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Abstract: Increasing environmental issues and energy crises led to rapid developments of hybrid
electric vehicles, especially the planetary hybrid powertrain system (PHPS). This paper presents a
comprehensive review of the PHPS, focusing primarily on contributions in the aspect of configuration,
classification and comparison. In this work, a new classification method for PHPS architectures is
proposed according to the number of electric motors (EMs). In addition, two kinds of PHPS, in the
new classification framework, are extensively emphasized in terms of its architectures, advantages
and disadvantages. Furthermore, the port diagrams of representative architectures are presented to
provide an intuitive method for power flow representation. Finally, a conclusion is made to provide
an insight for developing PHPS as well.

Keywords: hybrid electric vehicle; planetary hybrid powertrain system; configuration;
classification; comparison

1. Introduction

During the last twenty years, the number of the passenger cars worldwide has inexorably
increased [1]. As a result, traffic-related energy and environmental problems have become
serious [2–6]. This has pushed the governments, automotive companies and research institutes
worldwide to seek economical viable and environmentally-friendly personal transportation solutions.
The policymakers have made a series of vehicle emission regulations to reduce carbon emission
stemming from transportation sources [7–10]. It is urgent to develop alternative fuels and
energy-save technology [11–15]. Thus, the automotive makers and researchers have made great
effort to explore efficient and sustainable solutions, most of which are focused on vehicle
hybridization/electrification [16–22].

Hybrid electric vehicles (HEVs) have been widely considered as one of the most promising
solutions to achieve superior mileage, lower fuel consumption and less tailpipe emission compared to
conventional internal combustion engine based vehicles [16,23–25]. Generally, the HEV is composed of
an internal combustion engine (ICE) (gasoline or diesel fueled) with one or more electric motors (EMs).
Traditionally, based on the combinations of connections among components of the powertrain system,
HEVs can be classified into three basic drivetrain architectures: series, parallel and power-split (also
called series-parallel) [21,26–29]. A schematic representation of these three architectures is given in
Figure 1. Nevertheless, it is critical to combine multi-powertrain transfer with different operation modes
via power coupling device. Specifically, the power coupling of series HEVs is achieved by electro-electric
coupling device only with electrical energy transfer in the drive system, while electromechanical
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coupling device are employed for parallel and power-split HEVs to combine multi-power sources,
either propelling the vehicle together or independently. Various electromechanical coupling devices
for a parallel or power-split HEV will be discussed in Section 2. In addition, the power-split HEVs can
be further divided into sub-categories as shown in Figure 2 [30].
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Figure 1. Three architectures of hybrid electric vehicles (HEVs): (a) series; (b) parallel; (c) power-split.
(FT—fuel tank; BP—battery pack; ICE—internal combustion engine; G—generator; M—motor;
EC—electro-electric coupling; T—transmission; DW—drive wheel; EMC—electro-mechanical coupling;
MC—mode choose;

Energies 2020, 13, x FOR PEER REVIEW 2 of 24 

 

electromechanical coupling devices for a parallel or power-split HEV will be discussed in Section 2. 
In addition, the power-split HEVs can be further divided into sub-categories as shown in Figure 2 
[30]. 

 
(a) (b) (c) 

Figure 1. Three architectures of hybrid electric vehicles (HEVs): (a) series; (b) parallel; (c) power-split. 
(FT—fuel tank; BP—battery pack; ICE—internal combustion engine; G—generator; M—motor; EC—
electro-electric coupling; T—transmission; DW—drive wheel; EMC—electro-mechanical coupling; 
MC—mode choose;  unidirectional power flow;  bidirectional power flow). 

 

Figure 2. Classification of power-split HEVs. 

Several review papers have discussed the electromechanical power coupling for HEVs. Miller 
[26] proposed power split architecture of full HEVs, including input split and compound split type 
electric continuously variable transmissions (e-CVTs). Manuele Bertoluzzo [31] introduced the 
mechanical and electric solutions for implementing power split in series-parallel HEV architectures. 
Yubin Wang [32] compared various e-CVT propulsion systems for full HEVs, and classified them as 
the gear e-CVT and the gearless e-CVT. Duan Wei [33] briefly summarized the electromechanical 
power coupling strategies based on the way they coupled. Jian Dong [34] reviewed the state-of-the-
art of the three main categories: mechanical continuously variable transmissions (CVT), e-CVT and 
pure electrical CVT (EVT). Yuan Cheng [35] introduced e-CVT and electric variable transmission 
(EVT) technology for full HEVs. Yinye Yang [36] presented a comprehensive review of various 
integrated powertrains including the power-split, two-mode hybrid transmission systems and the 
EVT. However, these scholars mainly focus on the power-split architectures for full HEVs via 
employing planetary gears (PGs) as the power coupling device and its various variants. In power-
split HEVs, two EMs are utilized, and one of them works mostly as a driving motor while the other 
is considered as a generator. In fact, if the two degrees of freedom (DOF) planetary gear (PG) is used 
as the power coupling device, the hybrid powertrain can be equipped with only one electric machine. 
Some literatures have been reported regarding hybrid powertrain system using planetary gears with 
one electric motor [37–44]. To the best of our knowledge, there is still a lack of published papers 
involving a comprehensive overview of power coupling device architectures using PGs for HEVs, 
denoting as planetary hybrid powertrain system (PHPS) in this paper. It is a critical procedure to 
design a proper power coupling device architecture before developing a PHPS, since powertrain 
architecture have significant influence on the control and optimization performance. However, 
unlike conventional vehicle powertrain, it is a very challenging task to identify a desirable 
architecture of PHPS in the early stage. There are more variables, for example, number of EMs, count 
of PG coupling devices, the type of transmission and topological relationship of components. 
Furthermore, it can operate in different modes for certain architecture by changing states of power 
coupling device, EMs and transmission, further complicating selection of an appropriate architecture. 
Hence, in order to facilitate architecture selection and design of PHPS, various architectures of PHPS 

FT

TECBP

DW

G

ICE 

M

FT

TEMC 

BP

DWG

ICE 

MC

MEC

FT

EMC 

BP DWG

ICE 

T 

Power split

Input-split Output-split Compound-split

Single-mode
Two-mode

unidirectional power flow;

Energies 2020, 13, x FOR PEER REVIEW 2 of 24 

 

electromechanical coupling devices for a parallel or power-split HEV will be discussed in Section 2. 
In addition, the power-split HEVs can be further divided into sub-categories as shown in Figure 2 
[30]. 

 
(a) (b) (c) 

Figure 1. Three architectures of hybrid electric vehicles (HEVs): (a) series; (b) parallel; (c) power-split. 
(FT—fuel tank; BP—battery pack; ICE—internal combustion engine; G—generator; M—motor; EC—
electro-electric coupling; T—transmission; DW—drive wheel; EMC—electro-mechanical coupling; 
MC—mode choose;  unidirectional power flow;  bidirectional power flow). 

