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Abstract: To effectively guarantee a secure and stable operation of a smart substation, it is essential to
develop a relay protection system considering the real-time online operation state evaluation and
the risk assessment of that substation. In this paper, based on action data, defect data, and network
message information of the system protection device (PD), a Markov model-based operation state
evaluation method is firstly proposed for each device in the relay protection system (RPS). Then, the
risk assessment of RPS in the smart substation is carried out by utilizing the risk transfer network.
Finally, to highly verify the usefulness and the effectiveness of the proposed method, a case study of a
typical 220 kV substation is provided. It follows from the case study that the developed method can
achieve a better improvement for the maintenance plan of the smart substation.

Keywords: Markov model; risk transmission network; state evaluation; risk assessment

1. Introduction

As the core part of a typical power grid, transmission and distribution substations play an
important role in delivering high-quality power to the consumers and controlling the power flow. In
order to adapt to the development of high-voltage levels and long-distance transmissions technologies,
smart substations have made rapid developments in China. Nowadays, with the increase in power
grids’ voltage levels, the corresponding technical parameters of the primary equipment should be
improved accordingly [1,2]. As a result, their costs are greatly increased as well. Therefore, to guarantee
a secure, safe, and stable operation of the primary equipment, there is a persistent necessity to carry
out risk assessment for the operation status of relay protection systems (RPSs) [3–9].

In recent years, risk assessment of the operation status of RPSs has become a hot research topic,
and many results have been developed. Generally speaking, there are roughly two kinds of assessing
methods. One kind is the simulation method, such as Monte Carlo simulation [10–14], which is mainly
utilized to get reliability indices through statistical analysis and stochastic sampling of the assumed
probabilistic distribution, where this kind of method is intuitive [15]. The other kind is the analytic
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methods, such as Markov model analysis [16–25], neural networks [26–32], fault trees [33–37], etc.,
which are typically applied to develop a probabilistic model with the information of the construction,
the function, or the logic relationship of the considered object and calculate the reliability indices by
iteration. For these methods, the physical concept is clear and the accuracy is guaranteed, where, in
some cases, the calculation burden increases rapidly with the increasing of the system scale. For a
relay protection system, considering the strong correlation between the state transition mechanism
of the risk assessment method and the change in its operation state mechanism with time, the state
assessment of RPS based on the Markov model has become a popular method for the secondary
system’s state assessment in a smart substation. In [21], the Markov model was utilized to evaluate the
RPS’s reliability in operation state, where the protection system was divided into two parts (main and
backup) for reliability evaluation. In [22], the protection system was divided into specific functions to
study the reliability of the secondary system in a defined smart substation, where aiming to realize the
state maintenance, a Markov model was proposed to obtain the secondary system’s state evaluation by
calculating its reliability index. However, it should be pointed out that, in [21,22], Markov models
were used to analyze the protection system’s reliability, whereas none of the devices involved in the
protection function’s realization were evaluated; in the actual application, the operation state of each
device should be paid more attention, which would affect the whole protection system’s reliability.

Furthermore, in [23], regarding the short-term reliability analysis of RPS and considering the
resulted errors in the conventional equivalence algorithms, a new method based on the semi-Markov
process was presented to assess the aggregated system. In [24], a Markov model was developed to
evaluate the protection devices’ state with a secondary message as the data source, then the GO method
was implemented to perform the reliability analysis of the RPS. However, it should be pointed out
that, in the above-mentioned results, the state of protection devices (PDs) and each protection function
could be evaluated, while only the network message was taken to evaluate the operation state of the
device, which would thus affect the accuracy of the evaluation results. Besides, the operation risk of
the protection system was not analyzed in detail. Based on the literature addressed in this paper, it is
noticed that only a few results considered the risk loss of primary equipment caused by the operation
risk of the secondary system. Moreover, only a few studies considering risk assessment for smart
substation relay protection were found based on the Markov model and the risk transfer network,
which are the main motivations of this research.

