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Abstract: The analysis of energy configuration in the planning of data-center-park-integrated energy
systems (DCP-IESs) has become an enormous challenge, owing to multi-energy complementarity,
energy cascade use, and energy security. In this study, a configuration model of DCP-IESs was
established to obtain the economic and low-carbon energy uses of the data centers, based on mixed
integer linear programming. In the model, carbon emissions were converted to economic indicators
through carbon pricing. Then, the configuration model was modified according to the security of the
proposed device switching logic, and the Markov-based reliability estimation method was used to
ensure the redundant design of the configuration. Using the new energy configuration method, the
DCP-IES configuration scheme could be obtained under economical, low-carbon, and high reliability
conditions. A data center park in Shanghai was selected as a case study, and the results are as follows:
it will only take 2.88 years for the economics of DCP-IES to reach those of traditional data center
energy systems. Additionally, the use of configuration model in DCP-IES would result in a reduction
in annual carbon emissions of 39,323 tons, with a power usage effectiveness of 1.388, whereas an
increase in reliability results in an increasingly faster increase in the initial investment cost.

Keywords: integrated energy system; configuration model; cost and low-carbon; device pre-start;
reliability analysis; redundant design

1. Introduction

1.1. DCP-IESs and Their Key Characteristics

With advancements in industrialization and informatization, large data centers, which are usually
distributed in the form of a park, are expanding rapidly in China. The market size of Internet Data
Centers (IDCs) in China and the world is shown in Figure 1 [1], reflecting a clear trend of rapid increase
in recent years (average rate of increase is 40% in China). Along with this rapid development, high
energy consumption and carbon emissions have become a major problem for IDCs [2]. The existing
research [3] shows that the reasonable configuration of data-center-park-integrated energy systems
(DCP-IES) can realize economical, low-carbon, and reliable operation. Therefore, it is urgent to establish
a better model for optimizing the energy configuration and analyzing the reliability of DCP-IES to
reduce both energy consumption and carbon emissions.
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Figure 1. The market size of IDCs in China and the world. 

Data center energy consumption involves not only consumption from web servers and private 
branch exchanges but also consumption from air conditioning systems (ACS), power distribution 
units, uninterrupted power supplies (UPS), and illuminating and switching units [4]. Figure 2 shows 
the energy consumption structure of IDCs, most energy consumption of which is attributed to the 
use of traditional electrical chiller system [5]. From Figure 2, the energy consumption structure of 
IDCs in China and the world is basically the same, and there are primarily two components of energy 
consumption: electrical consumption from IT equipment and energy consumption from other 
auxiliary equipment. IT equipment consumes approximately 50% of the total energy, whereas ACS 
equipment consumes nearly 35%, with a power usage effectiveness (PUE) [4] of approximately 2. 
This demonstrates the first key characteristic of DCP-IESs: high energy consumption. PUE is defined 
as the ratio of total power consumption of IDC to IT power load, as shown in Equation (1) [6], where 𝑃௘ is the input power, which includes the large power grid and renewable energy generation; 𝑃௢௜௟ is 
the input oil; 𝑃௚௔௦ is the input gas; 𝑃௖ is the input cooling; and 𝑃ூ் is the power consumption of IT 
equipment. The units of the above variables are electricity-equivalent units. The higher the PUE value 
is, the lower the efficiency of the IDC [7]. 𝑃𝑈𝐸 = ∑ ௉೐ା∑ ௉೚೔೗ା∑ ௉೒ೌೞା∑ ௉೎∑ ௉಺೅ , (1) 

On the one hand, most energy consumed by DCP-IESs originates from the state power grid, with 
a carbon emission factor 0.620 (tCO2/MWh) in China, as shown in Table 1 [8]. This demonstrates the 
second key feature of DCP-IESs: high carbon emissions. Additionally, IDCs exhibit a cascade energy 
use structure, e.g., IT equipment generally consumes high-grade energy, whereas cooling equipment 
uses low-grade energy [9]. 
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Figure 1. The market size of IDCs in China and the world.

Data center energy consumption involves not only consumption from web servers and private
branch exchanges but also consumption from air conditioning systems (ACS), power distribution
units, uninterrupted power supplies (UPS), and illuminating and switching units [4]. Figure 2 shows
the energy consumption structure of IDCs, most energy consumption of which is attributed to the
use of traditional electrical chiller system [5]. From Figure 2, the energy consumption structure
of IDCs in China and the world is basically the same, and there are primarily two components of
energy consumption: electrical consumption from IT equipment and energy consumption from other
auxiliary equipment. IT equipment consumes approximately 50% of the total energy, whereas ACS
equipment consumes nearly 35%, with a power usage effectiveness (PUE) [4] of approximately 2. This
demonstrates the first key characteristic of DCP-IESs: high energy consumption. PUE is defined as the
ratio of total power consumption of IDC to IT power load, as shown in Equation (1) [6], where Pe is the
input power, which includes the large power grid and renewable energy generation; Poil is the input
oil; Pgas is the input gas; Pc is the input cooling; and PIT is the power consumption of IT equipment.
The units of the above variables are electricity-equivalent units. The higher the PUE value is, the lower
the efficiency of the IDC [7].