 

Figure 2. Classification of power-split HEVs. 

Several review papers have discussed the electromechanical power coupling for HEVs. Miller 
[26] proposed power split architecture of full HEVs, including input split and compound split type 
electric continuously variable transmissions (e-CVTs). Manuele Bertoluzzo [31] introduced the 
mechanical and electric solutions for implementing power split in series-parallel HEV architectures. 
Yubin Wang [32] compared various e-CVT propulsion systems for full HEVs, and classified them as 
the gear e-CVT and the gearless e-CVT. Duan Wei [33] briefly summarized the electromechanical 
power coupling strategies based on the way they coupled. Jian Dong [34] reviewed the state-of-the-
art of the three main categories: mechanical continuously variable transmissions (CVT), e-CVT and 
pure electrical CVT (EVT). Yuan Cheng [35] introduced e-CVT and electric variable transmission 
(EVT) technology for full HEVs. Yinye Yang [36] presented a comprehensive review of various 
integrated powertrains including the power-split, two-mode hybrid transmission systems and the 
EVT. However, these scholars mainly focus on the power-split architectures for full HEVs via 
employing planetary gears (PGs) as the power coupling device and its various variants. In power-
split HEVs, two EMs are utilized, and one of them works mostly as a driving motor while the other 
is considered as a generator. In fact, if the two degrees of freedom (DOF) planetary gear (PG) is used 
as the power coupling device, the hybrid powertrain can be equipped with only one electric machine. 
Some literatures have been reported regarding hybrid powertrain system using planetary gears with 
one electric motor [37–44]. To the best of our knowledge, there is still a lack of published papers 
involving a comprehensive overview of power coupling device architectures using PGs for HEVs, 
denoting as planetary hybrid powertrain system (PHPS) in this paper. It is a critical procedure to 
design a proper power coupling device architecture before developing a PHPS, since powertrain 
architecture have significant influence on the control and optimization performance. However, 
unlike conventional vehicle powertrain, it is a very challenging task to identify a desirable 
architecture of PHPS in the early stage. There are more variables, for example, number of EMs, count 
of PG coupling devices, the type of transmission and topological relationship of components. 
Furthermore, it can operate in different modes for certain architecture by changing states of power 
coupling device, EMs and transmission, further complicating selection of an appropriate architecture. 
Hence, in order to facilitate architecture selection and design of PHPS, various architectures of PHPS 

FT

TECBP

DW

G

ICE 

M

FT

TEMC 

BP

DWG

ICE 

MC

MEC

FT

EMC 

BP DWG

ICE 

T 

Power split

Input-split Output-split Compound-split

Single-mode
Two-mode

bidirectional power flow).

Energies 2020, 13, x FOR PEER REVIEW 2 of 24 

 

electromechanical coupling devices for a parallel or power-split HEV will be discussed in Section 2. 
In addition, the power-split HEVs can be further divided into sub-categories as shown in Figure 2 
[30]. 

 
(a) (b) (c) 

Figure 1. Three architectures of hybrid electric vehicles (HEVs): (a) series; (b) parallel; (c) power-split. 
(FT—fuel tank; BP—battery pack; ICE—internal combustion engine; G—generator; M—motor; EC—
electro-electric coupling; T—transmission; DW—drive wheel; EMC—electro-mechanical coupling; 
MC—mode choose;  unidirectional power flow;  bidirectional power flow). 

 

Figure 2. Classification of power-split HEVs. 

Several review papers have discussed the electromechanical power coupling for HEVs. Miller 
[26] proposed power split architecture of full HEVs, including input split and compound split type 
electric continuously variable transmissions (e-CVTs). Manuele Bertoluzzo [31] introduced the 
mechanical and electric solutions for implementing power split in series-parallel HEV architectures. 
Yubin Wang [32] compared various e-CVT propulsion systems for full HEVs, and classified them as 
the gear e-CVT and the gearless e-CVT. Duan Wei [33] briefly summarized the electromechanical 
power coupling strategies based on the way they coupled. Jian Dong [34] reviewed the state-of-the-
art of the three main categories: mechanical continuously variable transmissions (CVT), e-CVT and 
pure electrical CVT (EVT). Yuan Cheng [35] introduced e-CVT and electric variable transmission 
(EVT) technology for full HEVs. Yinye Yang [36] presented a comprehensive review of various 
integrated powertrains including the power-split, two-mode hybrid transmission systems and the 
EVT. However, these scholars mainly focus on the power-split architectures for full HEVs via 
employing planetary gears (PGs) as the power coupling device and its various variants. In power-
split HEVs, two EMs are utilized, and one of them works mostly as a driving motor while the other 
is considered as a generator. In fact, if the two degrees of freedom (DOF) planetary gear (PG) is used 
as the power coupling device, the hybrid powertrain can be equipped with only one electric machine. 
Some literatures have been reported regarding hybrid powertrain system using planetary gears with 
one electric motor [37–44]. To the best of our knowledge, there is still a lack of published papers 
involving a comprehensive overview of power coupling device architectures using PGs for HEVs, 
denoting as planetary hybrid powertrain system (PHPS) in this paper. It is a critical procedure to 
design a proper power coupling device architecture before developing a PHPS, since powertrain 
architecture have significant influence on the control and optimization performance. However, 
unlike conventional vehicle powertrain, it is a very challenging task to identify a desirable 
architecture of PHPS in the early stage. There are more variables, for example, number of EMs, count 
of PG coupling devices, the type of transmission and topological relationship of components. 
Furthermore, it can operate in different modes for certain architecture by changing states of power 
coupling device, EMs and transmission, further complicating selection of an appropriate architecture. 
Hence, in order to facilitate architecture selection and design of PHPS, various architectures of PHPS 

FT

TECBP

DW

G

ICE 

M

FT

TEMC 

BP

DWG

ICE 

MC

MEC

FT

EMC 

BP DWG

ICE 

T 

Power split

Input-split Output-split Compound-split

Single-mode
Two-mode

Figure 2. Classification of power-split HEVs.