Therefore, based on the above discussions, in order to overcome the addressed problems, by
combining the Markov model and the risk transfer network together, a new risk assessment method
for RPS of the smart substation is proposed. Based on the action data, the defect data, and the network
message information, the operation status of each device of the protection system can be evaluated by
the Markov model. Then, the status and the risk of the secondary system for the smart substation can
be assessed by utilizing the risk transfer network. The main contributions of the current research can
be highlighted as follows:

• By combining the Markov model and the risk transfer network together, an effective risk assessment
method is proposed for the smart substation’s RPS;

• The operation states and the risk losses of all the devices in the protection system are fully
discussed by using the Markov model;

• The risk losses of the bus protection system, the main transformer protection system, and the line
protection system are analyzed. After that, the risk of the whole protection system is evaluated by
risk with the transfer network;

• The proposed state evaluation and risk evaluation approach can increase the provided theoretical
support to the state maintenance of the smart substation.

The remaining sections of this paper are arranged as follows. The basic state evaluation of RPS
model is introduced in Section 2, and the operation status method based on the Markov model is
also presented is this section. In Section 3, by combining the complex network and the risk transfer
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network, a new state rating and the protection system’s risk assessment is proposed. A case study
utilizing a typical 220 kV smart substation is provided in Section 4 to verify the usefulness as well
as the effectiveness of the proposed method. Some necessary discussions are presented in Section 5.
Finally, the conclusions of the paper are outlined in Section 6.

2. State Evaluation of Relay Protection Device and Markov Model

Generally speaking, the typical connection mode of a 220 kV bus in a smart substation is shown in
Figure 1, including line, bus connection, main transformer, and bus interval. For the smart substation
adopting the so-called network acquisition and the network jump approach, the relay PD and the
intelligent station auxiliary device in the protection system are composed. The smart station auxiliary
device mainly includes combination unit, intelligent terminal, network switch, etc.
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Figure 1. Protection device (PD) configuration of a typical connection mode of a 220 kV bus.

In a smart substation, and in order to achieve the secondary equipment’s state evaluation and
risk evaluation, it is necessary to evaluate the failure rate of all devices shown in Figure 1. In this
paper, the devices with the same hardware structure and function are classified, which requires one
to find out the failure rate of bus PD, line PD, main transformer PD, network switch, merging unit,
and intelligent terminal device. In this paper, the evaluation method based on the Markov model is
utilized to perform the failure rate analysis of the above seven types of PDs.

After that, the Markov model is established. The Markov model is developed in this paper
to model the operation state of each PD in the RPS. When evaluating the PD’s operation state, the
prediction state is only affected by the current state and has no direct connection with the historical
state. Therefore, it is usually utilized for reliability analysis of the protection system. For the general
Markov theory [38], one can get:

P(∆t) =


P11(∆t) P12(∆t) . . . P1n(∆t)
P21(∆t) P22(∆t) · · · P2n(∆t)

...
...

. . .
...

Pn1(∆t) Pn2(∆t) · · · Pnn(∆t)

 (1)
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which meets the following conditions:
Pi j > 0 , i, j = 1, 2 · · · n
n∑

j=1
Pi j = 1 , i = 1, 2 · · · n . (2)

The transfer density matrix (A) is defined as:

A =


−q11 q12 L q1n
q21 −q22 L q2n

M M M M
qn1 qn2 L −qnn

 = lim
∆t→0

P(∆t) − I
∆t

(3)

which meets the following condition:

n∑
j=1

qij = 0 , i = 1, 2 · · · n . (4)

Define the row vector of Markov dynamic probability as:

P(t) =
[

P0(t) P1(t) · · · Pn(t)
]

(5)

where the sum of all elements in (5) is 1, it follows from (3) and (5) that:

d
dt

P(t) = P(t)A. (6)

According to the characteristics of the Markov model, when time t approaches infinity, Markov
dynamic probability tends to be stable: 

P(t)A = 0
n∑

i=0
Pi = 1 (7)

It follows from (7) that the Markov steady state probability P(∞) can be obtained.
Next, the defined PD status assessment is introduced. The state of a PD is reflected by the

reliability index. The selection of the reliability index needs the basic reliability data support. With the
rapid development of the smart substation technology, the sensing means of the secondary equipment
is more and more abundant. In addition, the basic data of the traditional substation, such as the fault
information management system, the inspection and maintenance report, and the on-site operation
and maintenance information, can reflect the real operation of the equipment row status. Regarding
the selection of reliability index, the following three-state progressive model is adopted, which is
illustrated in Figure 2.
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Figure 2. Three-state progressive model.