PUE =

∑
Pe +

∑
Poil +

∑
Pgas +

∑
Pc∑

PIT
, (1)
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Figure 2. (a) Energy consumption structure of typical IDC in China; (b) Energy consumption structure 
of typical IDC in the world. 
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renewable energy. Rossi [10] indicated that several techniques could be used to promote energy 
efficiency in high-performance computing, ranging from scaling the frequencies of the processors to 
putting the device to sleep during idle periods and consolidating virtual machines. Additionally, 
supercomputer architecture, parallel science, and parallel software development can provide 
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considerations: (1) appropriate cooling strategy [15]; (2) good layout design and air flow distribution 
for computer rooms [16,17]; (3) economizer cycles [18,19]; and (4) simulation-based control [20]. In 
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attempted. All of the above-mentioned methods involved the optimization of the method or 
improvement of a specific technology in existing energy systems; however, they did not address 
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On the one hand, most energy consumed by DCP-IESs originates from the state power grid, with
a carbon emission factor 0.620 (tCO2/MWh) in China, as shown in Table 1 [8]. This demonstrates the
second key feature of DCP-IESs: high carbon emissions. Additionally, IDCs exhibit a cascade energy
use structure, e.g., IT equipment generally consumes high-grade energy, whereas cooling equipment
uses low-grade energy [9].

Table 1. Carbon emission factor of electric power industry in the world [8].

Electric Power Industry Carbon Emission Factor (tCO2/MWh)

China (2017) 0.620
USA (2017) 0.420
UK (2017) 0.237

Germany (2016) 0.560
France (2017) 0.074
Japan (2016) 0.544
Russia (2016) 0.358
India (2017) 0.723

1.2. Literature Review

For the three key characteristics described above, scholars carried out numerous studies. Generally,
the low-carbon emissions, low energy consumption, and cascade energy use of data centers can be
achieved through the operational efficiency optimization of the equipment and the optimal design of
energy system.

For the operational efficiency optimization of the equipment, an attempt to maximize the
operational efficiency of the equipment is typically conducted by increasing the fuel conversion
efficiency, optimizing the operational control strategy, etc. Rong [4] reviewed three methods to reduce
the energy consumption of IDCs: (1) using energy-saving technologies in high-performance computing,
(2) implementing energy conservation technologies in computer rooms, and (3) applying renewable
energy. Rossi [10] indicated that several techniques could be used to promote energy efficiency in
high-performance computing, ranging from scaling the frequencies of the processors to putting the
device to sleep during idle periods and consolidating virtual machines. Additionally, supercomputer
architecture, parallel science, and parallel software development can provide opportunities for energy
conservation [11–14]. For energy conservation of ACS, there are four main considerations: (1)
appropriate cooling strategy [15]; (2) good layout design and air flow distribution for computer
rooms [16,17]; (3) economizer cycles [18,19]; and (4) simulation-based control [20]. In addition to these,
the use of heat pipes [5,21–23] and free-cooling [24–26] in data centers was also attempted. All of the
above-mentioned methods involved the optimization of the method or improvement of a specific
technology in existing energy systems; however, they did not address configuration optimization in
the system planning and design.

For the optimal design of energy system, in order to integrate multiple energy sources and increase
renewable energy penetration, scholars mainly adopt three methods to optimize the design of energy
system: (1) classic methods, (2) metaheuristic methods, and (3) distributed computing. Sheme et al. [27]
introduced the minimum percentage supply (MPS) and used the classic algorithms to configure the
capacity of wind power and photovoltaic power in data center, which maximized the renewable energy
use in high latitudes. Wang et al. [28] developed a multi-objective optimal design model for integrated
energy system with economy, technology, and environment minimization. Then the configuration
capacity of various equipment was obtained by using the non-dominated sorting genetic algorithm 2
(NSGA-II). Tran et al. [29] conducted the alternating direction method of multipliers (ADMM) to deal
with the typical daily optimal dispatching problem of combined heating and power (CHP) system.
The case study showed that ADMM algorithm had the faster convergence speed than particle swarm
optimization (PSO). van der Heijde et al. [30] developed a two-stage optimization algorithm to achieve
the optimal design and dispatching of integrated heating system. The genetic algorithm (GA) was
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adopted to realize the equipment capacity configuration in the first layer, and the optimization solution
toolbox of Python was used to achieve the optimal dispatching of the equipment in the second layer.
Reynolds et al. [31] developed an optimized dispatching management method, in which the artificial
neural network (ANN) and the GA were adopted to predict the output of renewable energy equipment
and determine the operation strategy of the equipment, respectively. In these studies, however, the
strategy used at the operational stage was not combined with the selection of energy conversion
technologies at the design stage, and the safety of the device pre-start and reliability of the system
were not considered.

On the other hand, in the design of a DCP-IES, the reliability of the energy supply is very
important [32], as any equipment failure may cause instability or even failure of the entire energy
system. To improve the reliability of the DCP-IES, standby devices are typically provided [33].
However, this involves increasing the initial investment. In particular, after a certain increase in
the reliability of the energy supply, a further small increase may require a huge investment [34].
Therefore, how to optimize the design configuration of standby devices has become an urgent issue in
need for a solution. Additionally, the configuration of the DCP-IES by the method of multi-energy
complementarity ultimately results in the increase in the switching frequency between devices [35].
In actual engineering applications, the device cannot immediately advance to its stable operational
state, e.g., absorption chillers need approximately 40 min from start-up to smooth operation [35].
A normal energy supply can be guaranteed by the appropriate device switching logic when the device
is switched. Therefore, it is necessary to design the relevant switching logic and analyze the possible
system faults caused by the device switching. Then, the relevant constraints to avoid those faults are
fed back into the configuration model to repair and improve the model.

In summary, there is no study on the configuration optimization model for DCP-IESs under
multi-energy complementarity, device switching, and redundant design considerations. Therefore, it is
significant to develop the configuration optimization model for DCP-IESs.