Several review papers have discussed the electromechanical power coupling for HEVs. Miller [26]
proposed power split architecture of full HEVs, including input split and compound split type electric
continuously variable transmissions (e-CVTs). Manuele Bertoluzzo [31] introduced the mechanical and
electric solutions for implementing power split in series-parallel HEV architectures. Yubin Wang [32]
compared various e-CVT propulsion systems for full HEVs, and classified them as the gear e-CVT
and the gearless e-CVT. Duan Wei [33] briefly summarized the electromechanical power coupling
strategies based on the way they coupled. Jian Dong [34] reviewed the state-of-the-art of the three main
categories: mechanical continuously variable transmissions (CVT), e-CVT and pure electrical CVT
(EVT). Yuan Cheng [35] introduced e-CVT and electric variable transmission (EVT) technology for full
HEVs. Yinye Yang [36] presented a comprehensive review of various integrated powertrains including
the power-split, two-mode hybrid transmission systems and the EVT. However, these scholars mainly
focus on the power-split architectures for full HEVs via employing planetary gears (PGs) as the power
coupling device and its various variants. In power-split HEVs, two EMs are utilized, and one of
them works mostly as a driving motor while the other is considered as a generator. In fact, if the
two degrees of freedom (DOF) planetary gear (PG) is used as the power coupling device, the hybrid
powertrain can be equipped with only one electric machine. Some literatures have been reported
regarding hybrid powertrain system using planetary gears with one electric motor [37–44]. To the best
of our knowledge, there is still a lack of published papers involving a comprehensive overview of
power coupling device architectures using PGs for HEVs, denoting as planetary hybrid powertrain
system (PHPS) in this paper. It is a critical procedure to design a proper power coupling device
architecture before developing a PHPS, since powertrain architecture have significant influence on the
control and optimization performance. However, unlike conventional vehicle powertrain, it is a very
challenging task to identify a desirable architecture of PHPS in the early stage. There are more variables,
for example, number of EMs, count of PG coupling devices, the type of transmission and topological
relationship of components. Furthermore, it can operate in different modes for certain architecture by
changing states of power coupling device, EMs and transmission, further complicating selection of
an appropriate architecture. Hence, in order to facilitate architecture selection and design of PHPS,
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various architectures of PHPS are categorized systematically in this paper, following comprehensive
review of various architectures.

The rest of this paper is organized as follows: the electromechanical power coupling system is
introduced at first, and the definition, classification of PHPS is proposed in Section 2. In Section 3,
the classification of the two primary PHPS architectures is given, and the corresponding typical
architectures are analyzed and compared, respectively, and followed by the conclusion in Section 4.

2. Planetary Hybrid Powertrain System

The electromechanical power coupling system that implements the combined output power of two
or more independent power systems is a general term for all components of a HEV power transmission
system [45]. Specifically, the most popular electromechanical power coupling system is based on PG(s),
denoted as planetary hybrid powertrain system in this research. Hence, in this section, based on brief
introduction of functional classification and structure of electromechanical power coupling system,
the definition and classification of planetary hybrid powertrain system are presented.

2.1. Introduction to Electromechanical Power Coupling System

Antoni Szumanowski et al. [46] illustrated four basic function of electromechanical power coupling
system for a HEV. The power couple schematic of the electromechanical power coupling system is shown
in Figure 3. Specifically, it can be divided into three categories: torque coupling, speed coupling and
power coupling [45,47]. Table 1 summarizes three kinds of electromechanical power coupling system.
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Table 1. Three kinds of electromechanical power coupling systems.

Class. Controllability of ICE V-Class. Typical Application

Torque controllable torque
uncontrollable speed Parallel EQ7200, IMA, ISG

Speed controllable speed
uncontrollable torque Parallel CHPTD

Power controllable torque
controllable speed Power-split THS, AHS

Note: Class.—classification; V-Class.—vehicle-classification; IMA—integrated motor assist; ISG—integrated starter
generator; CHPTD—compact hybrid planetary transmission drive; THS—Toyota hybrid system; AHS—advanced
hybrid system.

The torque coupling system, characterized by controllable engine torque and uncontrollable
speed, is commonly used in parallel HEVs. The system output speed is in a fixed proportion to the
ICE speed and EM speed, and the system output torque is a linear combination of the ICE and EM
torque. Hence, the ICE torque is adjusted by controlling the EM torque. Two typical architectures
are adopted to realize the torque coupling, i.e., fixed gear transmission coupling and coaxial motor
coupling. The most typical applications are Dongfeng Motor’s EQ7200 system, Honda Insight’s
integrated motor assist (IMA) system, Chang’an Motor’s integrated starter generator (ISG) system, etc.
The speed coupling system, with the characteristic of controllable engine speed and uncontrollable
torque, is mainly employed in parallel HEVs. The system output torque is in a fixed proportion to the
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ICE torque and EM torque, and the system output speed is a linear combination of the ICE and EM
speed. Hence, the ICE speed is adjusted by controlling EM speed. As for two typical architectures,
the PG(s) and stator floating motor are utilized to realize the speed coupling. One typical application is
the compact hybrid planetary transmission drive (CHPTD). The power coupling system that integrates
the characteristics of the above coupling system to control the engine torque and speed, is widely
adopted in power-split HEVs. The system output torque and speed are the linear sum of the ICE and
EM torque and speed respectively. Hence, the ICE torque and speed are both controllable. Two typical
architectures are PG(s) and double rotor motor, respectively, and the PG(s) is the mainstream on market.
The well-known typical applications are Toyota hybrid system (THS) and General Motor’s advanced
hybrid system (AHS).

The architecture of electromechanical power coupling system is one of the most critical technologies
for a HEV. The power coupling mode of the different structure not only determines the operating
mode of the hybrid powertrain system, but also provides a basis of formulating the power distribution
strategy. In a word, a reasonable power coupling system architecture for HEV is beneficial for ensuring
power performance, economy and lowest emission. The previous power coupling device mainly
focuses on the belt type and the fixed axis gear transmission type. Due to the large slip loss of belt drive
and the rigidity of fixed axis gear meshing drive, many new structures have emerged, such as gear box
type and PG(s) type. At present, the power coupling device is mainly concentrated in CVT [48–50]
and EVT [51]. Figure 4 shows the three existing electromechanical power coupling systems and its
various structures, and the structures with gray backgrounds are PG(s) type, which is a main concern
in this paper.
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In terms of a specific structure, the most attractive electromechanical power coupling systems are
based on PG(s) by merging or splitting the ICE and battery (via electric motor) energy flows. Firstly,
because of its small volume and mass proportionate to the shaft loads, thus, in case of great power
transferred, the PG(s) is small and compact. Secondly, it is efficient to adopt PG(s) with two degrees
of freedom for coupling power for hybrid powertrain. In addition, if more PG(s) are combined as
a power coupling device, the freedom of the system and design flexibility can be increased. Thus,
engineers may have more opportunity to optimize the powertrain system for both fuel economy and
driving performance. Finally, the manufacturing technology of the planetary gear production is highly
developed for the conventional vehicle’s application. The energy economy of the planetary power
coupling system, if the architecture is reasonably designed, can be most effective among all-known
electromechanical power coupling system architectures. Hence, for the convenience of architecture
selection and design, a comprehensive overview of hybrid powertrain system using PG(s) as the power
coupling device, will be presented in this paper.

In the following, the definition of the planetary hybrid powertrain system (PHPS) is firstly
presented, and then a new classification method for PHPS is proposed according to the number of
the EMs.

