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Abstract: In this article, the characteristics of the wave energy converter are considered and a novel
dynamic controller (NDC) for a permanent magnet synchronous generator (PMSG) is proposed for
Wells turbine applications. The proposed NDC includes a recursive cerebellum model articulation
controller (RCMAC) with a grey predictor and innovative particle swarm optimization (IPSO).
IPSO is developed to adjust the learning speed and improve learning capability. Based on the
supervised learning method, online adjustment law of RCMAC parameters is derived to ensure the
system’s stability. The NDC scheme is designed to maintain a supply–demand balance between
intermittent power generation and grid power supply. The proposed NDC exhibits an improved
power regulation and dynamic performance of the wave energy system under various operation
conditions. Furthermore, better results are obtained when the RCMAC is used with the grey predictive
model method.

Keywords: recurrent cerebellar model articulation controller; grey predictor; innovative particle
swarm optimization; ocean wave energy; permanent magnet synchronous generator

1. Introduction

Owing to the increasing energy demand and global effects of the climate change, the use of clean
energy sources, such as wind, solar, tidal, and microhydropower, has become important. Wave energy
has been considered as a potential alternative energy source owing to its richness and pollutionless
property [1–3].

The ocean provides a promising but challenging source for renewable energy development.
To simplify assumptions such as monochromatic wave environments and linear fluid dynamics,
the optimal energy extraction control for the wave energy converter (WEC) has been defined [4].
Although information about wide-ranging WEC performance is limited, the wave energy industry
is fast developing. Therefore, the economic efficiency of WEC systems (WECS) is far from rivaled,
and the use of intelligent control systems to improve capacity term varies widely [5]. A well-designed
and properly controlled Wells turbine electromechanical drive can operate at low air velocity to reduce
the average generated power, but this performance is not desirable [6]. Recently, the sliding mode
control (SMC) theory based on the variable structure system has been a good choice especially for the
wave energy conversion systems [7,8].

Energies 2020, 13, 241; doi:10.3390/en13010241 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/13/1/241?type=check_update&version=1
http://dx.doi.org/10.3390/en13010241
http://www.mdpi.com/journal/energies


Energies 2020, 13, 241 2 of 21

The grey prediction model is a nonlinear extrapolation forecasting method, developed in the
1980s, which is characterized by strong practicability, flexible modeling, and high forecasting accuracy,
and requires less data than other methods. Thus, grey prediction models have been diffusely used in
various fields of natural sciences and social sciences. To overcome the shortcomings associated with
neural networks (NNs), a cerebellar model articulation controller (CMAC) was proposed by Albus in
1975 to identify and control complex dynamical systems [9]. CMAC has the advantages of learning
quickly, strong recapitulation ability, and simple hardware implementation [10,11].

A traditional CMAC is a perceptual associative memory network with incomplete connections
and strong local generalization abilities that uses constant binary or triangular functions. However, it
has the drawback that its derived information is not retained. To obtain the derivative information of
the input and output variables, the CMAC network used a differentiable Gaussian acceptance field
basis function and analyzed its convergence [12]. The advantages of CMAC networks over NNs have
been well recorded in many applications [13,14]. However, the combination of grey theory and the
CMAC algorithm can improve the learning ability, effectiveness, and robustness of predictions.

Particle swarm optimization (PSO) was first developed by Kennedy and Eberhart in 1995 [15,16].
The method is inspired by mimicking animal social behaviors, such as fish schooling, bird flocking,
and swarm theory. Genetic algorithm (GA) is also a population-based and self-adaptive optimization
tool and is effective in optimizing difficult multidimensional discontinuous problems in a variety of
fields [17]. Unlike GA, PSO has memorial ability to keep the knowledge of good solutions, and can be
retained by all particles, while the previous knowledge is not memorized in GA. In population-based
optimization algorithms, there is a necessity for new algorithms that can improve the performance of
the existing algorithms while enhancing particle swarm optimization with time varying acceleration
coefficients to perform the parameter tuning approach, which has an important capability in improving
the performance of the PSO.