1.3. Scientific Contribution of the Study

Compared to previous research, the study aims to develop a new configuration optimization
model for DCP-IESs under economic, environmental, and reliability considerations. Therefore, the
major contributions of present work are listed as follows:

First, the integrated configuration model of DCP-IES was established based on mixed integer linear
programming algorithms (MILP), considering both the cost and carbon emissions. A double-objective
function was established by introducing carbon trading prices. In the model, the strategies for the
operational stage were taken into consideration in the configuration of energy conversion technologies
at the planning stage.

Second, compared with traditional electric cooling and large power grids powering, the
multi-energy configuration increases the switching frequency between devices. The switching
logic of the DCP-IES uninterrupted energy supply was implemented to ensure the system security
during the frequent switching of the devices, given the pre-start time of the device, and the security
constraints were fed back into the integrated configuration model. It is unique in current research.

Third, the reliability estimation method for the complex series-parallel energy system, based on
Markov processes, enabled providing the redundant design of the modified optimization configuration
to ensure that the DCP-IES was safe and reliable in the event of device failure. The logical structure of the
study is shown in Figure 3. In summary, this study provided a method for the configuration of DCP-IESs
in the planning and design stages under economic, environmental, and high reliability considerations.
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This paper contains five different sections: Section 1 provides an introduction of the DCP-IES
from the research perspective and presents several characteristics of the DCP-IES; Section 2 describes
the gaps in research of the current energy configuration of the DCP-IES; Section 3 describes the optimal
configuration model and provides reliability calculation methods for the cooling and power supply
systems in the new configuration model; Section 4 addresses a case study in Shanghai, China, which
mainly includes model solving, model modification, result reliability analysis, and redundant design;
and finally, the conclusions of this study are found in Section 5.

2. Existing Problems to Solve

2.1. Three Coupled Configuration Issues

Basically, there are three major configuration issues in the DCP-IES: selection of energy conversion
technologies, configuration capacity of each technology, and scheduling in the planning and design
stages. These issues are coupled with each other within each energy network (cooling network and
microgrid) or between networks (network nodes) and are difficult to segment, as shown in Figure 4.
After solving these three issues, it will be easy to verify energy planning indexes, such as the total
energy consumption index, carbon emission index, renewable energy index, and energy efficiency
index, for IDC parks. This study provides a solution for these three problems by establishing a
configuration model for the planning and design stages.
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2.2. Redundancy and Device Switching Problems

Compared with the traditional configuration, this new energy configuration model for DCP-IESs
is more complicated. Complex device coupling and switching increases the probability of system
failure. The comprehensive consideration of the DCP-IES energy supply reliability during the energy
configuration phase is particularly important. Therefore, it is necessary to design a new redundant
configuration method and switching logic to satisfy the security requirements of DCP-IESs. In this
study, the evaluation of system reliability under the new energy configuration method primarily
included two considerations: (1) possible system faults caused by the device switching would be
analyzed, and the relevant constraints would be used to improve the configuration model; and (2)
the reliability of the electricity and cooling redundant design would be analyzed based on Markov
Chain processes.

3. Methodology

3.1. Hypotheses

Owing to the complexity of the energy system configuration process, assumptions were adopted
by the model as follows: power from local generation is grid-connected without power injection and
the step size of the dispatch with regard to cooling and power is one hour.

3.2. Configuration Model

Considering both the cost and carbon emissions, the objective function of the configuration
model is defined in Equation (2), in which the optimal object of low-carbon emissions is transformed
to economic objects through the carbon trading price. The variables are the output of each energy
conversion technology at each hour, as shown in Equation (3), where P is the variable matrix,
t = 1, 2, 3, . . . , 8760 represents the hour number over an entire year, j represents the different energy
conversion technologies listed in Table 2, and pt, j represents the output of j at time t. Therefore, the
final configured capacity can be defined as max

(
pt, j

)
.

min
∑Cin + Co + Cm +

8760∑
t=1

ε

(
pt,6ω6 +

pt,1

ηeq
ω1

)
∆t

, (2)
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P =


p1,1 p1,2 . . . p1, j
p2,1 p2,2 . . . p2, j

...
...

...
...

pt,1 pt,2 . . . pt, j

, (3)

where Cin is the uniform annual value of the initial cost in USD and is defined by Equation (4), Co is
the annual operative cost in USD and is defined by Equation (5), Cm is the equipment maintenance
cost in USD and is defined by Equation (6), ε is the carbon trading price, i.e., $4.71/tCO2, ω6 is the
carbon emission factor of power grid in tCO2/kWh, ω1 is the carbon emission factor of natural gas in
tCO2/Nm3, ηe is the generating efficiency of CCP in %, q is the lower calorific value of natural gas in
kJ/Nm3, and ∆t is the time interval in h.

Cin =
∑

j

Pr jmax
(
pt, j

) i
1− 1

(1+i)nj

, (4)

Co =
8760∑
t=1

Pre
100 ∗ pt,1

ηeq
∆t + Prg

8760∑
t=1

pt,6∆t + Ctrans, (5)

Cm =
∑

j

[α jmax
(
pt, j

)
+ β j(

8760∑
t=1

pt, j∆t)], (6)

where Pr j is the price per unit capacity of j in $/kW, i is the dimensionless discount rate, n j is the service
life of j in year, Pre is the time-of-use electricity price in $/kWh, Prg is the natural gas price in $/Nm3,
Ctrans is the basic power cost of transformer in USD, α j is the dimensionless fixed cost factor of j, and β j
is the dimensionless variable cost factor of j.

Table 2. Energy conversion technologies.

j 1 2 3 4 5 6 7 8

Energy
conversion
technology

CCP Absorption
chiller Chiller Free-cooling Cooling

storage
Power
grid PV Wind

power

The supply–demand balance is shown in Equation (7) and is employed to demonstrate the cooling
and power balance, in which coefficient matrix ε is equal to the combination of the cooling matrix and
power matrix, as shown in Appendix A.