2.2. Definition of the PHPS

According to the definition of hybrid powertrain system by the Society of Automotive Engineers
(SAE) (J1715) [52], the planetary hybrid powertrain system (PHPS) is defined as: a hybrid electric
vehicle, encompassing an internal combustion engine and one or more electric motors, can be propelled
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by internal combustion engine and motor separately or together, and the electromechanical power
coupling system is devised based on the PG(s). Figure 5 shows the concept of PHPS and possible
energy flow routes [53].
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Figure 5. Conceptual illustration of the planetary hybrid powertrain system (PHPS).

The planetary gears, as a core of the PHPS, sum or split the internal combustion engine and
battery (via electric motor) energy flows. Figure 6a is a schematic of a PG with four planet gears
supported by a carrier and interposed between the sun gear and ring gear, which is widely adopted in
hybrid powertrain. The PG has three basic members with two DOF, sun gear (denoted as S), ring gear
(denoted as R) and carrier (denoted as C), which are respectively connected with the external power
components. Hence, a single PG with two DOFs can be regarded as a three-port device, as shown
in Figure 6b. The three ports, denoted as a, b and c, represent any three basic components of the
PG, respectively.
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Figure 6. (a) Planetary gear scheme; (b) three-port diagram. (1—sun gear (S); 2—ring gear (R);
3—carrier (C); 4—planet gear (PG)).

In addition, multiple PG(s) can be combined to form a compound PG(s). According to the
calculation method of operating DOF [54], the number of DOF for compound PG(s) can be formulated as:

DOF = 2n− p (1)

where n and p are number of PG(s) and fixed interconnection, respectively.
Generally, a HEV includes an internal combustion engine and one output shaft, and the number

of electric motors can be one or two. An electromechanical power coupling system with two DOF is
commonly employed in the PHPS. As listed in Table 2, if the PHPS has three powertrain components
(ICE, output, EM), a three-port device can be used as the power coupling device. However, if the PHPS
with four powertrain components (ICE, output, EM1, EM2), both three-port and four-port device are
available. Various three-port or four-port devices can be formed by adding clutches and brakes to
compound PG(s), and thus numerous PHPS architectures can be developed. In addition, the PG(s)
combined with other transmission (such as fixed gears) can also form a three-port or four-port device.
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The typical two DOF PG(s) systems are shown in Figure 7, where e, m1, m2 and o represent ports that
are connected to power components ICE, EM1, EM2 and output shaft, respectively.

Table 2. Feasible connections in the two degrees of freedom planetary hybrid powertrain system.

DOF EM Nu. PG Nu. Port
Nu.

Components
Connected in PG(s) System Port Nu.

DOF = 2

1
1 3 ICE, Output, EM 3
2 4 ICE, Output, EM 3
. . . . . . ICE, Output, EM 3

2

1 3 ICE, Output, EM1, EM2 3
2 4 ICE, Output, EM1, EM2 4
3 4 ICE, Output, EM1, EM2 4
. . . . . . . . . 4

Note: DOF—degree of freedom; Nu.—number; ICE—internal combustion engine; EM—electric motor.
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2.3. Classification of the PHPS

The PHPS is as complex as HEVs since it involves to how to combine internal combustion engine,
electric motor(s), planetary gear(s) and transmission. Different PHPS powertrain architectures can
be classified by locations and number of electric motor(s), type of transmission, number of planetary
gear(s) etc. As previously mentioned, some scholars have classified PHPS with two electric motors
into three categories. However, it is not suitable for PHPS with one electric motor. Hence, for the
convenience of architecture selection and design of PHPS, depending on the number of electric motor,
the PHPS can be categorized into two categories: PHPS with single electric motor (EM) and PHPS
with two electric motors (EMs), as shown in Figure 8. It is noted that the PHPS with a single EM can
be considered as three-port system, whereas the PHPS with two EMs is considered as three-port or
four-port system (depended on one of two EMs share the same port with other components or not).
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In the following sections, two primary PHPS architectures and its sub-architectures are analyzed
and compared.

3. Planetary Hybrid Powertrain System Architecture

In this section, the representative PHPS architectures are introduced in detail according to the
number of EMs, the number of the planetary gears, type of transmission and clutch-brake, etc.
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3.1. PHPS with Single EM

The PHPS with a single EM (denoted as SEM-PHPS) has the advantages of simple structure, easy to
control and low-cost. Various SEM-PHPS architectures are proposed in the literatures. The initial
image of the SEM-PHPS is as speed coupling with single planetary gear, used in parallel HEVs [46].
Enlightened by remarkable fuel efficiency of the power-split HEVs, some scholars have investigated
multi-mode SEM-PHPS architectures, which realize necessary operating modes and gain comparable
fuel economy to power-split HEVs with two electric motors [42–44,55–61]. By coupling the PG(s)
with clutches or brakes, the SEM-PHPS can realize multiple operating modes to increase the system
flexibility. Thus, the fuel efficiency can be improved by choosing a proper operating mode in different
driving conditions. However, the additional wet clutches or brakes is required, leading to more
complexity, cost and energy losses for the system [62,63]. Furthermore, longitudinal drivability
degraded by abrupt torque drops while shifting gears [64]. To this end, a few clutchless multi-mode
SEM-PHPS were recently proposed [43,65]. Motivated by the clutchless multi-mode HEVs, Sun, J.K et al.
investigated the clutchless geared smart transmission (CGST) that consists of a PG, a dual-input gear
box, and synchromeshes [38,41,66–69].

Hence, according to the number of planetary gears and type of transmission, the SEM-PHPS can
be further classified into four categories, which are typically referred as type-a to type-d, shown in
Figure 9a–d, respectively. In this section, typical architectures are analyzed and compared.
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3.1.1. Type-a: SEM-PHPS with Single Planetary Gear and No Other Transmission

This kind of SEM-PHPS architecture with only one planetary gear is simplest and low-cost solution.
The schematic of the representative compact hybrid planetary transmission drive (CHPD, invented by
Szumanowski in 1994) powertrain system is shown in Figure 10a.
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Figure 10. Type-a typical architecture: (a) the basic compact hybrid planetary transmission drive
(CHPTD); (b) three-port diagram. (RG—reduced gear; CL—clutch; B—brake).

The CHPD with small volume and higher efficiency is similar to the hybrid drive applied in the
Toyota Prius, in 1997. The main difference is the number of the EM(s). Details of the CHPD system can
be found in [70,71]. The CHPD system can be considered as three-port transmission system. The ports
e, m and o are connected with ICE, EM and output shaft, respectively, as shown in Figure 10b.
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This architecture possesses simple layout, requiring smaller installation space and lower cost.
However, it is only used as speed coupling, yielding worst overall performance compared to other
SEM PHPS architectures.