Herein, an IPSO algorithm is introduced to determine optimal parameters of recurrent CMAC
(RCMAC) controllers for back-to-back converters of the PMSG. To improve the better online dynamic
characteristics, IPSO is used to find the best learning rate of RCMAC. The results were compared with
conventional CMAC and recurrent fuzzy neural network (RFNN) method and their robustness was
verified. As a result, the novel dynamic controller could obtain good dynamic performance of WECS
and the maximum power extraction. The overall simulation model was built for such systems in
various cases through the power systems computer aided design (PSCAD)/electromagnetic transient
design and control (EMTDC) platform.

2. Modeling of the Studied System

2.1. Structure of the System

The schematic of a PMSG-based Wells turbine system is shown in Figure 1. The PMSG is driven
by the Wells turbine to deliver maximum power to the AC grid. A designed AC/DC converter then
converts the AC power generated by the PMSG into an adjustable DC power. An effective method
of DC link voltage control based on a Grey–RCMAC control system is proposed for wave period
variations of the turbine or load changes, controlling the electromagnetic torque of a PMSG driven
using the variable speed Wells turbine; the effects of different speed variation forms are considered.
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Figure 1. Schematic diagram of a PMSG-based Wells turbine system. 

2.2. Wells Turbine Modeling 

The captured mechanical torque ( mT ), torque coefficient ( tC ), and turbine blade incidence 
angle (α ) from the wave energy of the Wells turbine can be described by [18]. 
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where VA and VB are the axial velocity and blade tip speed, respectively, k is the Wells turbine 
coefficient, C1–C8 are constants, and α  is the arctangent of the VA to VB ratio. 

2.3. PMSG Modeling 

The PMSG machine model can be described in the rotor rotating d-q reference frame as [19,20]. 
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Figure 1. Schematic diagram of a PMSG-based Wells turbine system.

2.2. Wells Turbine Modeling

The captured mechanical torque (Tm), torque coefficient (Ct), and turbine blade incidence angle
(α) from the wave energy of the Wells turbine can be described by [18].

Tm = kCt
(
V2

A + V2
B

)
, (1)

Ct = C8 +
C1α3

−C2α2 + C3α−C4

C5α2 + C6α−C7
, (2)

α = tan−1
(VA

VB

)
, (3)

where VA and VB are the axial velocity and blade tip speed, respectively, k is the Wells turbine coefficient,
C1–C8 are constants, and α is the arctangent of the VA to VB ratio.

2.3. PMSG Modeling

The PMSG machine model can be described in the rotor rotating d-q reference frame as [19,20].

vq = Riq + pλq +ωsλdvd = Rid + pλd −ωsλq (4)

and
λq = Lqiqλd = Ldid + LmdI f d (5)

ωs = Pωr (6)

where

vd, vq =d, q axis stator voltages
id, iq =d, q axis stator currents
Ld, Lq =d, q axis stator inductances
λd, λq =d, q axis stator flux linkages
R = stator resistance
ωs = inverter frequency
I f d = equivalent d-axis magnetizing current
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Lmd = d-axis mutual inductance

The electrical torque (Te) for a three-phase PMSG can be defined as follows [21]:

Te = 3P[LmdI f diq +
(
Ld − Lq

)
idiq]/2 =

Pe

ωe
=

2
P

Pe

ωr
(7)

Therefore, the mechanical dynamic equation of the PMSG can be expressed as follows:

J
dωr

dt
= Tm − Bωr − Te, (8)

where ωe is the electrical angular frequency, P is the poles number, J is the generator’s coefficient of
inertia, and B is the generator’s coefficient of friction.

3. Design of Maximum Power Point Tracking (MPPT) Controller Based on RCMAC with
Grey Forecasting

From grey theory, the random process is the amount of grey that varies within a certain range of
amplitude and certain time zone, and treats the random process as a grey process. Notwithstanding
the use of statistical rules, grey prediction makes correlation analysis by identifying the degree of
difference between the development factors of system factors, and generates and processes the original
data to find the law of system variation, generates a data sequence with strong regularity, and then
establishes the corresponding differential equation model, thereby predicting the future development
of things [22].