Pε =
[

LC LE
]
, (7)

where LC is the column vector of the cooling load, and LE is the column vector of the electrical load, as
shown in Appendix A.

For each device, on the one hand, its output must be positive except cooling storage, as shown in
Equation (8). On the other hand, the output of all devices cannot be continuously reduced to zero and
must always be less than the rated capacity, as shown in Equation (9).

pt, j ≥ 0 ( j , 5), (8)

γ jpmin, j ≤ pt, j ≤ γ jpmax, j, (9)

where γ j represents the state of device j, either startup (1) or shutdown (0), pmin, j is the minimum
output of device j in kW, and pmax, j is the rated capacity of device j in kW.
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In DCP-IESs, there is a coupling relationship between the cooling and power networks. First, the
waste heat consumed by the absorption chillers must be less than the waste heat generated by the CCP
systems, as shown by Equation (10). Second, the power consumed by chillers should be added to the
electrical load of the DCP-IES, as shown by Equation (11).

pt,1 ≥ pt,2/COP2, (10)

LE = LE′ +
1

COP3
P3, (11)

where pt,1 represents the output electric power of CCP, and we assume that the heat power used by
the absorption chiller is equal to pt,1. In actual engineering, the power generation efficiency of the
gas generator set is approximately 40%, and two-thirds of the remaining 60% can be used by the
absorption chiller. Therefore, in this study, the heat power used by the absorption chiller is assumed to
be pt,1, pt,2 represents the output of absorption chiller, COP2 is the efficiency of the absorption chiller,
P3 represents the column vector of the chiller output, and COP3 is the efficiency of the chiller. LE′

represents the system electrical load, excluding consumption by the chillers.
The free-cooling constraint is defined by Equation (12),

pt,4 =

 max
(
p′t,4, pt,4

)
(T ≤ T1)

0 (T > T1)
, (12)

where p′t,4 is the maximum of the free-cooling capacity that can be carried in the environment at time t
in kW, subject to natural resources, T is the outdoor wet-bulb temperature, and T1 is outdoor critical
wet-bulb temperature for enabling free-cooling, i.e., T1 = 280 K. In this study, the outdoor wet-bulb
temperature is used as a criterion for enabling the free-cooling, as the free-cooling is provided by
the cooling tower, and the lowest outlet temperature of the cooling tower is equal to the outdoor
wet-bulb temperature.

In this model, the cooling storage is quite different from that of other devices, with the following
constraints:

CSt+1 = CSt + pt,5∆t, (13)∣∣∣pt,5
∣∣∣ ≤ γ5pmax,5, (14)

24∑
h=1

pt,5 = 0, (15)

where CSt is the gross cooling storage at time t in kWh, CSt+1 is the gross cooling storage at time t + 1
in kWh, ∆t is the time interval, positive and negative values of pt,5 represent the charge or discharge
state of cooling storage, respectively, γ5 represents the state of cooling storage, either startup (1) or
shutdown (0), and pmax,5 is the maximum power of cooling storage. Equation (13) indicates that the
gross cooling storage at time t + 1 is equal to the gross cooling storage at time t plus the amount of
charge or minus the amount of discharge in the time interval. Equation (14) indicates that the output
power of cooling storage at time t must be less than the maximum power of cooling storage. Equation
(15) means that the cooling storage for one day cannot be used for the next day.

In summary, Equation (2) is dependent on Equations (7)–(15).

3.3. Equipment Model Based on Operational Data

The factors affecting one device could be classified as external factors and internal factors.
The external factors usually consist of factors related to the medium temperature and environmental
conditions, whereas the internal factors are linked to the performance of the heat exchangers and
compressors. Because of these factors, the system efficiency would be dynamic, rather than constant.
In this study, actual operational data of chillers were fitted to the functional relationship between the
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COP and partial load ratio (plr), as defined by Equation (16), where the COP of the chiller is 5.8 under
rated conditions.

COP3 = −12.46plr2 + 19.13plr− 0.879, (16)

where COP3 represents the efficiency of the chiller.

3.4. Estimation of System Reliability

The device state mainly includes the operational state and standby state. The operational state
contains the working state (represented by 1) and the fault state (represented by 0). The device state
for the next moment is related only to the current state, regardless of other states, which is a typical
Markov process [36]. Therefore, the probability of equipment in the same state should follow an
exponential distribution [37], as shown in Equations (17) and (18),

F1(τ) = Pro1(t ≤ τ) = 1− e−λτ, (17)

F0(τ) = Pro0(t ≤ τ) = 1− e−µτ, (18)

where λ is the failure rate, time/day, 1/λ represents the average trouble-free working time, µ is the
repair rate in time/day, 1/µ represents the average outage time, Pro1(t ≤ τ) is the probability that
the device maintains the working state during τ, and Pro0(t ≤ τ) is the probability that the device
maintains the fault state during τ.

Under the condition that the number of states in the state space is limited, the stationary state
probability (SSP) of the system is constant and independent of the initial state [38]. For m-step
homogeneous Markov chains where m→∞ , the SSP of the system in each state could be found by
solving Equation (19), {

ProM = 0∑
Prom = 1

, (19)

where M is the transfer density matrix; Pro is the SSP vector of each state; and m is the number of
states. If there are n devices, then m = 2n, and M is a 2n

× 2n order matrix. For example, there are four
states for a system with two devices only, namely state 1 (1, 1), state 2 (1, 0), state 3 (0, 1), and state
4 (0, 0), and the transfer density matrix is shown in Equation (20),

M =


−(λa + λb) λb 0 λa

µb −(µb + λa) λa 0
0 µa −(µa + µb) µb
µa 0 λb −(µa + λb)

, (20)

where λa and λb are the failure rates of devices a and b, respectively, and µa and µb are the repair rates
of devices a and b, respectively.