3.1.2. Type-b: SEM-PHPS with Planetary Gear and Other Transmission

Type-b of SEM-PHPS architecture is an improvement of type-a by inserting other transmission
(e.g., CVT) between planetary gear and output shaft. The added CVT is beneficial to overcome
those shortcomings of type-a architecture and thus realize two ways of adjustment: the EM electric
adjustment and the CVT mechanical adjustment. Generally, the metal belt is adopted in the CVT
structure. The representative Chery Arrizo 7e [37,72] hybrid system, that has been mass-produced
and put into the market, is shown in Figure 11. In addition, the one-way clutch (OWC) in the system
can diminish fuel consumption and ICE wear. Compared to CHPD system, the Chery Arrizo 7e can
realize torque coupling mode by engaging the clutch to connect the ring gear and carrier of PG together.
The Arrizo 7e system can be considered as a three-port transmission system. Three ports e, m and o
connected with ICE, EM and output shaft, respectively, as shown in Figure 11b.
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To further improve the comprehensive operating performance of this architecture, Hu et al.
explored a single motor hybrid powertrain configuration with dual planetary gears based on Arrizo 7e
by increasing the number of PG to two, details can be found in [37]. In addition, Toyota corporation
launched their THS-C system in 2001 [73], consisting of THS and CVT. The THS-C system has a
special single PG with two rows of planets sharing the same planetary carrier, and it is excluded from
consideration of this paper.

Compared to type-a architecture, the mechanism architecture is complex and costs more,
which limits its application. Moreover, a motor is required for CVT to drive the hydraulic pump in the
system, which exacerbates the complexity of the system. Thus, the overall effect of type-b architecture
is not so ideal.

3.1.3. Type-c: SEM-PHPS with Compound Planetary Gears and No Other Transmission

Type-c is an improved architecture of aforementioned one by adding a second PG to form a 2-DOF
compound PG(s). The 2-DOF compound PG(s) is composed of two conjoined simple PG to form
four separated ports, including two compound ports (formed by two interconnected members of the
two PGs) and two single ports. Three of the four separated ports can be linked to three powertrain
components, and the fourth port should be constrained to have deterministic output. According to
the combination of three powertrain components with four ports, there are four common types of
connection: type-I, type-II, type-III and type-IV, as shown in Figure 12.

In this type of SEM-PHPS system, clutches and brakes are employed to control the multiple
operation modes of the system. Thus, the fuel efficiency can be improved by choosing a proper
operational mode depending on the driving conditions. Generally, the number of clutches and brakes
used in system should not exceed four. The four existing specific architectures, corresponding with the
four common types in Figure 12, are shown in Figure 13.
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Figure 13. Type-c typical architecture developed by (a) Tsai; (b) Zhu; (c) Chachra; (d) Tsai.

Figure 13a shows one of type-c with six operation modes proposed by Tsai et al. [44]. In this
system, the EM and output shaft are connected to the compound PG(s) through two compound
ports. The ICE is connected to one of the single ports via a clutch and the other is constrained by
a brake. Tsai et al. patented a SEM-PHPS [57] architecture as shown in Figure 13d with five major
operating modes, detailed analysis can be found in [55]. Compared to the previous architecture shown
in Figure 13a, the main difference is that the ICE shaft can be coupled to the fourth free port via
the clutch CL2. In addition, for further improvement, Tsai et al. [58] patented another SEM-PHPS
architecture with five basic operating modes, and details can be found in [74]. In the new version
system, the electric motor (EM) is integrated coaxially with the 2-DOF compound PG(s), the internal
combustion engine (ICE) shaft can be coupled to the electric motor shaft through a clutch. The layout of
the system is similar with the one proposed by Zhu et al. shown in Figure 13b, and the main difference
is whether the electric motor is integrated coaxially with the PG(s). Compared to the three previous
architectures developed by Tsai et al., the motor-integrated hybrid system can be incorporated not only
in front-wheel-drive but also in rear-wheel-drive vehicles. However, it is not easy to realize in practice.

Figure 13b shows the architecture proposed by Zhu et al. [42], with sixteen basic operation
modes. In this system, the ICE and output shaft are connected to the compound PG(s) through
two compound ports. The EM is connected to one of the single ports directly and the other is
constrained by a brake. In addition, the ICE shaft can be coupled to the EM shaft through the clutch
CL2. In this architecture, the connection of the compound PG(s) is identical to that widely used in
several conventional four-speed ATs. The cost and reliability of this architecture are superior to other
completely redesigned transmissions because of using the components of the traditional four-speed
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ATs. In addition, the fuel economy potential of this architecture, proved by Zhu et al., is comparable to
a benchmark “THS II-like” vehicle.

The SEM-PHPS architecture patented by Chachra et al. [60], is shown in Figure 13c. In this
system, the output shaft is connected to one compound port and the ICE is connected to one single
port via a clutch, while the EM can be coupled to the other two remainder ports through a clutch.
This architecture can limit the re-circulating power in the system to a fraction of the input power.

These four hybrid systems can be considered as three-port system. The ports e, m and o are
connected with three powertrain components ICE, EM and output shaft, respectively, as shown in
Figure 14.
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Figure 14. Port diagram of typical architecture developed by (a) Tsai; (b) Zhu; (c) Chachra; (d) Tsai.

Compared to type-a and type-b architectures aforementioned, this type architecture can create a
more fuel-efficient multi-mode PHPS. However, additional wet clutches and brakes using hydraulic
components increase the complexity and cost of system.

3.1.4. Type-d: SEM-PHPS with Single Planetary Gear and Multiple Input Axis Gearboxes

Type-d, using multi-axis gearboxes instead of the second PG in type-c architecture, can realize
multi-mode operation. This architecture is inspired by the automatic geared transmission (AGT).
The AGT with no fluid coupler can gain better fuel economy than the CVT hybrid powertrain. However,
conventional AGT hybrid vehicles have some disadvantages. For example, the AGT with one axle and
single clutch [75] has a longer shifting time, which makes the driver uncomfortable. To prevent the
power interruption, the AGT is devised by two axles with dual clutch (DCT) [76]. However, a general
wet-clutch DCT has a higher energy loss and short lifetime. Therefore, other AGTs using a single
planetary gear, with dual input axes like the DCT, were developed. Specifically, the PG combined with
attached motor allows flexible torque or speed control depending on the number of connections to the
dual input axes of the transmissions.

This type of architecture is mainly equipped with single PG, multi-axis gearboxes and
synchromeshes. The multi-axis gearbox has two input axes connected with two ports of PG and one
output axis linked to the output port of the system. Generally, the multi-axis gearbox is composed
of various gear sets, which decide gear ratio of each gear step in the system. It is noted that the
synchromesh in multi-axis gearboxes engages or disengages the gear mesh for gear shifting operation.
In fact, various operational modes can be generated depending on the engagement combination of
synchromeshes. In addition to being in the multi-axis gearboxes, the synchromesh may also be located
at the port of PG connected with ICE or EM, as shown in Figure 15b,c.
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Figure 15. Type-d SEM PHPS architecture: (a) hybrid drive train (HDT); (b) Hitachi active shift
transmission (HAST); (c) clutchless geared smart transmission (CGST). (Ms-G—multi-axis gearbox;
FG—fixed gear; SM—synchromeshes; Ps—path switch; CL—clutch.).

