT reflects the communication (Tcom) and
sampling delay (Ts,HPPC) between HPPC and DERs when collecting all feedback signals and sending
reference signals to the individual DERs. According to [33] an aggregated time delay describing the
entire process can be defined by Equation (21).

T = 0.5 · Ts,HPPC + Tcom (21)
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The secondary control loop should be slower than the primary controller. Instead of a standard PI
controller, a simple integral (I) controller with transfer function GSC(s) was chosen (Equation (22)),
since control inputs and outputs have equal units, and thus, a proportional gain is not required.

GSC(s) =
1

τSC · s
(22)

The control time response τSC shall regard the minimum bandwidth of the plant system which
can be described by means of transfer functions using the respective input and output signals (u, y) of
the MIMO state-space model with AHPP, BHPP, CHPP, DHPP and Equation (23) [23].

Gu−y(s) =
∆y(s)
∆u(s)

= CHPP(sI−AHPP)
−1BHPP + DHPP (23)

The secondary frequency controller was designed using Gω∗BESS−ωg and Gω∗GS−ωg The bandwidth of
Gω∗BESS−ωg is infinite as the grid-forming inverter can regulate its frequency output almost instantenously.
In case of the genset, the time response is given by speed governor and prime mover. Hence, the
bandwidth ωbw of Gω∗GS−ωg is applied to calculate the time response τSC, f of secondary frequency
controller (Equation (24)).

τSC, f =
1

ωbw
(
Gω∗GS−ωg

) (24)

The secondary voltage controller is designed using GV∗BESS−VPCC and GV∗GS−VPCC The bandwidth of
GV∗BESS−VPCC is around 20 times higher than of GV∗GS−VPCC due to relatively slow dynamics of AVR and
excitation system. Hence, the bandwidth ωbw of GV∗GS−VPCC is applied to calculate the time response
τSC,V of secondary voltage controller (Equation (25)).

τSC, f =
1

ωbw
(
GV∗GS−VPCC

) (25)

The control sampling rate Ts,HPPC is to be chosen according to the smallest time constant according
to Nyquist (Equation (26)).

Ts,HPPC < 0.5 ·min
[
τSC, f τSC,V

]
(26)

5.2. Step IVb: Assessing Control Performance

In this subsection, the dynamic performance of the HPP voltage and frequency control is assessed
by looking into step response characteristics in time-domain. This is accomplished by using the MIMO
state-space model of the HPP. During the test cases it is assumed that no communication delays are
present (Tcom = 0).
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5.2.1. Test Case 1: Frequency Control

An active power load change of ∆PLD = 0.25 pu was applied as an input to the MIMO system of the
HPP (see Figure 13) in order to test the performance of frequency regulation and active power sharing
between grid-forming inverter and genset. In Figure 14 the output signals ∆ fg, ∆PBESS and ∆PGS of
the MIMO system are shown for two different droop gains, mP = 2% and mP = 7%, respectively.Energies 2020, 13, x FOR PEER REVIEW 19 of 27 
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As identified during the EV analysis (Section 4.2) the transient power oscillations are much more
dominant for large droop gains due to decreased damping ratio of EV λ2,cr. Larger values (mP > 7%)
lead to undesired low damping, and thus, were not further considered.

By observing the settling time of active power sharing, it can be concluded that small droop gains
lead to prolonged transient response of PBESS and PGS. While for mP = 7% the steady-state value was
reached at t = 0.89 s, a new steady-state value is obtained at t = 2.45 s for a droop gain of mP = 2%.

The transient response of grid frequency fg is mainly affected with regard to its Nadir. A steep
droop characteristic (mP = 7%) leads to larger initial frequency deviations than a flat droop characteristic
(mP = 2%).

5.2.2. Test Case 2: Voltage Control

The aim of this test case is to assess the voltage control performance for various voltage/reactive
power droop gains which typically lie within mQ = {2, 7}% [32]. The relation between voltage and
reactive power is explained by Equation 27 where V∗ and Q∗ are voltage reference and reactive power
reference, respectively.

V −V∗ = −mQ · (Q−Q∗) (27)
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In order to assess the reactive power sharing performance between grid-forming inverter and
genset, a reactive power load change of ∆QLD = 0.25 pu was applied as an input to the MIMO system
(see Figure 13). In Figure 15 the output signals ∆VPCC, ∆QBESS and ∆QGS of the MIMO system are
shown for the droop gains mQ = 2% (a) and mQ = 7% (b) respectively.
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It was observed that the oscillatory behavior of voltage and reactive power was not affected by
the droop gain.

With regard to settling time, similar conclusions to those in test case 1 were drawn: The steady-state
value was reached at t = 1.40 s for a large droop gain mQ = 7%, while for a small droop gain of
mQ = 2% a new steady-state value was obtained much later at t = 6.55 s.