It can be seen from Figure 2 that there are two reasons for the failure of the PD. One is that the
device is abnormal and has not been repaired in time, resulting in the failure of the device function;
the other is that the sudden failure directly leads to the failure of the device function. Moreover, the
abnormal state of the PD can be divided into two kinds. One is the abnormal condition of the PD,
which is detected by the monitoring system or manual operation inspection, and then it can be repaired
to normal operation state; the other is the disability to find the abnormal condition of the device, which
in turn causes the PD failure after time accumulation.

There are many factors that affect the PD’s effective operation state. Without loss of generality, the
PD involved in this paper mainly considers the following main factors: hardware, software, external
loop, and communication. The relationship diagram of each state of the device is shown in Figure 3,
in which ES0 represents the effective operation state of the device. AS1, AS2, and AS3 are abnormal
operation conditions of hardware, software, external circuit, and communication of the PD and are
found by monitoring, respectively. AS4, AS5, and AS6 are abnormal operation conditions of hardware,
software, external circuit, and communication of the PD but are not found by monitoring, respectively.
IS7 is the failure operation condition of the device.
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The probability of the PD to be abnormal and detected is called the dominant abnormal probability,
which is given by: 

Y1 = n1/T
Y2 = n2/T
Y3 = n3/T

. (8)

The probability of the PD to be abnormal but not be detected is called the probability of hidden
abnormality, which is given by: 

Y4 = n4/T
Y5 = n5/T
Y6 = n6/T

(9)

where T is the cumulative running time of the protection system, n1, n2, and n3 are the times of hardware,
software, external circuit, and communication abnormality of the PD detected by the monitoring
system, and n4, n5, and n6 are the times of hardware, software, external circuit, and communication
abnormality not detected by the monitoring system, respectively.

Probability of malfunction of the protection system is caused by abnormal operation of the PD
(including malfunction and refusal), which is given by:

W4 = nW4/T
W5 = nW5/T
W6 = nW6/T

(10)

where nW4, nW5, and nW6 are respectively the times of failure of PD caused by hardware, software,
external circuit, and communication abnormality of PD.

Probability of PD failure is caused by sudden failure, which is given by:

W7 = nW7/T (11)

where nW7 is the number of PD failures caused by sudden failures.
The repair rate after abnormal protection function is formulated as:

F1 = 1/TF1

F2 = 1/TF2

F3 = 1/TF3

, (12)

where TF1, TF2, and TF3 are the average repair time of device hardware, software, external circuit, and
communication abnormality, respectively.

Repair rate after failure of PD is given by:

F7 = 1/TF7 (13)

where TF7 is the average repair time after the failure of the PD.
Based on Figure 4 and Equation (3), the transfer density matrix is derived as follows:

A =



−a0 Y1 Y2 Y3 Y4 Y5 Y6 W7

F1 −F1 0 0 0 0 0 0
F2 0 −F2 0 0 0 0 0
F3 0 0 −F3 0 0 0 0
0 0 0 0 −W4 0 0 W4

0 0 0 0 0 −W5 0 W5

0 0 0 0 0 0 −W6 W6

F7 0 0 0 0 0 0 −F7


(14)
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where:
a0 = Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + W7. (15)Energies 2020, 13, x FOR PEER REVIEW 8 of 16 
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Following Equations (7), (14), and (15), the Markov steady state probability P(∞) can be obtained:

P(∞) =
[

P0 P1 · · · P7
]

(16)

thus, the probability of three states of the protection system can be obtained as follows:
PES= P0(t)

PAS =
6∑
i

Pi(t) , i = 1, 2, 3 · · ·

PIS= P7(t)

(17)

thus, PIS is the failure rate of the PD.

3. State Rating and Risk Assessment of Protection System

In the above section, based on the Markov model, the failure rate of every PD in the RPS is
evaluated by using the state of PD. Aiming to reflect the operation state and the operation risk of the
protection system more intuitively, in this section, by combining the complex network and the risk
transfer network, a new state and risk assessment method for the protection system is proposed.

With the rapid development of smart substation technology, the secondary equipment forms
the secondary system through different networks of the intelligent substation. The connection of
the secondary system is much closer. The secondary system can be regarded as a network, thus the
complex network theory can be implemented to evaluate the operation risk of the protection system.
In general, the basic elements of a complex network include: network node, subject, directed edge,
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subject set, and degree. For convenience, the risk network diagram of the substation protection system
is shown in Figure 4. In the following, the detailed explanations is presented.