This type architecture can be realized in various forms. Three representative schemes: one
hybrid drive train (HDT) [59,77] with clutch (developed by Bachmann M), two so-called clutchless
system—Hitachi active shift transmission (HAST) [65] (developed by Teshima T) and clutchless geared
smart transmission (CGST) [67] (developed by Y-S Yoon), are shown in Figure 15a–c respectively. These
three systems, with different type of the clutch and location of the synchromeshes, are different as the
configurations of multi-axis gearboxes differ.

In the HDT system, the ICE is directly connected to one input axis of the multi-axis gearbox. Thus,
it requires a clutch at the back of the ICE for starting the vehicle from the standing-still. The HAST
system temporarily changes the power flow from the gear-train to a path through the PG while shifting
gears without requiring a clutch. However, there are two changes in the power flow, and it inevitably
requires long gear-trains. The CGST system, with similar multi-axis gearbox structure in HDT system,
has a compact structure and can remarkably shorten the length of the power-train compared with
HAST system. Table 3 compares the three hybrid systems and DCT system. As listed in Table 3,
the CGST hybrid system has better comprehensive performance than the other systems. These three
hybrid systems can also be considered as three-port system. Three ports e, m and o are connected with
three powertrain components ICE, EM and output shaft, respectively, as shown in Figure 16.

This type architecture, different from type-c that adopted brakes or clutches, especially for
the clutchless systems using synchromeshes and EM instead of clutches, has higher fuel efficiency
and control flexibility. However, the use of the multi-axis gearboxes increases the length of the
powertrain. As a summary, Table 4 listed the main advantages and disadvantages of the four type of
SEM-PHPS architectures.
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Table 3. Comparison of the three hybrid transmission systems and the dal clutch (DCT) system.

HEV Class. CL No. PG No. I-a No. P-p No. Sy. No. Shift Speed Shift Impact P-m

HAST 0 1 2 4 5 - + +
HTD 1 1 2 3 4 - - 0
CGST 0 1 2 2 5 0 + +
DCT 2 0 2 2 0 + - 0

Class.—classification; No.—number; CL—clutch; I-a—input axis; P-p—power paths; Sy.—synchromesh;
P-m—power merge.
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Table 4. Comparison of four types of SEM-PHPS architectures.

Arc. PG. OT AC OM Advantages Disadvantages Lit.

Type-a 1 - 2 S simplest and
low-cost

used as speed coupling
only [70,71]

Type-b 1
Continuously

variable
transmission (CVT)

3 M speed and torque
adjustment

CVT increases system
complexity [37,72]

Type-c 2 - 3/4 M
more fuel-efficient
and higher control

flexibility

additional wet clutches
and brakes, more

complexity and costs
[42,44,57,60]

Type-d 1 Ms-G 0/1 M
better fuel efficiency
and higher control

flexibility

increase the length of
the power-train [59,65,67]

Arc.—architectures; PG.—PG number; OT—other transmission; AC—additional clutches; S—single; OM—operating
mode; M—multiple; Ms-G—multi-axis gear; Lit.—literature.

3.2. PHPS with Two EMs

The PHPS with two EMs (denoted as TEM-PHPS), that is composed of an internal combustion
engine, two electric motors and planetary gear(s), is the mainstream in HEV market [26]. With the help
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of a planetary gear system and the two electric motors, the ICE speed can be decoupled from wheels
speed to enable ICE operating efficiently in a wide range of vehicle speed. This kind of CVT is referred
to as e-CVT by researchers. However, due to the unavoidable energy conversion between two electric
motors (from the generator to the motor), the TEM-PHPS system has greater energy losses compared
to SEM-PHPS in highway driving conditions.

At present, a variety of TEM-PHPS architectures have been commercialized. Three of the top
selling architectures available in today’s HEV market, Toyota Prius, Chevrolet Volt and Ford Ford
Hybrid System (FHS), all began with single-PG architectures. In recent years, power-split HEVs
tend to use two PG(s) since double-PG(s) HEVs appear to have better performance than single-PG
one, the above two currently popular HEVs were both changed to double-PG designs in 2010 and
2015 [78], respectively. Besides the vehicles mentioned above, another typical double-PG HEV
introduced by General Motors (GM) has two e-CVT modes, known as the Allison hybrid system
(AHS) [79]. GM announced the second generation of AHS later (called “two-mode hybrid”) with three
planetary gears and four clutches [80]. According to the definition by GM, “the two-mode” refers
to the combination of both e-CVT modes and fixed gear ratio modes. Compared to single-PG and
double-PG(s) HEVs, multi-PG(s) HEVs can provide more design flexibility by switching clutch states
to achieve multiple operating modes. By comparing multi-mode hybrid powertrains with multiple
PG(s), Zhuang et al. considered that triple-PG hybrids have a slight efficiency improvement and better
power performance compared to double-PG [81]. It is clear that the number of the PG(s) is one of the
key factors influencing the performance of the TEM-PHPS system.

Therefore, according to the number of PG(s) and type of transmission, the TEM-PHPS can be
classified into four main categories, which are typically referred as type-a to type-d, shown in Figure 17,
respectively. In this section, representative architectures of each type are analyzed and compared.
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3.2.1. Type-a: TEM-PHPS with Single Planetary Gear and No Other Transmission

This type of architecture is the most compact and low-cost of TEM-PHPS to realize the function of
e-CVT. This architecture can be further included two categories: clutchless and with a clutch system.
Toyota Prius [82] and Chevrolet Volt [83] are the most widely-known examples available on the market
with single PG, as shown in Figure 18. However, these two systems can be very distinct in different
component arrangements. The THS configuration, as shown in Figure 18a, in which the output shaft
and the EM2 are connected to the same port of the planetary gear (known as input-split) without clutch,
is called as clutchless system in this paper. For the Volt system, as shown in Figure 18b, where the ICE
and the EM2 shared the same port of the planetary gear (known as output-split), using three clutches
to realize four operating modes, is called the clutch system here. As shown in Figure 7b, the two
hybrid systems can be considered as three-port system despite of having four powertrain components.
Three ports e, m1 and o connected with three powertrain components ICE, EM1 and output shaft,
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respectively, as shown in Figure 18c,d. The function of EM2 is to supplement the ICE torque, thus
allowing the ICE to operate in the high-efficiency regions.
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diagram of THS; (d) Three-port diagram of Volt.