3.1. The Online Grey Dynamic Prediction Model

The two data modeling methods of the grey system are accumulated generating operation (AGO)
and inverse AGO (IAGO). The order of AGO and IAGO is determined by the number of grey differential
equations and grey variables of the model, respectively. The grey model GM(d,v) is a dynamic behavior
containing a group of differential equations, where d and v represent the order and variation of the
differential equation, respectively. Generation time exponentially increases with an increase in d and
v; however, large d and v values cannot ensure improved forecast accuracy [23,24]. The GM(1,1) is
a predictive method for predicting existing data and is widely used in prediction applications in
grey systems.

If the original data is listed as Y(0) =
[
y(0)(1), y(0)(2), . . . , y(0)(n)

]
, performing AGO processing,

defined as an AGO queue, Y(1) =
[
y(1)(1), y(1)(2), . . . , y(1)(n)

]
is derived as follows:

y(1)(k) =
k∑

m=1

y(0)(m), k = 1, 2, · · · n (9)

From Y(1), the first-order differential equation of the GM(1,1) model is as follows:

dy(1)

dt
+ ay(1) = u, (10)

where a and u are the developing coefficient and grey input variable, respectively.
Then discretized

ŷ(1)(k + 1) = (y(0)(1) −
u
a
)e−ak +

u
a

, k = 1, 2, · · · n (11)
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By least-square method, they can be expressed as follows:[
a
u

]
= (ATA)

−1
ATZ, (12)

where

A =


−

1
2 (y(1)(1) + y(1)(2)) 1
−

1
2 (y(1)(2) + y(1)(3) 1

· · · · · ·

−
1
2 (y(1)(n− 1) + y(1)(n)) 1

, (13)

Z =
[
y(0)(2), y(0)(3), . . . , y(0)(n)

]T
, and ŷ(1)(k + 1) is the predicted value of y(1)(k + 1) at time

k + 1.
With the developed GM(1,1) model, we know that only non-negative data can be used for it.

Deng [23] added sequence bias to the proposed scheme; therefore, all elements can be added to avoid
negative effects. The grey system uses current error e(k) to forecast the future error e(k + 1) of the next
RCMAC controller, as shown in Figure 1. Furthermore, the error and change of error can be defined as
e(k) = ω∗r(k) −ωr(k) and ce(k) = e(k) − e(k− 1), respectively.

3.2. Recurrent CMAC Controller

The CMAC has incompletely connected and overlapping receivers similar to an associative
memory network [14]. In comparison with a multilayer perceptron using back-propagation algorithm,
the CMAC has the advantages of fast learning speed, strong versatility, and convenient calculation,
and has been widely used in closed loop control for complex dynamic systems.

The traditional CMAC uses a local constant binary receiving field basis function. The disadvantages
of this method are that output is constant in each quantization state and derivative information is not
retained. Therefore, a dynamic CMAC, with a delay self-recurrent unit added to the relevant storage
space and RCMAC [9,25], is introduced herein.

3.2.1. RCMAC Structure

Figure 2 shows a proposed RCMAC, where z−1 denotes a time delay. This RCMAC comprises
input, association memory, receptive field, weight memory, and output spaces. Signal propagation for
each layer is introduced as follows:

1. Input Layer: For a given C = [e(k + 1), ce(k + 1)], each input variable ci can be quantized into
discrete reference states.

2. Association Memory Layer: To effectively assign each input state in learning. Herein, the Gaussian
function (receptive field basis function) is built into the hypercube block as Equation (14). In the
bell-shaped manner of the Gaussian function, when the discontinuous input state is closer to the
center of a certain cube, the output is more affected by the cube, and vice versa. The farther the
impact is, the smaller it is.

ψi j = exp
−(cri − Li j)

2

S2
i j

for j = 1, 2, . . . n and i = 1, 2, . . . n (14)

ψi j denotes the receptive field basis function for the jth hypercube block of the ith input, cri,with
location parameter, Li j, and scale parameter, Si j. Additionally, this block’s input can be expressed as
follows:

cri(t) = ci(t) + ri jψi j(t− 1) (15)

where ri j is the recurrent gain and ψi j(t− 1) indicates the value of ψi j(t) through a time delay. Clearly,
this block’s input contains memory term ψi j(t− 1), which stores the network’s past information and
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presents dynamic mapping. Each hypercube block in this space has three tunable parameters:Li j, Si j,
and ri j.