(a) Network node

In Figure 4, a, b, c . . . . . . m is the network node in the complex network. For the 220 kV system PD,
the double configuration should be equivalent to one node. Therefore, the PD, the merging unit, and
the intelligent terminal in the protection system are all network nodes. In this paper, for the protection
system network, the equipment of the smart substation network, such as switch, optical fiber, and hub,
is equivalent to a node, which is the network node i depicted in Figure 4.

(b) Agent

The network agent is defined as the network node that realizes a certain network function. For
the line protection function, because the line merging unit participates in the completion of the line
protection function, the line merging unit is a subject of the line protection function. The protection
function subject on the network node n is recorded as Mni, where i is the degree of the subject function.

(c) Agent set

The realization of each protection function in the protection system is completed by multiple
agents in collaboration, thus all agents participating in the completion of the same network function
are called subject set record as S.

(d) Directed edges

Each protection function of the protection system is implemented by multiple subjects. Therefore,
these subjects interact with each other through wired or wireless means, and the transmission of this
information has a direction. Therefore, the directed information interaction between subjects is called
the directed edge.

(e) Degree

Define the number of items that the subject participates in completing the protection function as
degrees, and record it as one. For example, the line merging unit participates in the completion of line
protection and bus differential protection, thus the annual degree of line merging unit is two.

The risk transmission of the protection system denotes that the realization of a certain function
of the protection system needs to be completed in series by all subjects in the subject set. If one of
the subjects fails and the function cannot be realized, other subjects participating in the function’s
subject set cannot be completed. Therefore, the risk transmission of the protection system is mainly
transmitted from the subject to the subject set. The risk transfer of the subject is only transferred to
the subject set in which the subject participates, and the risk transfer is instantaneous. For example,
the main line protection function is completed by line merging unit, intelligent terminal, PD, network
switch, etc. If the line merging unit fails, that is, the failure of line protection sampling leads to the
failure of line protection function, but the risk of line merging unit failure is not transferred to the
protection function of the bus and the main transformer.

Based on the above discussions, the risk assessment model of RPS is developed. The normal
operation of substation RPS is the basis to ensure both stable and safe operation of the primary
equipment and the power grid. The failure of RPS damages the corresponding primary equipment.
Therefore, the failure of RPS function affects the secondary system itself and the primary equipment.
Therefore, the total risk of a protection function subject set S of RPS is formulated as:

RPS = R1 + R2 (18)
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R1 =
n∑
i

PMi ∗CMi (19)

R2 =

1− k∏
i=1

(1− PMi)

 ∗ P1 ∗C1 (20)

where R2 is the risk caused by the subject set S to the RPS; R1 is the primary equipment risk caused by
the subject set S; PMi is the failure probability of the ith subject in the subject set S. The failure rate
of the PD can be obtained by (17), CMi is the loss caused by the ith subject’s failure in the subject set
S, and its value is quantified according to the maintenance cost of the equipment. n is the number
of subjects of the subject set S. This paper considers that the loss of primary equipment caused by
the protection system’s failure causes primary equipment loss only if all the protection functions of
the primary equipment fail and the grid failure occurs at this time interval. P1 is the probability of
primary equipment failure; C1 is the risk loss of primary equipment, and its access rule is based on the
maintenance loss and the power failure loss of primary equipment; k is the number of nonrepetitive
subjects in the subject set participating in the protection of primary equipment.

Substituting Equations (19) and (20) into Equation (18), the total risk of a protection function entity
set S can be derived as:

RPS =
n∑
i

PMi ∗CMi +

1− k∏
i=1

(1− PMi)

 ∗ P1 ∗C1. (21)

Therefore, the risk of line protection function, bus coupling protection function, main transformer
protection function, and bus differential protection function can be calculated by Equation (21). For the
convenience, the risk assessment process for RPS of the smart substation based on the Markov model
and the risk transfer network is depicted in Figure 5.Energies 2020, 13, x FOR PEER REVIEW 10 of 16 
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Remark 1. It is worth noting that, in most of the existing results [10,13,14,21,22], the operation states and the
risk losses of the devices in the protection system were not analyzed in detail, which would affect the accuracy of
evaluation results. By using the proposed evaluation method, after fully analyzing the operation states and the
risk losses of the devices in the protection system, the reliability evaluation of the whole protection system is
expected to be improved compared to the existing results [10,13,14,21,22].