Inspired by the different choices of clutch engagements and operating modes in Prius and Volt,
Zhang et al. presented a thorough analysis on twelve possible single-PG configurations for this type
by adding three clutches and proposed the Prius+ and Volt- designs to achieve considerable fuel
economy improvement [84,85]. Bayrak et al. conducted a similar research using the bond graph
technique [86]. In addition, Toyota Motor Co. obtained another patent license in 2000 [87], introducing
another single-PG power output device (called THS with clutch). The main differences between this
system and the THS are that the two components are separated or connected by a clutch between PG
and EM2. It sets a brake to fix ring gear while clutch is separated to realize a series hybrid configuration
and become a power-split hybrid configuration while clutch is engaged. However, production plans
for the THS with clutch have not been found anywhere in the literature or automotive industry.

Compared to double-PG(s) or even multi-PG(s) architecture, this architecture is most compact
and economical, whether having clutches or not, although its performance is the worst compared with
the other types.

3.2.2. Type-b: TEM-PHPS with Single Planetary Gear and Other Transmission

Type-b architecture is an evolution of the type-a with an additional transmission between the
single PG and the final drive, such as fixed gears. The schematic of the representative FHS (developed
by Ford Motor Co.) is shown in Figure 19a. The inserted fixed gears (FG), as an output torque
multiplier, is helpful to add further mechanical advantage to the EM and the ICE torque. The output
torque multiplier model of FHS is analyzed in detail in [26,50], and further background can be found
in [88]. The FHS was utilized in Escape, Ford hybrid vehicle produced in 2005. The FHS system can be
considered as a four-port system. The four ports e, m1, m2 and o are connected with ICE, EM1, EM2
and output shaft, respectively, as shown in Figure 19b.
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Compared to type-a architecture, the traction motor is always connected with the output shaft for
type-b, and motor efficiency drops when the vehicle reaches high speeds.
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3.2.3. Type-c: TEM-PHPS with Two Planetary Gears

This type of TEM-PHPS architecture, improved based on type-b architecture by replacing the fixed
gears with a second planetary gear, can be further divided into single-mode and two-mode depending
on the function of the additional planetary gear.

A typical single-mode architecture with dual-PG, launched by Toyota Motor Co. in 2005 [89],
as shown in Figure 20a, is applied in Lexus RX400h, Camry and Lexus Highlander [90]. In this
hybrid system, the dual-PG is conjoined together through the ring gear of two PG(s) forming one
compound port where the power is coupled and transferred to the output drive shaft. In addition to
the compound port, the dual-PG has four separated ports, and three of them are linked to ICE, EM1
and EM2, respectively, and the fourth port (C2) is constrained via a brake (B) to have deterministic
output. Furthermore, the ICE is connected to the port of dual-PG via the torsional damper (TD).
Hermance et al. conducted research on this architecture [91]. Compared with the THS system belonging
to type-a of TEM-PHPS, this architecture can achieve better power and off-road. However, it still
has only one operating mode due to the second PG is a simple gear mechanism [92]. In addition to
this system with dual-PG, Toyota launched a special dual-planetary (a simple PG and a Ravigneaux
planetary) configuration so-called THS-II [93], used in Lexus GS450h, Harrier, Kluger and Lexus
LS600hL, which can achieve two different operation modes to fulfil different speed cycles.
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Figure 20. Type-c architecture: (a) THS with dual-PG; (b) General Motors (GM) advanced hybrid
system (AHS); (c) Timken EVT; (d) Renault IVT; (e) Voltec II. (TD—torsional damper; D—dog clutch).

Different from the Toyota dual-PG system, the two-mode architecture with two simple PG(s)
achieves a significant improvement over the Toyota THS by employing additional PG with clutches and
brakes to realize compound split mode. The characteristic is that the 2-DOF compound PG(s) include
two interconnected simple PG bonded by two compound branches inside the compound PG(s) and
form four separate ports. The four separate ports, consisting of two single ports and two compound
ports, generally linked to ICE, EM1, EM2 and output shaft, respectively, making up a four-port hybrid
system. In this system, clutches and brakes are employed to control the multiple operation modes.
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Thus, the fuel efficiency can be improved by choosing a proper operational mode depending on the
driving conditions. Zhang et al. suggested that the total number of clutches and brakes used in this
architecture should not exceed four and proposed a Prius 2010++ configuration based on Prius 2010
(Figure 20a) [94].

A variety of two-mode with 2-PG(s) architectures have been put forth by GM-Allison, Renault,
and the Timken Company. Figure 20b–e shows the schematic of four typical two-mode with 2-PG(s)
systems. The main differences of these systems are the location of the powertrain components connected
with the compound PG(s) and the number of the clutches and brakes. The GM AHS system with
dual-PG [79], as shown in Figure 20b, having two operating modes, are suitable for both the high
speed low load condition and the low speed high load condition. This system, mainly employed in
Chevy Tahoe Hybrid and GMC Yukon Hybrid, is suitable for the SUV with higher power requirement.
As shown in Figure 20c, the Timken EVT system, patented by GM Motor Co., is directed to improve
the Schmidt powertrain [95] by reducing mechanical and control complexity [96]. The analysis of the
Timken EVT can be found in [97]. Different from the GM Allison, the Renault IVT [98] hybrid system
adopted dog clutches to achieve two modes, as shown in Figure 20d. Recently, a new typical two-mode
with 2-DOF PG(s) was launched by GM Motor Co. in 2016, referred as the Voltec II [78,99] to replace
the Voltec I (shown in Figure 18b), as shown in Figure 20e. The powertrain components layout of this
system is similar with the Timken EVT system except the number and type of clutches. This system,
having five operating modes including two e-CVT modes, one fixed gear ratio mode and two pure
electric (EV) driving modes, has been applied to several popular production vehicles on the market,
such as Chevy Volt, Malibu Hybrid, and Buick Velite5. Zhang et al. presented a detailed analysis of the
Voltec II system as a case study for the systematic design methodology [100]. The four hybrid systems
can be regarded as four-port transmission system. The four ports e, m1, m2 and o are connected with
three powertrain components ICE, EM1, EM2 and output shaft, respectively, as shown in Figure 21b–e.
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Compared to type-a and type-b architectures, type-c architecture, especially for two-mode,
having more operating modes by adding PG and clutches, can optimize the engine operation points
and thus improve the fuel economy. However, the design complexity and cost increase accordingly.

3.2.4. Type-d: TEM-PHPS with Multiple Planetary Gears

Type-d architecture, a further improvement of the GM Allison, having multiple modes by
employing more than two PG(s) referred to multi-PG(s), can provide more design flexibility and
achieve strong output torque reinforcement and better fuel economy. However, the additional PG(s)
will certainly increase system complexity and cost.