1. Receptive Field Layer: The multidimensional receptive field function is expressed as follows:

b j = ΠN
i=1ψi j = exp

−
 N∑

i=1

(cri − Li j)
2

S2
i j


 (16)

2. Weight Memory Layer: This space specifies adjustable weights of the receptive field layer results
as follows:

wk =
[
w1k, w2k, · · ·wNRk

]T
for k = 1, 2, . . . , m (17)

3. Output Layer: The output of RCMAC mathematic form and also the control effort of the proposed
controller is obtained as follows:

i∗qs = y0 = wT
k b =

NR∑
j=1

w jk exp

−
 N∑

i=1

(cri − Li j)
2

S2
i j


 (18)
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Figure 2. Proposed RCMAC architecture.

3.2.2. RCMAC Learning Algorithm

Herein, a RCMAC is proposed and parameters are updated by the back-propagation algorithm.
The adaptive adjustment in gradient descent setting imposes additional stability and increases learning
speed [26,27]. To describe the RCMAC online learning method, the cost function Ec is defined as
follows:

Ec =
1
2
(ω∗r −ωr)

2 =
1
2

e2
L, (19)

where ω∗r and ωr denote the generator’s speed reference and speed feedback, respectively, and eL is the
tracking error.
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The error term which will be propagated is obtained as follows:

δo = −
∂Ec

∂y0
= −

∂Ec

∂eL

∂eL

∂ωr

∂ωr

∂y0
= eL

∂ωr

∂y0
(20)

Then, the adjusted weight w jk is updated by the amount

∆w jk = −
∂Ec

∂w jk
=

[
−
∂Ec

∂yo

](
∂y0

∂w jk

)
= δob j (21)

Therefore, the weight w jk is updated to

w jk(t + 1) = w jk(t) + ηw∆w jk, (22)

where ηw is the learning rate for the weight.
Multiplication operation is performed in this layer. The adaptive rules for Li j and Si j are expressed.

First, the error term is computed as follows:

ζ j = −
∂Ec

∂b j
=

[
−
∂Ec

∂yo

]∂y0

∂b j

 = δ0w jk, (23)

where k indicates the regulation associated with the jth node in layer 2. Then, the adaptive law for Li j
and Si j are computed as follows:

∆Li j = −
∂Ec

∂Li j
=

−∂Ec

∂y0

∂y0

∂ψi j

( ψi j

∂Li j

)
= ρi j

2
(
cri − Li j

)
(
Si j

)2 (24)

and

∆Si j = −
∂Ec

∂Si j
=

−∂Ec

∂y0

∂y0

∂ψi j

(∂ψi j

∂Si j

)
= ρi j

2
(
cri − Li j

)2(
Si j

)3 (25)

Then, the location and scale parameters of the receptive field layer are given as follows:

Li j(t + 1) = Li j(t) + ηL∆Li j (26)

and
Si j(t + 1) = Si j(t) + ηS∆Si j (27)

The factors ηL and ηS are the learning rate for the location and scale parameter of the Gaussian
function, respectively, and an adequate condition for the asymptotic stability of the original system
is also given. Convergence of the RCMAC learning process is guaranteed when the learning rate
is applied to regulate the optimum weight value. The ηw, ηL, and ηS are optimized using the IPSO
algorithm. With a RCMAC controller, the hybrid Grey–RCMAC controller with IPSO can increase
system stability.

3.3. Adjust Learning Rates with IPSO

To further enhance the online learning ability of RCMAC, a hybrid time-varying IPSO algorithm
based on a genetic algorithm is proposed to adjust learning rate ηw, ηL, and ηS. When the new IPSO
runs, each particle of the PSO will adjust its position according to its own and adjacent particle’s
solving experience, which includes the current position, current velocity, and previous best position of
itself and adjacent particles [28].
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R1 and R2 are two pseudo-random sequences used to simulate the randomness of the algorithm.
For each m, Rcm

i and pbtm
i are the current positions and current best position of oneself, respectively.