Remark 2. Furthermore, after evaluating the operation states of each device, by using the risk transfer network,
the risk losses of the bus protection system, the main transformer protection system, and the line protection
system are analyzed in detail. Hence, the operation risk of the whole protection system can be evaluated, and the
accuracy of evaluation results could be improved compared to [23,24,26].

4. Numerical Example

In this section, a typical 220 kV bus connection mode of a smart substation is taken as an example
to evaluate the reliability and the risk of the RPS. The considered smart substation is located in the
west of China, which is one of the typical smart substations. The operation and maintenance records,
abnormal alarm information, and some other data of all secondary equipment of the protection system
were archived for more than 5 years, which is useful for verifying the usefulness of the proposed
assessment method. The bus connection mode and the protection configuration diagram are shown in
Figure 1.

According to the PD configuration diagram of a typical wiring mode of a 220 kV bus, and according
to operation and maintenance records, protection action statistics, abnormal alarm information, defect
statistics, and other data information of all secondary equipment of the protection system composed
of all lines, busbars, main transformers, and bus intervals of all smart substations in one province
in China, the average value is taken and, according to the statistical data of abnormal information
monitored by the state monitoring system of smart substation in this province, Table 1 shows the
statistical data of abnormal operation time of the protection system in the actual operation process of
the considered substation in this paper. According to (8), Y1, Y2, and Y3 denoting the statistical data
of various abnormal operation time of the protection system in the actual operation process can be
obtained. Assuming the successful detection probability of the secondary system in the considered
substation is 90%, then the probability of Y4, Y5, and Y6 can be obtained.

Table 1. State transition probability 1 (10−5h−1).

State Transition Probability 1 Y1 Y2 Y3 Y4 Y5 Y6

Line protection 10.19 3.70 8.69 1.13 0.41 0.96
Busbar protection 8.60 3.12 7.2 0.96 0.35 0.75

Main transformer protection 6.11 2.1 5.12 0.67 0.22 0.58
Bus protection 5.25 1.81 4.2 0.55 0.24 0.44

Merge unit 11.82 4.35 10.08 1.25 0.45 1.10
Intelligent terminal 5.66 2.1 4.84 0.63 0.20 0.58

Network switch 9.16 3.12 7.69 1.02 0.37 0.86

Furthermore, based on the statistical data of the system outage time caused by the mis-operation
event of the protection system, and after analyzing the reasons for that mis-operation, it follows from
(10) and (11) that the failure probability can be obtained, where W4, W5, and W6 show the failure
probability caused by the continuous operation of the protection system when its abnormal operation is
not detected, and W7 denotes the failure probability caused by the unexpected events of the protection
system. The detailed values are presented in Table 2.
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Table 2. Failure probability of protection device (10−4h−1).

Failure Probability of Protection Device W4 W5 W6 W7

Line protection 1.42 1.02 0.98 1.64
Busbar protection 1.12 0.84 0.8 1.2

Main transformer protection 0.88 0.58 0.59 0.96
Bus protection 0.81 0.51 0.42 0.82

Merge unit 1.62 1.18 1.08 1.85
Intelligent terminal 0.78 0.52 0.53 0.89

Network switch 1.19 0.90 0.95 1.39

According to the abnormal handling records of the province’s smart substation, the repair time of
all the secondary equipment is taken as a kind of unified archive, thus this paper unifies the abnormal
repair probability of all the protection equipment. Hence, the average repair time of the PD hardware
can be generally 12 h. The average repair time of software abnormality of PD is generally 8 h, the
average repair time of external circuit and communication abnormality is 24 h, and the average repair
time after failure of the PD system is 48 h. Thus, for the considered smart substation, based on the
processing time data of different parts of the protection equipment and the operation data of the
repair time after the protection system failure as well as the requirements of the secondary system’s
maintenance time, by (12), the repair probability F1, F2, and F3 of the abnormal operation state of the
protection system can be obtained by calculating the reciprocal of repair time, which means that the
time it takes for the abnormal condition to be repaired after the device is abnormal and monitored.
Then, combining with (13), similarly, the repair probability F7 of the device failure of the protection
system can be finally obtained, which indicates the time it takes for the failure device to be repaired
successfully. The detailed values are all illustrated in Table 3.