A variety of TEM-PHPS with multi-PG(s) can be found in patent documents and academic
literatures. For example, GM has a series of patents on multi-PG(s) hybrid system designs. One of
designs comes from US patent has four PG(s) and five clutches although the fourth PG is not strictly
necessary [101], while other designs mainly focus on triple-PG(s) architectures. A patent published in
1999 [102], introducing a triple-PG configuration, has a low utilization rate. In addition, the patents,
published by the engineer of GM in 2007 [103], introducing fifteen kinds of triple-PG architecture,
almost all possible architectures. Recently, Hendrickson et al. [104] and Meisel [105] introduced a new
2MT + 4FG configuration with three PG(s), which is known as 2MT70 and used in the Saturn Vue
Green Line vehicle. However, it is usually considered as dual-PG architecture. In addition, an IVT
system with four-PG(s) is developed by Renault, which differs from the GM designs that dog clutches
are employed to realize two modes [98].

Two typical triple-PG architectures are analyzed in this section, as shown in Figure 22.
The two-mode EVT referred to AHS with triple-PG(s) [95], as shown in Figure 22a, is successfully
utilized in transit buses and is appropriate for many other heavy-duty stop-and-go applications [80].
This system achieves two modes of high speed and low speed via two clutches. A new triple-PG(s)
architecture introduced by Tim M. Grewe, a modified design of AHS by adding two clutches CL2 and
B2, is specifically designed for full-size SUVs and other personal trucks, as shown in Figure 22b [80].
The relevant patent is awarded to M. Schmidt in 2005 used for personal trucks [106]. This architecture is
known as the two-mode hybrid (Allison Hybrid System-2 (AHS2)). The only slight difference between
the design shown in the Figure 22b and the schematic of the patent is the location of the additional
clutch CL2 that is linked to the carrier of the second PG in the latter. In both the cases, the engagement
of the CL2 can lock the first two planetary gears, and all components will have the same angular speed.
Compared to the AHS, two additional clutches in the AHS2 architecture are added to produce four
fixed speed ratio (FG) modes. The analysis of the new architecture by Kaehler et al. shows that it is
suitable for personal trucks since it can achieve maximum fuel economy at a reasonable cost [107].
In addition, Tamai G et al. described how fuel economy functionality was blended with full-size
truck utility functions [108]. The AHS2 architecture was applied to the new version of Yukon and
Tahoe vehicles.
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Figure 22. Type-d architecture: (a) GM AHS; (b) GM AHS2.

The AHS and AHS2 architecture can be considered as four-port system. The four ports e, m1,
m2 and o are connected with four powertrain components ICE, EM1, EM2 and output shaft, respectively,
as shown in Table 5. The AHS2 system has the same EVT modes with the AHS, and the power flow of
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the main drive modes of the AHS2 are listed in Table 5. This provides the designer with insight into a
method to show the power flow of the system, which is intuitive and easy to understand.

Table 5. The power flow of the main drive modes of GM AHS2 by four-port diagram.

MM
C and B State

Power Flow Port Diagram
C1 C2 B1 B2

E1 0 0 1 0
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Compared to other types, it is flexible to operate in many power-split modes for type-d architecture.
Thus, it is better than the other type architectures in both overall efficiency and power performance.
However, this architecture is more complex and thus difficult to manufacture due to more PG(s),
clutches and brakes than others. Furthermore, its control strategy is quite complicated. Table 6
summarizes the above four types of TEM-PHPS.

3.3. Summary

At present, PHPS with single EM and PHPS with two EMs are two primary architectures, and either
can be divided into various sub-architectures according to the number of planetary gears.

By comparing different PHPS architectures, it can be observed that various architectures appear
with different merits and may be applied in distinct vehicle types to fulfill various requirements.
The SEM-HPS have the advantages of lower cost, lower power loss, and more compactness over
the PHPS with two EMs, while the TEM-PHPS can achieve better fuel economy and larger output
power. For the same number of powertrain components, less number of PG(s) implies a more
compact transmission, while more PG(s) can increase the flexibility of the system and fuel economy.
The modular design for whole vehicle configuration is a development direction of the PHPS in the
future. Recently, a new type of multi-mode powertrain with two output shafts for tracked vehicles
proposed by Zhaobo Qin et al., is composed of three EMs besides ICE and three planetary gears [109].
Thus, the hybrid powertrain system with multi-EMs (more than two) and two output shafts is another
trend in heavy-duty vehicles.
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Table 6. The Comparison of four types of two EMs planetary hybrid powertrain system (TEM-PHPS).

Arc. PG. OT AC OM Advantages Disadvantages Lit.

Type-a
1 - 0 S simplest and low-cost only one mode worst

performance [82]

1 - 3 M four operating modes better
fuel economy lower performance [83]

Type-b 1 FG 1 M larger output torque motor efficiency
drops at high speed [26]

Type-c
2 - 1 S better power and off-road

than THS
still has only one
operating mode [89]

2 - 2/3/4 M enable more operating modes
higher fuel economy

more complex and
costs [79,96,98,99]

Type-d M - 2/4 M better overall efficiency
power performance

most complex and
complicated control [80,95]

Arc.—architectures; PG.—PG number; OT—other transmission; AC—additional clutches; OM—operating mode;
S—single; M—multiple; Ms-G—multiple shaft gears; Lit.—Literature.

4. Conclusions

As concerns of environment deterioration and energy supply security keep increasing, PHPS has
been the mainstream on HEV market. The purpose of this review work is to classify and compare
different PHPS architectures and provide insights into architecture selection and design. A new
classification method for PHPS is systematically proposed to organize various HEV using planetary
gears. As a critical step, two primary types of PHPS are identified to enable new classification suitable
for HEV using planetary gears. In addition, the representative PHPS architectures are reviewed and
organized in the new classification framework based on number of EM(s), number of planetary gears
and type of transmission. Furthermore, the port diagram of representative PHPS powertrains is given,
and provides the designer with a method to show the power flow of the system, which is intuitive and
easy to understand. This review work, based on extensive references and industry products, not only
provides an up-to-date summary of PHPS powertrain architecture, but also presents relationship of
different architectures in the new classification framework.
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Abbreviations

HEVs Hybrid Electric Vehicles
PHPS Planetary Hybrid Powertrain System
EMs Electric Motors
ICE Internal Combustion Engine
CVT Continuously Variable Transmissions
e-CVT electric Continuously Variable Transmissions
EVT Electric Variable Transmissions
PGs Planetary Gears
DOF Degrees of Freedom
SAE Society of Automotive Engineers
SEM Single Electric Motor



Energies 2020, 13, 329 20 of 24

TEM Two Electric Motor
CGST Clutchless Geared Smart Transmission
CHPTD Compact Hybrid Planetary Transmission Drive
OWC One-Way Clutch
S Sun gear
R Ring gear
C Carrier
AT Automatic Transmission
AGT Automatic Geared Transmission
DCT Dual Clutch Transmission
HDT Hybrid Drive Train
HAST Hitachi Active Shift Transmission
AHS Allison Hybrid System
FHS Ford Hybrid System
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