The velocity updating law is shown in Equation (28). Besides, the inertia weight w is set to 0 and IPSO
can reduce parameter settings. Acceleration coefficients c1 and c2 can be modified using Equations
(29) and (30). These settings are known as time-varying acceleration coefficients and are expressed as
follows [29]:

υm
i (t + 1) = wυm

i (t) + c1 ·R1 · (pbtm
i −Rcm

i (t))
+c2 ·R2 · (gbtm

i −Rcm
i (t))

(28)

The time-varying acceleration coefficients are updated using the following formulas:

c1 = (c1 f − c1i) ·
t

tmax
+ c1i, (29)

c2 = (c2 f − c2i) ·
t

tmax
+ c2i, (30)

Rcm
i (t + 1) = Rcm

i (t) + υm
i (t + 1), (31)

where υm
i and Rcm

i are the current particle velocities and positions, respectively, tmax is the maximum
number of iterations, c1i and c2i are the initial parameters settings, and c1 f and c2 f are the final
parameters settings.

Step 1: Define initial conditions

Rcm
i =

[
Rc1

i , Rc2
i , Rc3

i

]
for learning rates (ηw, ηL, ηS), set the population size P = 12 and particle

dimension to d = 3. The problem of optimizing parameters is concerned as a d-dimensional
solution space.

Step 2: Initialize the particle’s position and velocity

Initialize all particles and randomly set the position Rcm
i (t) and velocities υm

i (t) of particles.
The current position of the initial particle itself is pbt, and the position of the particle group is gbt.
Rcm

i (t) values are randomly generated as follows:

Rcm
i (t) ∼ U[ηd

min, ηd
max], (32)

where U[ηd
min, ηd

max] indicates the results of uniformly distributed random variables, whose ranges
exceed the lower bound learning rate ηmin and upper bound rate ηmax.

Step 3: Evaluate the fitness of each particle

All particles are fitness functions to determine the fitness and evaluated for each vector Rcm
i (t).

Herein, choose the appropriate fitness function to calculate the fitness value FIT of each particle.

FIT =
1

0.1 + abs(ωr −ω∗r)
, (33)

where 0.1 is added to the denominator to keep FIT from approaching infinity.

Step 4: Select pbt and gbt

Each particle Rcm
i (t) has a memory function to remember its fitness and select the best fitness so

far as its pbtm
i . Thus, the maximum vector pbtm

i = [pbtm
1 , pbtm

2 , . . . pbtm
p ] of the population is obtained. In

addition, during the first iteration, the Rcm
i of each particle is set to pbtm

i directly, and the most suitable
particle of all pbt values is set to the global best gbt.

Step 5: Verify gbt for updates
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IPSO is used to update the velocity and position updating formula for the top-ranking particles
of fitness function, whereas the crossover operation of the genetic algorithm is used to update the
lower-ranking particles. Position and velocity are then reorganized as follows:

Rcm
i (t + 1) = c3 · rand() · (gbtd

i −Rcm
i (t)), (34)

pchild1 = ρppa1 + (1− ρ)ppa2

pchild2 = ρppa2 + (1− ρ)ppa1
, (35)

vch1 =
vpat1+vpa2∣∣∣vpat1+vpa2

∣∣∣ · ∣∣∣vpa1
∣∣∣

vch2 =
vpat1+vpa2∣∣∣vpat1+vpa2

∣∣∣ · ∣∣∣vpa2
∣∣∣ , (36)

where c3 is the acceleration factor, rand () is a random function with a range of [0, 1], ppa and pch are
parent and child generations of position, respectively, and vpa and vch are parent and child generations
of velocity, respectively, and ρ represents the interpolation value between parent and child generation
uniform random numbers among 0 and 1.

Step 6: Update velocity and position

Then, the updated velocity of the particle is subjoined to the current position of the particle and
updated relative to its own optimal position and global optimal position following Equations (26)
and (29).

Step 7: Reach the end condition

Repeat Steps 3–6 until the best adaptation of gbt is worth improving or reaching the set of this
generation. The final maximum fitness value gbtm

i is the optimal learning rate of RCMAC.