For the system with n devices connected in series, the failure rate (λtandem,n), repair rate (µtandem,n),
and availability rate (Atandem,n) of the system can be obtained by solving Equations (19) and (20), which
are shown in Equations (21)–(23), respectively,

λtandem,n =
n∑

k=1

λk, (21)

µtandem,n =

∑n
k=1 λk∑n

k=1(λk/µk)
, (22)

Atandem,n =
1∑n

k=1(λk/µk) + 1
, (23)
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For the system with two devices connected in parallel, the failure rate (λparallel,2), repair rate
(µparallel,2), and availability rate (Aparallel,2) of the system can be obtained by solving Equations (19) and
(20), which are shown in Equations (24)–(26), respectively,

λparallel,2 =
(µ1 + µ2)λ1λ2

λ1µ2 + λ2µ1 + µ1µ2
, (24)

µparallel,2 = µ1 + µ2, (25)

Aparallel,2 = 1−
λ1λ2

(λ1 + µ1)(λ2 + µ2)
, (26)

Using Equation (19) and Equations (21)–(26), the reliabilities of both cooling and electrical systems
can be determined.

4. Case Study

4.1. Cooling and Power Load Prediction Using Operational Data

In this study, a real data center park (DCP) located in Shanghai, China was selected as a case study
to implement the configuration method developed in this study. Hourly power consumption data of
IT equipment were collected during the period of 19 December and 25 December 2016 by monitoring
the active power output of the UPS, as shown in Figure 5. These data were then put into Energy
Plus [39,40], a popular dynamic building performance simulation engine, to calculate the hourly power
load and cooling load of this DCP, with results shown in Figure 6. Apparently, the cooling load in
winter was less than the electrical load, owing to the heat loss through the building fabric, whereas in
summer, the opposite behavior took place.
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4.2. Basic Parameter Determination

For the configuration model developed in this study, its basic input parameters include the cooling
and electrical loads, natural gas price, electricity price, local renewable energy resources, equipment
performance parameters, and equipment price parameters. The time-of-use electricity price, wind, and
solar resources are illustrated in Figure 7. Equipment parameters and others are listed in Table 3.
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Table 3. Input parameters for equipment.

Device J Pr ($/kW) α ($/kW) β ($/kWh) n (Years) Prg ($/m3) ηe (%) COP

1 225.03 1.93 0.014 20 0.46 40 -
2 99.82 1.77 0.004 15 - - 0.9
3 74.72 1.77 0.003 20 - - 5.8
4 16.83 1.40 0.003 20 - - -

5 114.08
$/m3 1.57 0.003 20 - - -

6 14.26 0.00 0.003 20 - - -
7 798.59 2.07 0.013 25 - - -
8 926.93 2.07 0.013 20 - - -
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4.3. Results

The DCP-IES configuration model developed in this study is a MILP model, and Cplex in GAMS
was selected as the tool for solving the calculations. In the MILP model, there are not only continuous
variables but also integer variables, and there are two methods to solve the MILP problem, namely the
Branch and Bound method and Cutting Plane method. The Branch-and-Cut Algorithm (BCA) adopted
in the study is a combination of the above two methods. BCA is a typical classic optimization algorithm
for solving MILP problems. It can be solved by calling a commercial solver. The global optimal and
unique solution can be obtained by using BCA, but it requires more computing time. In addition, the
MILP problem is generally non-deterministic polynomial hard problem, and the algorithm of MILP
problem is generally non polynomial complexity algorithm. The computational complexity belongs to
type O(an), where a is a constant, n is the number of variables. In other words, when choosing the
classic optimization algorithm to solve the configuration model established in the paper, the number of
variables should be within a certain limit, otherwise the result will not converge. Therefore, only the
typical daily energy configuration is calculated in the paper. On the other hand, the currently popular
metaheuristic optimization algorithms have strong generalized solving ability, which can be used to
solve the MILP problem. However, the optimal solutions of metaheuristic algorithms are usually not
the global optimal. To this end, the computing time and optimal results between the BCA and NSGA-II
are compared, as shown in Table 4. The population size of the NSGA-II is set to 50–200, and the
genetic algebra is set to 500. From Table 4, the more the iteration is, the longer the computing time of
NSGA-II is. However, as the iteration increases, the computing time of BCA remains the same basically.
Moreover, the optimal results of NSGA-II are worse than that of BCA. Therefore, BCA is selected as the
solution algorithm of MILP model with acceptable computing time and stable optimal results.

Table 4. Computing time and optimal results of BCA and NSGA-II.

Iterations 1 20 40 60 80 100 120 140

Computing time (s) BCA 1803 1743 1821 1845 1794 1827 1819 1807
NSGA-II 150 167 334 497 733 1972 2145 3156

INI 1 (million USD)
BCA 35.09 35.09 35.09 35.09 35.09 35.09 35.09 35.09

NSGA-II 37.69 36.69 35.86 36.36 35.19 35.69 35.36 35.16

OC 2 (million USD)
BCA 30.45 30.45 30.45 30.45 30.45 30.45 30.45 30.45

NSGA-II 32.17 31.99 32.06 31.09 30.74 31.16 31.31 30.81

CE 3 (tCO2)
BCA 232,250 232,250 232,250 232,250 232,250 232,250 232,250 232,250

NSGA-II 245,335 243,972 244,517 237,157 234,431 237,702 238,792 234,976
1 INI—Initial investment; 2 OC—Operating cost; 3 CE—Carbon emissions.