Table 3. Repair probability of protection device (10−4h−1).

F1 F2 F3 F7

833.33 1250 416.67 208.33

It follows from Tables 1–3—also considering Equations (7), (14), and (15)—that the Markov steady
state probability P(∞) can be obtained; the detailed results in this case are listed in Table 4.

Table 4. Steady state probability of protection device.

Steady-State Probability PES PAS PIS

Line protection 0.7553 0.2387 0.006
Busbar protection 0.8145 0.1809 0.0046

Main transformer protection 0.7623 0.2342 0.0035
Bus protection 0.7155 0.2816 0.0029

Merge unit 0.7555 0.2377 0.0068
Intelligent terminal 0.7390 0.2578 0.0032

Network switch 0.7965 0.1982 0.0053

Based on the risk assessment process shown in Figure 5, the failure probability of each PD is
calculated. Then, considering the risk network of the substation protection system, the agent set of
each protection function is obtained; the detailed information is given in Table 5.
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Table 5. Composition of protection function agent set.

Number Subject Set Primary Equipment Served

1 Ma1Mb1Mi1Mj1 Line interval
2 Mc1Md1Mi2Mk1 Busbar interval
3 Me1Mf1Mg1Mh1Mi3Ml1 Main transformer interval

4
Ma2Mb2Mc2Md2Me2Mf2

Mg2Mh2Mi4Mm1

Lines, busbars, and main
transformer interval

In Table 5, CMi denotes the self-loss caused by the ith subject’s failure in the subject set S, C1 is the
risk loss of primary equipment, and its access rule is based on the primary equipment maintenance loss
and power failure. In this paper, the primary equipment price is taken with reference to the average
market price, while the replacement cost of protection equipment plug-ins is also taken with reference
to the market plug-in replacement price. The utilized values are listed in Table 6.

Table 6. Price and maintenance cost of primary and secondary equipment.

Price Overhaul Price (/Ten Thousand) Plug-In or Equipment Price
(/Ten Thousand)

Line protection 1.46 5
Busbar protection 0.56 5

Main transformer protection 1.59 5
Bus protection 0.56 5

Merge unit 0.28 5
Intelligent terminal 0.28 5

Network switch 0.23 5
Breaker 2.07 80

Transformer 8.47 300
Isolating switch and other primary

equipment 0.81 60

According to the statistical analysis report of protection actions of the province in 2019, the
probability of line interval fault is 0.0005, the probability of grid fault of the main transformer interval
is 0.00023, and the probability of bus fault is 0.0001. It follows from Equation (21) and Tables 4–6 that
we can get the failure rate and the risk loss of the protection system, where the results are illustrated in
Tables 7 and 8, respectively.

Table 7. Failure rate of protection system.

Protection System Line Busbar Main Transformer Bus

System failure rate 0.0213 0.0199 0.0288 0.0482

Table 8. Risk loss of protection system.

Risk Loss Secondary Loss (/Yuan) Primary Loss
(/Yuan)

Total Loss
(/Yuan)

Line protection system 1192.79 16.78 1209.57
Busbar protection system 1060.95 3.23 1064.18

Main transformer
protection system 1563.84 22.34 1586.18

Bus protection system 2550.43 42.35 2592.78

Tables 7 and 8 demonstrate the failure rate and the risk loss of each protection system calculated
by the proposed method in this paper, where the risk loss size and the realization of the protection
function of the general protection system are directly related to the number of PDs involved. The
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realization of bus protection requires the most protection equipment, followed by the protection of the
main transformer. The PDs involved in line and bus joint protection are the same and are less than that
of bus and main transformer.

Therefore, the secondary risk loss of bus protection is the highest in all protection systems, followed
by the main transformer protection, and finally line and bus protection, according to Table 8 and the
assessment results of the developed risk assessment method of an intelligent substation RPS based on
the Markov model and the risk transfer network proposed in this paper. As is clearly indicated from
the obtained results regarding the secondary risk loss caused by each protection system, the reason
the secondary risk loss occurs (due to the line protection system being more than the loss that occurs
because of the bus protection system) is that the bus protection system is only put into operation in the
process of bus charging, and its actual operation time is less likely to fail, thus the secondary risk loss
caused by it is smaller than that caused by the line.