4. Simulation Results and Discussion

Herein, four cases are used to simulate the dynamic responses of wave generation systems under
different power disturbances and grid failures. The performance of Grey–RCMAC with IPSO is
compared with that of a conventional RCMAC, CMAC, RFNN controller, and proportional–integral
(PI) controller. These methods have been tested in various ways, and Figures 3–6 describe the
control behavior responses of each controller and Tables 1–4 summarize the relevant characteristics.
The method is simulated and analyzed herein, and the parameters of the Wells turbine generator are
as follows:

Wells turbine: SPMSG = 20 MW, 3.75 A, 3000 rpm, J = 1.32 × 10−3 Nms2, B = 5.78 × 10−3 Nm s/rad,
V = 15 KV, PF = 0.975, f = 60 Hz, Cdc = 0.6 pu, and TR = 0.69/33 kV.

Optimal learning rate simulations using IPSO algorithm aims to use PMSG for enhancing the
overall dynamic response of proposed wave device integration in case of sudden severe load changes
or power network failures [30–32].

4.1. Wells Turbine Variable Axial Velocities

The time domain simulation of a wave energy system was run with constant load under sufficient
ocean waves. WECS output power is shown in Figure 3, which demonstrates that Grey–RCMAC has
a smaller transient response, smaller oscillation, and best control response in comparison with the
traditional PI controller. The transient response at the beginning clearly shows that the PI controller
fluctuates more, whereas the Grey–RCMAC oscillates only slightly. The Grey–RCMAC, RCMAC,
and PI controller average powers are 0.7, 0.675, and 0.597 pu, respectively. It can be seen in Figure 3 that
the proposed Grey–RCMAC improves by 14.7% more than the PI controller. Table 1 lists the numerical
comparison results of more control methods and shows the robustness of the Grey–RCMAC control.
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Table 1. Performance comparison of power extraction with five control methods.

Controller Power Efficiency
(%)

Max Error of Torque
Coefficient Ct (%)

MPPT Accuracy
(%)

Transient
Response (s)

Grey–RCMAC 90.9 0.65 0.41 1.65

RCMAC 86.7 10.11 1.12 2.27

CMAC 80.1 15.61 2.29 3.51

RFNN 84.3 14.35 2.19 2.72

PI 77.5 22.65 2.82 4.57

4.2. MPPT System Performance

The Wells turbine rotational speed changes from 15.5 to 4.5 and 4.5 to 12 m/s at 4 and 11 s,
respectively. The Wells turbine’s rotor speed response is shown in Figure 4a. The RCMAC-based
PMSG’s WECS rotor speed’s return to the steady state response is the fastest, demonstrating that the
Grey–RCMAC with IPSO implements better than the RCMAC and PI controllers from the viewpoint
of speed perturbation resistance. Figure 4b,c show the performance of three controllers for real and
reactive power under the variation of wave speed change, respectively, and illustrate real power
variations of the PMSG. The Grey–RCMAC with IPSO control scheme has fast tracking response speed
and more stable and better power flow control effect. The disturbance of Grey–RCMAC is smaller than
that of RCMAC and PI controllers in power variation. The AC bus voltage of PMSG on the grid side is
shown in Figure 4d. When the WECS rotor speed changes, this method can minimize the change in
voltage output amplitude and recover to 1.0 pu as soon as possible. On the contrary, Figure 4d shows
that among the three methods, the amplitude of the PI controller varies the most when t = 4 and 10 s,
the RCMAC amplitude changes the least, followed by recurrent CMAC.

On the other hand, the random characteristics of practical ocean waves produce an oscillation
in the pressure drop [7,8]. To investigate the robustness and usefulness of the Grey–RCMAC control
scheme, two cases studied are conducted. Figure 5a shows the pressure variation of the studied
system. Figure 5b,c illustrate the performance of two controllers for real power and generator speed
of the PMSG, respectively, and they randomly change between 0 and 0.7 pu as well as between 0.8
and 1.12 pu. Figure 5d,e plot the dynamic responses of the real power and the generator speed of
the PMSG, respectively, and they randomly vary between 0 and 0.6 pu as well as between 0.7 and
1.0 pu. Table 2 summarizes the numerical comparison results of the PI, RFNN, CMAC, RCMAC, and
Grey–RCMAC with IPSO controller for Wells turbine speed changes.
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Figure 5. Dynamic responses to pressure drop for the studied system: (a) the pressure variation, (b) the
real power response of WECS (Case 1), (c) Wells turbine’s rotor speed response (Case 1), (d) the real
power response of WECS (Case 2), and (e) Wells turbine’s rotor speed response (Case 2).