The calculation results were compared with those calculated from a traditional data center energy
system (TDC-ES), which is powered by a power grid and cooled by chillers. The cost and carbon
emissions for both the DCP-IES and TDC-ES are shown in Table 5. It is worth noting that the initial
investment (INI) in Table 5 does not include the INI of the redundant equipment. From Table 5, the INI
of the DCP-IES was $23.38 million higher than that for TDC-ES; however, the annual operational cost
(OC) was $8.10 million lower. It will only take 2.88 years for the economics of DCP-IES to reach those
of TDC-ES. Afterwards, the economics of DCP-IES will be better than those of TDC-ES. The investment
payback period (PP) of TDC-ES and DCP-IES also are calculated, respectively, according to the annual
income and initial cost, as shown in Equation (27), where Cin is the initial cost; Co is the annual operative
cost; SPe and SPc are the selling price of electricity and cooling, respectively; LEt and LCt represent the
electrical load and cooling load at time t. Generally, the investment payback period varies with the
selling price of cooling and electricity. Therefore, let SPe = 0.114 USD/kWh and SPc = 0.083 USD/kWh
in this paper based on engineering experience. The investment payback period of DCP-IES and TDC-ES
are 3.41 and 6.59 years respectively, which can be calculated by Equation (27). In addition, the carbon
emissions (CE) of DCP-IES were 39,323 tons lower than those of TDC-ES. Based on Equation (1) and
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the obtained operational strategy, the PUE of DCP-IES is 1.389. In summary, the energy allocation
using the configuration model is better than that of the traditional energy system, although its initial
investment is higher.

PP =
Cin∑8760

t=1 (SPeLEt + SPcLCt) −Co
, (27)

Table 5. Cost and carbon emissions for both DCP-IES and TDC-ES.

Types CCP AC 1 Chiller FC 2 CS 3 PG 4 PV WP 5 Total

DCP-IES INI (million USD) 7.37 2.94 5.18 0.26 3.81 9.57 4.88 1.10 35.09
DCP-IES OC (million USD) 10.27 0.33 0.64 0.11 0.56 18.42 0.10 0.01 30.45

DCP-IES CE (tCO2) 42,488 0 0 0 0 189,762 0 0 232,250
TDC-ES INI (million USD) 0 0 2.99 0 0 8.71 0 0 11.71
TDC-ES OC (million USD) 0 0 0.86 0 0 37.69 0 0 38.55

TDC-ES CE (tCO2) 0 0 0 0 0 271,573 0 0 271,573
1 AC—Absorption chiller; 2 FC—Free-cooling; 3 CS—Cooling storage; 4 PG—Power grid; 5 WP—Wind power.

Based on the results from the configuration model, hourly outputs of eight energy conversion
technologies were obtained for the entire year. The operation strategies of cooling and electricity in a
typical winter day and typical summer day are illustrated in Figures 8 and 9, respectively. The outputs
for both PV and wind power were small, owing to the availability of natural resources. Influenced by
the fluctuations of the electrical price in the power grid, the electricity was served by either the CCP
or the power grid at different times during the day. This type of alternating output leads to frequent
switching of the multi-energy complementary system. In actual operation, the device, especially
the absorption chiller, has a pre-starting time, which cannot realize real-time switching. Therefore,
before applying the configuration model established in this study, it is necessary to design the relevant
switching logic and analyze the possible system faults caused by the device switching. Then, the
relevant constraints to avoid those faults are fed back into the configuration model to repair and
improve the model. The next section demonstrates the analysis of this problem.
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4.4. Switching Logic Analysis

A simplified diagram for the DCP-IES is provided in Figure 10. According to the optimal
configuration results, the switching logic between a large power grid and CCP is given, as shown in
Figure 11.
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Figure 11. Switching logic of DCP-IES.

From Figure 11, when switching from a large grid power to CCP, the system determines whether
cooling storage is available. If cooling storage is available, the following instructions are executed:
calculate the cooling storage continuous working time (tcs), and calculate the UPS storage capacity
(CaUPS) and continuous working time (tUPS). From this operation, the start-up sequence and number of
devices needed are determined. The pre-cooling time for the absorption chiller was set as T = 40 min.
As can be seen from Figure 11, there are two system failures that cannot guarantee the normal operation
of DCP-IESs, which are caused by the relationship among tUPS, tcs, and T. Parameters tUPS and tcs are
calculated by Equations (28) and (29), respectively. Therefore, the two following constraints could be
used to ensure the reliability of switching: First, the configuration capacity of CCP is increased to
provide sufficient power for the IT equipment and chillers during the pre-cooling time of the absorption
chillers, as shown in Equation (30), and second, the configuration capacities of the UPS and cooling
storage are increased, as shown in Equation (31).

tcs∑
t=1

(LCt − pt,3 − pt,4) = Cacs, (28)

tUPS∑
t=1

(
LEt,IT + LEt,chiller − pt,1

)
= CaUPS, (29)
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where Cacs is the available capacity of cooling storage in kWh, CaUPS is the available capacity of UPS in
kWh, LCt is the cooling load of DCP-IES at time t in kW, LEt,IT and LEt,chiller are the electricity load of
IT and chiller at time t in kW, respectively, and pt,1, pt,3, and pt,4 are the outputs of device j at time t,
j = 1, 3, 4, respectively.

pt,1 ≥
pt,2

COP3
+ LEt, t ≤ T, (30)

tcs + tUPS ≥ T, (31)

where COP3 is the efficiency of the chiller, LEt is the total electricity load of the DCP-IES at time t,
including IT, chiller, etc. Equations (30) and (31) can be brought into the configuration model as a
constraint to avoid switching faults. Clearly, the above switching logic is based on the fact that the
chillers can meet the total cooling load solely. The optimal configuration results (Table 5) indicate that
the optimization results satisfy the condition. In summary, a multi-objective configuration optimization
model that considers the device pre-start time is established.