It is obvious from Figure 15 that the largest voltage drop occurs for a droop gain of mQ = 7%.
However, in both cases the remaining voltage drop is ∆VPCC � −2% for a reactive power load change
of ∆QLD = 0.25 pu. Hence, it is not expected that the voltage limits are violated during a large-signal
event (up to 100% change in reactive power) for any droop gain mQ.

5.3. Step IVc: Control Tuning

The assessment studies have shown that the performance of voltage and frequency regulation
is highly associated to the applied droop gains. In fact, the bandwidth values of the plant system,
and hence the tuned parameters τSC, f and τSC,V of the secondary controller, depend on mP and mQ,
respectively. Several aspects are to be considered for selecting optimum droop gains:

• Frequency requirements: Figure 14 has shown that the frequency Nadir is deteriorated for large
droop gains. Under-frequency load shedding (UFLS) schemes might be triggered depending on
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the occurring event (e.g., loss of unit) and UFLS characteristic. Detailed numerical simulations are
required in order to assess such requirements.

• Power sharing performance: Figure 16 summarizes in numbers how the settling time of
active and reactive power increases with decreasing droop gains of BESS and genset. Proper
droop gains shall be chosen according to the desired update rate of active and reactive power
dispatch. Such a function is required, e.g., for BESS state-of-charge regulation and to avoid
underloading/overloading of gensets according to dynamic fluctuations of renewable power.
If active and reactive power setpoints are dispatched, e.g., every 3 s, the minimum droop gains shall
be mP = 2% and mQ = 4% in order to allow settlement of the respective parameters (Figure 16).

• Control sampling rate: According to Equation (26) the required sampling rate Ts,HPPC and hence
the signal exchange between HPPC and DERs depends on the desired speed of secondary
controller. In order to achieve the settling times depicted in Figure 16, the sampling rate must
be Ts,HPPC ≤ 50 ms for mP = 7% and Ts,HPPC ≤ 250 ms for mP = 2%. Hence, the computational
power of the control platform and communication latency issues shall be well assessed prior to
selecting a certain droop gain.
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Figure 16. Settling time of (a) active power (ts,P) and (b) reactive power (ts,Q) of BESS and genset for
various droop gains mP and mQ.

At this stage, it needs to be stressed that voltage and frequency control requirements for
MGs/off-grid systems are usually not defined explicitly, and if so, are based on general technical
guidelines only; e.g., as for rural electrification systems in [20]. However, the methodology for control
design and tuning presented in this section enables to propose guidance on the practical implementation
to the operators of such systems.

6. Step V: Rapid Control Prototyping

In this section, the performance of voltage and frequency control in the off-grid HPP shown in
Figure 2 was evaluated by means of simulating representative test scenarios. While up to now all
results were obtained by means of the linearized state-space model, in this section time-domain studies
are described, which used discrete-time domain models (see Section 3.3) implemented in MATLAB
SimPowerSytems Toolbox. In this way, the robustness of stability analysis and the HPPC design and
tuning stage can be tested.

A set of wind speeds and solar irradiance measurements was utilized and fed into the performance
models described in Section 3.3. A realistic aggregated load profile for the demand subsystem was
applied where the load power factor was cosϕ = 0.9. The DER and HPPC settings during this test
scenario are summarized in Table 3.
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Table 3. Test settings for rapid control prototyping.

BESS Genset WTG PV HPPC

P∗ [kW] −45 45 80 40 -
Q∗ [kW] 0 0 20 10 -

mP = mQ [%] 5 5 - - -
Ts,HPPC [ms] - - - - 50

The following events are simulated in order to assess voltage and frequency control during various
operating modes:

0. Operation with all DERs until t < 10 s;
1. Disconnection of PV at t = 10 s;
2. Disconnection of genset at t = 15 s;
3. Disconnection of WTG at t = 20 s.

Figure 17 presents the resulting grid frequency (a), voltage (b) and active and reactive power
profiles (Figure 17c–g). The results show that grid frequency and PCC voltage are regulated to 1 pu
after every single event. Power is shared evenly between BESS and genset after PV disconnection.
The largest drop of frequency and voltage occurs after genset tripping, since it is highly loaded
(PGS(t = 14.9 s) ≈ 60 kW) and the BESS needs to solely compensate for the power deficit.
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Usually, during the RCP stage iterations of control design and tuning are expected depending
on the performed tests and their outcome. However, the presented simulation studies demonstrate
the effectiveness of performing stability analysis and control design/tuning for voltage and frequency
control by applying linearized state-space models which have been validated against numerical models.
In this way, the entire MBD process is accelerated.