Table 2. Comparison results for five methods for the Wells turbine rotational speed change: (a) real
power of WECS, (b) reactive power of WECS, and (c) dynamic voltage amplitude response of AC bus
on power grid side.

(a) Real Power of Wells Turbine

Controller Convergence Time
(s) CPU Execution Time Mean Square

Error (10−3) Accuracy (%)

(102 s)

Grey–RCMAC 11.99 5.61 4.01 95.99

RCMAC 12.67 5.92 6.21 93.79

CMAC 9.15 4.30 10.73 89.27

RFNN 8.11 3.81 8.52 91.48

PI 13.50 6.34 21.15 78.85
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Table 2. Cont.

(b) Reactive Power of Wells Turbine

Controller Convergence Time
(s)

CPU Execution Time
(102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 10.83 5.09 4.28 95.72

RCMAC 12.50 5.875 7.15 92.85

CMAC 13.93 6.54 12.11 87.89

RFNN 9.72 4.56 10.95 89.05

PI 11.67 5.48 18.59 81.41

(c) Dynamic Voltage Amplitude Response of AC Bus on Power Grid Side

Controller Convergence Time
(s)

CPU Execution Time
(102 s)

Mean Square
Error (pu) Accuracy (%)

Grey–RCMAC 4.33 3.313 0.167 98.33

RCMAC 4.50 3.443 0.835 91.65

CMAC 5.81 4.444 1.161 88.39

RFNN 5.87 4.490 0.677 93.23

PI N/A N/A 1.502 85

4.3. Dynamic Load Switching

The load changes at t = 5 and 10 s, going from 0.5 to 0.8 and 0.8 to 0.4 pu, respectively. Figure 6a
shows the PMSG-based wave power generation system’s rotor speed response. The three methods
show the oscillation of rotor speed, wherein the PI controller has the greatest change in rotor amplitude
swing, whereas Grey–RCMAC with IPSO technology has the smallest variation in rotor amplitude
swing. Small changes for real power response amplitude of the PMSG, as shown in Figure 6b,
demonstrate that among the three methods, it is the quickest to return to the steady state. Obviously,
using a PI controller or RCMAC, real power variations are larger than those with the proposed
controller. Figure 6b,c clearly shows that the power oscillation is very small and can be eliminated
quickly by the proposed method. Figure 6d shows the dynamic amplitude performance of the AC
bus voltage at the PMSG grid side. As shown in Figure 6d, in comparison with the RCMAC and
PI controllers, when using Grey–RCMAC with IPSO, it is easy to observe the maximum overshoot
decreases significantly and the AC bus voltage returns to steady state quickly. Simulation results of
the PI, RCMAC, and Grey–RCMAC with IPSO controller for load changes are summarized in Table 3.
From the abovementioned results, it is concluded that the proposed control scheme has satisfactory
dynamic performance with respect to the other methods.
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Table 3. Comparison for five methods under the load switching: (a) real power of WECS, (b) reactive
power of WECS, and (c) dynamic voltage amplitude response of AC bus on power grid side.

(a) Real Power of Wells Turbine

Controller Convergence Time
(s)

CPU Execution
Time (102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 5.66 4.30 3.080 96.92

RCMAC 7.50 5.07 5.390 94.61

CMAC 6.28 4.77 7.912 92.09

RFNN 8.18 6.21 6.667 93.33

PI 8.00 6.08 9.230 90.77

(b) Reactive Power of Wells Turbine

Controller Convergence Time
(s)

CPU Execution
Time (102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 5.66 4.07 5.001 94.99

RCMAC 7.66 5.51 13.336 86.66

CMAC 7.04 5.06 14.912 85.08

RFNN 6.15 4.67 9.730 90.27

PI 7.83 5.63 21.667 78.33

(c) Dynamic Voltage Amplitude Response of AC Bus on Power Grid Side

Controller Convergence Time
(s)