4.5. Reliability Analysis and Redundant Design

After obtaining the optimal energy configuration based on cost, carbon emissions, and device
pre-start, as shown in Table 6, the energy system needs to be designed redundantly and evaluated
for reliability. When the equipment fails, the standby equipment can be used to ensure the normal
operation of the DCP-IES; this is the redundant design. Then, the reliability analysis of DCP-IES
is carried out by using the reliability estimation method in Section 3.4. In the redundant design of
DCP-IESs, the reliability of the system could be improved by increasing the number of standby devices.
However, this would result in an increased INI. In particular, for an increase in the reliability of the
energy supply by a certain amount, a small increase in reliability would require a huge financial cost.
Therefore, the reliability analysis of the DCP-IES must be accompanied by a cost calculation to obtain
the optimal redundant design.

Table 6. Modified optimization energy configuration of DCP-IES.

Devices Capacity (kW) Quantity INI (Million
USD)

OC (Million
USD)

CCP 8500 4 7.57 10.27
AC 7624 4 2.94 0.33

Chiller 2800USRT 1 7 5.21 0.67
FC 2500 6 0.26 0.11
CS 10,000 m3 2 3.82 0.56
PG 46,276 1 9.57 18.42
PV 6100 - 4.88 0.10
WP 1186 - 1.10 0.01

Total - - 35.34 30.63
1 1 USRT = 3.517 kW.

Comparing Tables 5 and 6 shows that the configuration capacity of CCP was larger than the
result before correction, and the total INI increased by $0.24 million with a PUE of 1.388. When
redundant design is performed on the above configuration results, it does not affect the OC of the
DCP-IES. Therefore, the economic analysis of redundant design can be simplified to the INI analysis.
Furthermore, 12 redundant scenarios were established to analysis the reliability and INI of the DCP-IES,
as shown in Figure 12, where Scenario A was no redundant design, Scenario B was power grid
redundancy, and Scenario C was diesel-generator redundancy.
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The failure rate and repair rate of each device required in Section 3.4 are shown in Table 7. Using
the reliability estimation method in Section 3.4 and topological structure shown in Figure 10, the
available rate of electricity, available rate of cooling, and INI in all 12 redundant scenarios could be
obtained, as shown in Table 8. It should be noted that the presence of a standby CCP or standby chiller
signifies that only one more CCP or chiller is reserved. If two CCPs or chillers were to fail during the
operation, the system would malfunction.

Table 7. Failure rate and repair rate of each device [38].

Device CCP AC Chiller FC CS PG PV WP

Failure rate (time/day) 0.00547945 0.00136986 0.000913240 0.000684790 0.0103903 0.00305800 0.0170452 0.0121137
Repair rate (time/day) 2.541667 2.000000 2.000000 1.000000 1.000000 5.083333 3.2906082 3.4042571

Table 8. Reliability and initial investment of DCP-IES for all 12 redundant scenarios.

Redundant
Scenario

Available Rate of
Electricity (%)

Available Rate of
Cooling (%)

INI
(Million USD)

A 99.9399 99.9894 35.34
A1 99.9900 99.9897 37.11
A2 99.9399 99.9940 35.64
A3 99.9900 99.9948 37.41
B 99.9996 99.9954 44.91
B1 99.9998 99.9957 46.67
B2 99.9996 99.9992 45.21
B3 99.9998 99.9993 46.97
C 99.9989 99.9935 43.44

C1 99.9995 99.9935 45.21
C2 99.9989 99.9989 43.74
C3 99.9995 99.9990 45.51

Table 8 shows that the minimum INI was $35.34 million for no standby device, as defined in
Scenario A. Not surprisingly, the energy supply reliability was the lowest, with the available rates of
electricity and cooling of 99.9399% and 99.9894%, respectively. The electricity supply reliability in
Scenarios B1 and B3 was 99.9998%, which was the highest for all scenarios, and the corresponding INIs
were $46.67 and $46.97 million, respectively. The cooling available rate of Scenario B3 was the highest
among all, with the available rate of cooling and INI of 99.9993% and $46.97 million, respectively. To
meet the five “9” reliability requirements of electricity and cooling supply in the DCP-IES design,
the redundant design of Scenario B2 was concluded to be the most appropriate, with the INI of
$45.21 million. Additionally, as shown in Table 8, when the reliability changed from the three “9” in
Scenario A to the four “9” in Scenario A3 and to the five “9” in Scenario B2, the INI increased from
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$35.34 million to $37.41 million and then to $45.21 million, i.e., as the reliability increases, the INI
increases increasingly faster. In summary, the DCP-IES configuration method was obtained under the
comprehensive considerations of cost, carbon emissions, device pre-start, and reliability.

5. Conclusions

With the rapid development of information technology, integrated data centers, mostly in the
basic form of parks, were built extensively. These buildings are often characterized as high energy
intensive with stable load and high carbon emissions, which is very beneficial to the integrated use of
multiple sources of energy in the DCP. In this context, the economical and low-carbon multi-objective
configuration model was established based on the MILP method, and the configuration model was
modified according to the security of the device switching. Then, the configuration results were
designed redundantly using the reliability estimation method based on Markov processes. Finally, the
DCP-IES configuration method was obtained under the comprehensive considerations of cost, carbon
emissions, device pre-start, and reliability. The following conclusions were drawn:

• In the multi-objective configuration model, the carbon emissions of DCP-IESs were converted
into economic indicators through carbon pricing and were optimized for the initial investment,
operational costs, and maintenance costs of the system. Renewable energy, waste heat, free-cooling,
and cooling storage were all considered. Compared with traditional energy systems, the results
indicated that it would only take 2.88 years for the economics of the DCP-IES to catch up to those
of the TDC-ES; the carbon emissions of the DCP-IES were 39,323 tons lower than those for the
TDC-ES, and the PUE was 1.389.