7. Step VI and VII: Control Verification and Validation

7.1. Step VI: Real-Time Hardware-in-the-Loop Verification

As a final step of MBD in HPPs, the control algorithms were implemented on a controller platform
and tested. Verification of the HPPC was accomplished by connecting the controller platform to a
RT model of the power system including DERs; i.e., WTGs, PV system, BESS, gensets. Moreover, for
realistic testing a RT model of the communication networks was used. Thus, the controller platform
including the developed algorithms could be assessed in realistic conditions. Grid events that cannot
be measured in real life can also be replicated in a controlled environment while data traffic associated
to specific communication network technologies are captured properly without actually involving the
real technologies [34].

One might argue the verification stage might be dropped and on-site testing of off-grid HPPs can
be realized immediately as being independent of any external grid parameters. However, it seems
impracticable and cumbersome to deploy and test HPPCs on-site for remote applications, before
gaining further confidence by extensive testing and verification in a controlled system environment.

The existing facilities in the Smart Energy Systems Laboratory at Aalborg University allowed all
the above design and verification procedure. The architecture of this platform is shown in Figure 18 [35].
The information and communication technology (ICT) layer is the backbone for the setup and aims to
emulate different technologies and topologies for the communication network. It is crucial to account
for communication bandwidth, latency and potential packet losses for all signals being exchanged
between HPPC and DERs. The RT digital simulator was based on OPAL-RT technology. Here, the
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numerical DER models developed in MATLAB SimPowerSystems and utilized during RCP stage can
be re-used with minor adjustments. OPAL-RT’s automatic code generation process enables one to
easily compile models. The HPPC platform is based on Bachmann PLC technology. Here, a similar
process allows the use of control algorithms in MATLAB Simulink and subsequent deployment of
controller models to the PLC without manual coding.
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7.2. Step VII: On-Site Testing

The actual controller platform was tested on-site under operating conditions allowed by the
physical power grid and assets. The testing campaign is typically limited in time and power system
events in scope for the developed algorithms; e.g., large voltage and frequency excursions might not
occur in the system during this period. Thus, an open loop approach is used. This means that the
controller is fed with pseudo-measurements and the output of the plants is recorded. However, the
actual impact on the power grid cannot be evaluated, nor can possible control interactions between
assets. These recordings might be used to validate the numerical models developed and used in the
previous stages. In fact, the performance models of WTG, PV and BESS applied during the RCP stage
(Section 6) have been validated by field data and are presented in another publication [31].

8. Conclusions and Outlook

This paper proposes a detailed and practical guidance on applying MBD for voltage/frequency
stability analysis, control tuning and verification in off-grid HPPs comprising both grid-forming and
grid-feeding inverter units and synchronous generation. The different stages are summarized by
means of Figure 1.

Initially, system and functional requirements for voltage and frequency regulation and the
modeling requirements for assessment studies are specified in Section 2.

Then, a modular approach of setting up the state-space model is described by means of a
benchmark HPP system used in this study (Section 3). Flexible merging of subsystems by properly
defining input and output vectors is highlighted to describe the dynamics of the HPP during various
operating states. The state-space models were used during the stability assessment and control tuning
stage. Numerical simulation models were prepared in parallel based on the work in [31] and are
applicable for small-signal model validation and the control verification stage.

EV and PF analyses were performed as part of the stability assessment (Section 4). The studies
reveal that during particular load conditions instable dynamic modes occur which can be stabilized
by tuning the inverter feed-forward filter. Furthermore, it is shown that clustering the vast number
of system EVs enables one to identify critical dynamic modes with low damping ratio. A sensitivity
analysis addresses the impact of relevant system parameters on these critical EVs. It is ascertained that
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false parametrization of active power/frequency characteristic by selecting large droop gains will move
the system towards instability.

Subsequently, the control loops of the central HPP controller are designed with the purpose of
frequency and voltage restoration (Section 5). It was demonstrated that the control performance largely
depends on the applied droop gains of voltage and frequency regulating DERs. Some suggestions are
provided for control tuning according to requirement specifications.

The RCP stage is accomplished by means of discrete-time domain models (Section 6). The off-line
simulation studies confirm the effectiveness of performing stability analysis and control design/tuning
for voltage and frequency control in the off-grid HPP.

An outlook is given for verifying the HPPC platform by means of RT-HIL testing as the final step
of proof-of-concept (Section 7). The control algorithms developed, including physical implementation
on target hardware, are then ready for site testing.

Overall, the proposed MBD approach fulfills the specified requirement specifications. It involves
thorough stability assessment and control tuning stages which reduce iterations between various MBD
stages significantly. The modeling effort is minimized by the use of validated discrete-time domain
models of DERs in both RCP and control verification stages. Extensive RT-HIL testing in the described
test setup [34] yields in high level of confidence where the need for control validation (step VII) can be
significantly reduced.

The outcome of this paper is targeted at off-grid HPP operators seeking to achieve a proof-of-concept
on stable voltage and frequency regulation. Nonetheless, the overall methodology is applicable to
utility scale HPPs as well, where design and tuning criteria are given by the respective grid codes.
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