CPU Execution
Time (102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 6.00 4.56 5.001 94.99

RCMAC 7.66 5.82 8.335 91.66

CMAC 7.16 5.44 10.721 89.28

RFNN 6.74 5.12 7.056 92.94

PI 8.00 6.08 13.333 86.67

4.4. Short-Circuit Fault of Power Grid

This case simulates a short-circuit fault that occurs suddenly for a period of 0.1 s when the
grid is at 2 s. Figure 7 shows the transient response of the studied system. This simulation aims to
study the ability of WECS to resume stable operation after short-circuit fault. Figure 7a shows that
the PMSG’s rotor speed can more quickly return to the steady state with the proposed method than
with other methods. Figure 7b,c shows the dynamic responses of real and reactive power for WECS,
respectively. When the Grey–RCMAC with IPSO is used, the power shows smaller oscillations than
the RCMAC. Figure 7d shows the transient performance of the AC bus voltage at the PMSG grid
side when a fault occurs. The AC bus voltage shows deeper sag with the proposed method than
with the other three methods. The recovery time of the voltage response of the PI controller is the
longest (i.e., approximately 2.5 s), although it is still observed that the voltage response has a slight
oscillation. Table 4 lists the numerical comparison results of the PI, RFNN, CMAC, RCMAC, and
Grey–RCMAC with IPSO controller when a fault occurs.
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Table 4. Comparison for five controllers when a fault occurs: (a) real power of WECS, (b) reactive
power of WECS, and (c) transient voltage amplitude response of AC bus on power grid side.

(a) Real Power of WECS

Controller Convergence Time
(s)

CPU Execution Time
(102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 2.40 1.82 7.50 92.50

RCMAC 2.65 2.01 15.00 85.00

CMAC 3.11 2.36 16.56 83.44

RFNN 2.45 186 11.91 88.09

PI 3.60 2.73 20.00 80.00

(b) Reactive Power of WECS

Controller Convergence Time
(s)

CPU Execution Time
(102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 2.25 1.71 5.01 94.99

RCMAC 2.75 2.09 11.25 88.75

CMAC 3.71 2.82 13.53 86.47

RFNN 3.04 2.31 8.03 91.97

PI 4.31 3.28 16.25 83.75

(c) Transient Voltage Amplitude Response of AC Bus on Power Grid Side

Controller Convergence Time
(s)

CPU Execution Time
(102 s)

Mean Square
Error (10−2) Accuracy (%)

Grey–RCMAC 2.55 1.93 5.00 95.00

RCMAC 2.90 2.20 12.50 87.5

CMAC 3.57 2.71 15.08 84.92

RFNN 2.86 2.17 8.91 91.09

PI 4.52 3.43 18.75 81.25

5. Conclusions

The hybrid Grey–RCMAC and IPSO method proposed is applied to a wave power system herein.
The effectiveness of power operation control and grid stability of the method is verified by case analysis.
Results show that the proposed control scheme exhibits strong robustness and effectiveness to both
dynamic and transient capabilities in the event of system load changes and sudden short-circuit faults
in the grid. The control performance shows that the proposed control scheme can effectively stabilize
the operation of the power grid under unstable conditions, reduce power oscillation, and quickly
return to steady state. In comparison with the earlier methods, the hybrid Grey–RCMAC has better
response time and convergence error performance and can be incorporated to ensure system robustness
under different environmental effects. Thus, the Grey GM(1,1) model has higher accuracy and better
fitting effect for exponential type signal prediction. The method takes advantage of simplicity and less
required computation time, and the proposed controller realizes the feedback that guarantees system
stability and disturbance resistance.

Experimental evaluations on real data are future work in this paper. The proposed hybrid
Grey–RCMAC topology has been tested by using the experimental system. The control algorithm
for the emulation of the Wells-turbine-driven PMSG is implemented in the DSP board. All the
control schemes are implemented by using a real-time workshop (RTW), which is online trained by
PSCAD/EMTDC and implemented by dSPACE. The real-time process is running in a dSPACE that
includes a TMS320C67x floating-point DSP.
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