In order to further highlight the contribution of the proposed method, some qualitative comparison
results are provided in Table 9.

Table 9. Comparison analysis with some existing results.

References
Operation States and Risk

Losses of the Devices in the
Protection System

Risk Loss of Primary Equipment
Caused by Operation Risk of

Secondary System

[8] NO NO
[11] NO NO
[12] NO NO
[18] NO NO
[19] NO NO
[21] YES NO
[23] YES NO

Method in this paper YES YES

It follows from Table 9 that the proposed method not only considers the operation states and
the risk losses of the devices in the protection system, but it also considers the risk loss of primary
equipment caused by operation risk of the secondary system. Therefore, it can be seen from the
evaluation results given in Table 8, the risk loss caused by the primary equipment protection system
failure is much less than the loss of the secondary equipment itself, but it must be considered in the
actual application. Hence, the risk loss that occurs by the protection system failure is fully considered,
and thus the theoretical support regarding the condition-based maintenance realization of the smart
substation is provided.

5. Discussions and Future Work

In this paper, first of all, through the comparative analysis of the existing operation risk assessment
methods for the protection system—and taking into account the characteristics of the monitoring
statistical data for the operation state of the secondary equipment under the actual site conditions as
well as the requirements for the operation risk assessment object of the secondary system—an operation
risk assessment method combining the Markov model and the risk transfer network is proposed. The
special properties are summarized and highlighted as follows:

1. Compared to Monte Carlo simulation [12–14], neural network [26–37], and fault tree [35–37],
there is a strong correlation between the state transition mechanism of the three-state progressive
model based on the Markov model and the change mechanism of the RPS’s operation state, which
can more accurately reflect the operation state change of the protection system compared with
other models.

2. In the proposed assessment method, not only is the operation risk of the secondary equipment
itself considered, but the function abnormality of the protection system caused by the abnormality
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of the secondary equipment, which may lead to the operation risk of the unprotected operation
of the primary equipment, is taken into account as well. In addition, the risk loss of the primary
equipment is quantitatively analyzed; compared with other methods, i.e., [21–24,26–28,34–36], it
is more intuitive and accurate to reflect the operational risk of the protection system.

3. Most of the existing operation state evaluation methods focus on the risk assessment of the
secondary system or a protection function. When the system or a protection function operates
abnormally, it is difficult to find the abnormal operation equipment in time, which may affect
the normal operation of the primary equipment and cause power failure loss. In the developed
results in this paper, more attention is paid to the operation state and the operation risk of a
certain secondary equipment, thus much more objective and accurate risk assessment results
could be obtained.

It should be noted that, although there have been many results developed for the operation risk
assessment of the protection system, there are still some interesting and important problems that
should be considered in the future, which are all left for the future research topics:

1. In the future, with the development of information and communication techniques, the overall
perception of the secondary system’s operation state would be realized. Therefore, with the
perception results, how to improve the accuracy of the risk assessment results will be an
interesting topic.

2. A complete monitoring statistical database is important, which can closely reflect the operation
state of the secondary system. Hence, in the future, how to construct this database and effectively
use this data would be worthy of being investigated.

3. Based on the developed Markov model, how to improve and establish the model for hidden
faults in the protection system is also a future research topic.

6. Conclusions

In this paper, the risk assessment method of smart substation RPS based on the Markov model
and the risk transfer network was proposed. Based on action data, defect data, and network message
information of 220 kV and the proposed protection system, the failure rate of PD based on the Markov
model was evaluated, and then the risk assessment for RPS of a smart substation was carried out by
combining both the Markov model and the risk transfer network together. For the typical 220 kV
connection mode of a smart substation, the risk loss caused by RPS itself and primary equipment was
considered. The results demonstrated that the risk loss of the bus protection system is the highest,
followed by that of the main transformer protection system, and the risk loss of the line protection
system is greater than that of the bus protection system. In addition, the risk loss of primary equipment
caused by the failure of RPS is much less than the loss of secondary equipment itself. In order to
provide a comprehensive theoretical support for the condition-based maintenance of substation RPS,
the risk loss of primary equipment caused by the failure of RPS must also be considered. Therefore,
the state evaluation and the risk evaluation of the relay protection system proposed in this paper can
provide necessary theoretical support for the smart substation to achieve better state maintenance.
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