• Multi-energy integration led to the frequent device switching of the DCP-IES. Based on the given
device switching logic, the relevant constraints for avoiding the switching faults were fed back
into the configuration model to correct the model. The results indicated that the total initial
investment increased by $0.24 million, and the PUE was 1.388.

• In 12 scenarios of redundant design, both the cooling availability and power availability of
DCP-IESs were calculated for systems with parallel- and series-arranged devices, based on
Markov processes. The results indicated that the total initial investment for the DCP-IES meeting
the four “9” reliability requirement, represented by Scenario A3, was $37.41 million, and the total
initial investment for the DCP-IES meeting the five “9” reliability requirement, represented by
Scenario B2, was $45.21 million. As the reliability increases, the initial investment cost increases
increasingly faster.

• Using the new energy configuration method, the configuration scheme of the DCP-IES could
be obtained under economical, low-carbon, and reliability requirements. With the help of the
new DCP-IES configuration model, DCP planners can easily obtain energy indicators during the
planning stage, designers can quickly achieve low-carbon energy allocations, and operators can
obtain operational strategies of system devices based on real-time load forecasting results.

However, there are still some limitations. The step size of the dispatch with regard to cooling and
electricity is one hour in the paper under the complexity considerations of energy system configuration
process. Therefore, the configuration model cannot achieve the cooling and electricity joint optimal
configuration in one minute. The solution complexity of the configuration model grows exponentially
with the increase of variables. Hence, it is difficult to use the model to solve the hourly equipment
configuration over an entire year, when there are a large number of available devices. The operational
efficiency of each device will vary with the operational conditions in actual engineering applications.
However, only chillers were considered in this study. Additionally, any surplus electricity generated in
the DCP-IES should be delivered to the power grid. These issues will be considered in future research.
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Nomenclature

Acronyms
DCP-IES data-center-park-integrated energy system
DCP data center park
ECT energy conversion technology
FC free-cooling
UPS uninterrupted power supplies
IDC internet data center
PUE power usage effectiveness
ACS air conditioning system
TDC-ES traditional data center energy system
CHP combined heating and power
CCP combined cooling and power
MILP mixed integer linear programming
SSP stationary state probability
INI initial investment
OC operating cost
CE carbon emissions
AC absorption chiller
CS cooling storage
PG power grid
PV photovoltaic
WP wind power
USD United States Dollar ($)
Indices
pt, j the output of each energy conversion technology at every hour (kW)
Cin the uniform annual value of initial cost ($)
Co the annual operative cost ($)
Cm the equipment maintenance cost ($)
ε the carbon trading price ($/tCO2)
ω1 the carbon emission factor of natural gas (tCO2/Nm3)
ω6 the carbon emission factor of power grid (tCO2/kWh)
i the discount rate
ηe the generating efficiency of CCP
∆t the time interval (h)
q the lower calorific value of natural gas (kJ/Nm3)
Pr j the price per unit capacity of device j ($/kW)
n j the service life of technology j (year)
Pre the time-of-use electricity price ($/kWh)
Prg the natural gas price ($/Nm3)
Ctrans basic power cost of transformer ($)
α j the fixed cost factor of device j ($/kW)
β j the variable cost factor of equipment j ($/kWh)
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ε the coefficient matrix
LC the column vector of cooling loads
LE the column vector of electrical loads
γ j the state of equipment j
COP j the efficiency of equipment j for producing cooling or heating
pmin, j the minimum output of equipment j (kW)
pmax, j the rated capacity of equipment j (kW)
plr the partial load ratio
LE′ the column vector of system electrical loads excluding consumption by chillers
p′t,4 the maximum of free-cooling capacity that can be carried in the environment at t (kW)
T1 the wet-bulb temperature outdoors (K)
CSt the gross cooling storage at time t (kWh)
λ failure rate (time/day)
µ repair rate (time/day)
M transfer density matrix
Pro the SSP vector of each state
m the number of states
Atandem,n the availability rate of the system with n devices connected in series (%)
PP the investment payback period (year)
SPe the selling price of electricity ($/kWh)
SPc the selling price of cooling ($/kWh)
T The pre-cooling time of AC (min)
Cacs the available capacity of cooling storage (kWh)
CaUPS the available capacity of UPS (kWh)

Appendix A

ε is the coefficient matrix, and its transpose matrix is shown in Equation (A1).

εT =
[

0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1

]
, (A1)

where εT represents the transpose matrix of ε, 1 in the first row of the matrix represents the corresponding device
is used to produce cooling energy, and 1 in the second row of the matrix represents the corresponding device is
used to generate electricity. In particular, the element εT(2, 3) should be −1/COP3 because the chiller consumes
electricity in the cooling process, where COP3 is the efficiency of the chiller. However, LE in Equation (7) represents
the column vector of the electrical load, including consumption by the chiller. Therefore, the element εT(2, 3) is 0.

In addition, [ LC LE ] is the load matrix including cooling load and electrical load, as shown in
Equation (A2).

[ LC LE ] =


Lc1 Le1
Lc2 Le2

...
...

Lct Let

, (A2)

where Lct represents total cooling load of DCP-IES at time t, Let represents total electrical load of DCP-IES at time t.
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